Abelian state-closed subgroups of automorphisms of \(m \)-ary trees

Andrew M. Brunner and Said N. Sidki

Abstract. The group \(A_m \) of automorphisms of a one-rooted \(m \)-ary tree admits a diagonal monomorphism which we denote by \(x \). Let \(A \) be an abelian state-closed (or self-similar) subgroup of \(A_m \). We prove that the combined diagonal and tree-topological closure \(A^* \) of \(A \) is additively a finitely presented \(\mathbb{Z}_m[[x]] \)-module, where \(\mathbb{Z}_m \) is the ring of \(m \)-adic integers. Moreover, if \(A^* \) is torsion-free then it is a finitely generated pro-\(m \) group. Furthermore, the group \(A \) splits over its torsion subgroup. We study in detail the case where \(A^* \) is additively a cyclic \(\mathbb{Z}_m[[x]] \)-module, and we show that when \(m \) is a prime number then \(A^* \) is conjugate by a tree automorphism to one of two specific types of groups.

Mathematics Subject Classification (2010). 20E08, 20F18.

Keywords. Automorphisms of trees, state-closed groups, self-similar groups, abelian groups, topological closure, \(p \)-adic integers, pro-\(p \) groups.

1. Introduction

Automorphisms of one-rooted regular trees \(T(Y) \) indexed by finite sequences from a finite set \(Y \) of size \(m \geq 2 \) have a natural interpretation as automata on the alphabet \(Y \), with states which are again automorphisms of the tree. A subgroup of the group of automorphisms \(A(Y) \) of the tree is said to be state-closed in the language of automata (or self-similar in the language of dynamics) of degree \(m \), provided that the states of its elements are themselves elements of the same group. If the group is not state-closed then we may consider its state-closure. The prime example of a state-closed group is the group generated by the binary adding machine \(\tau = (e, \tau_0) \sigma \), where \(\sigma \) is the transposition \((0, 1)\).

We study in this paper representations of general abelian groups as state-closed groups of degree \(m \). For this purpose we use topological and diagonal closure oper-
ations in the automorphism group of the tree. Representations of free abelian groups of finite rank as state-closed groups of degree 2 were characterized in [4].

An automorphism group G of the tree group is said to be transitive, provided that the permutation group $P(G)$ induced by G on the set Y is transitive; actions of groups on sets will be applied on the right. It will be shown that the structure of state-closed groups can in a certain sense be reduced to those which are transitive.

The automorphism group $A(Y)$ of the tree is a topological group with respect to the topology inherited from the tree. This topology allows us to exponentiate elements of $A(Y)$ by m-ary integers from \mathbb{Z}_m. Given a subgroup G of $A(Y)$, its topological closure \bar{G} with respect to the tree topology belongs to the same variety as G. Also, if G is state-closed then so is \bar{G}.

The diagonal map $\alpha \mapsto \alpha^{(1)} = (\alpha, \alpha, \ldots, \alpha)$ is a monomorphism of \mathcal{A}_m. Define inductively $\alpha^{(0)} = \alpha$, $\alpha^{(i+1)} = (\alpha^{(i)})^{(1)}$ for $i \geq 0$. It is convenient to introduce a symbol x and write $\alpha^{(i)}$ as α^x for $i \geq 0$. This will permit more general exponentiation, by formal power series $p(x) \in \mathbb{Z}_m[[x]]$. Given a subgroup G of $A(Y)$, its diagonal closure \bar{G} is the group $\langle G^{(i)} | i \geq 0 \rangle$. Observe that the diagonal closure operation preserves the state-closed property.

We will show that given an abelian transitive state-closed group A, its diagonal closure \bar{A} is again abelian. The composition of the diagonal and topological closures when applied to A produces an abelian group denoted by A^*, which can be viewed additively as a finitely generated $\mathbb{Z}_m[[x]]$-module. This approach was first used in [2].

The prime decomposition $m = \prod_{1 \leq i \leq s} p_i^{k_i}$ provides us with the decomposition $\mathbb{Z}_m = \bigoplus_{1 \leq i \leq s} \mathbb{Z}_{p_i^{k_i}}$, where $\mathbb{Z}_{p_i^{k_i}}$ are orthogonal idempotents such that $1 = \sum_{1 \leq i \leq s} \varepsilon_i \mathbb{Z}_{p_i^{k_i}}[[x]] = \bigoplus_{1 \leq i \leq s} \varepsilon_i \mathbb{Z}_{p_i^{k_i}}[[x]]$.

When $m = p^k$ and p a prime number, the rings $\mathbb{Z}_m[[x]]$ and $\mathbb{Z}_p[[x]]$ are isomorphic, yet when $k > 1$ they are different representations of the same object and for this reason we distinguish between them.

In Sections 3 and 4 we prove

Theorem 1. Let A be an abelian transitive state-closed group of degree m. Then

1. the group A^* is isomorphic to a finitely presented $\mathbb{Z}_m[[x]]$-module;
2. if A^* is torsion-free then it is a finitely generated \mathbb{Z}_m-module which is also a pro-m group.

Item (1) is part of Theorem 5 and item (2) is Corollary 1 of Theorem 6.

We consider in Section 5 torsion subgroups of state-closed abelian groups and use methods from virtual endomorphisms of groups (see [3], [1]; reviewed in Section 5.1) to prove the following structural result.

Theorem 2. Let A be an abelian transitive state-closed group of degree m and $\text{tor}(A)$ its torsion subgroup. Then
Abelian state-closed groups

(i) \(\text{tor}(A) \) is a direct summand of \(A \) and has exponent a divisor of the exponent of \(P(A) \);

(ii) the action of \(A \) on the \(m \)-ary tree induces transitive state-closed representations of \(\text{tor}(A) \) on the \(m_1 \)-tree and of \(\frac{A}{\text{tor}(A)} \) on the \(m_2 \)-tree, where \(m_1 = |P(\text{tor}(A))| \) and \(m_2 = |\frac{P(A)}{P(\text{tor}(A))}| \);

(iii) if \(A = \text{tor}(A) \) and \(P(A) \not\equiv L_1/Z_4 \cap L_2/Z_4 \cap Z_{m_1}/Z_{m_2} [x] \).

The above results are analogous to Theorem 4.3.4 of [5] on the structure of finitely generated pro-\(p \) groups. By item (i) of the theorem, an abelian torsion group \(G \) of infinite exponent cannot have a faithful representation as a transitive state-closed group for any finite degree. Put differently, the group \(G \) does not admit any simple virtual endomorphism. On the other hand, the group of automorphisms of the \(p \)-adic tree is replete with abelian \(p \)-subgroups of infinite exponent. Item (iii) follows from Theorem 7, which is a conjugacy result and therefore more general than isomorphism.

We focus our attention in Section 6 on transitive state-closed abelian groups \(A \), for which \(A^* \) is additively a cyclic \(\mathbb{Z}_m[[x]] \)-module. We show

Theorem 3. (1) Let \(q_1, \ldots, q_m \in \mathbb{Z}_m[[x]] \) and let \(\sigma \) be the cycle \((1, 2, \ldots, m)\). Then the expression
\[
\alpha = (\alpha^{q_1}, \ldots, \alpha^{q_m}) \sigma
\]
is a well-defined automorphism of the \(m \)-ary tree and the state-closure \(A \) of \(\langle \alpha \rangle \) is an abelian transitive group. The group \(A^* \) is additively isomorphic to the quotient ring \(\mathbb{Z}_m[[x]]/(r) \), where \(r = m - xq \) and \(q = q_1 + \cdots + q_m \).

(2) Let \(A \) be a transitive state-closed abelian group of degree \(m \) such that \(A^* \) is additively a cyclic \(\mathbb{Z}_m[[x]] \)-module. Then \(P(A) \) is cyclic, say generated by \(\sigma \), and \(A^* \) is the state-diagonal-topological closure of an element of the form \(\alpha = (\alpha^{q_1}, \ldots, \alpha^{q_m}) \sigma \) for some \(q_1, \ldots, q_m \in \mathbb{Z}_m[[x]] \).

Finally we provide a complete description of the group \(A^* \) for state-closed groups of prime degree. Let \(j \geq 1 \) and let \(D_m(j) \) be the group generated by the set of states of the generalized adding machine \(\alpha = (e, \ldots, e, \alpha^{x^{j-1}}) \sigma \) acting on the \(m \)-ary tree with \(\sigma = (1, 2, \ldots, m) \). The topological closure of \(D_m(j) \) seen as \(\mathbb{Z}_m \)-module is isomorphic to the ring \(\mathbb{Z}_m[[x]]/(r) \), \(r = m - xj \).

Theorem 4. Let \(A \) be an abelian transitive state-closed group of prime degree \(m \) and let \(\sigma \) be the \(m \)-cycle automorphism. If \(\text{tor}(A) \) is nontrivial then \(A^* \) is a torsion group conjugate to \(\langle \sigma \rangle^* (\equiv \mathbb{Z}_m[[x]]) \). If \(A \) is torsion-free then \(A^* \) is a torsion-free group conjugate to the topological closure of \(D_m(j) \) for some \(j \).

One of the questions that has remained unanswered is whether a free abelian group of infinite rank admits a faithful transitive state-closed representation, even of prime degree.
2. Preliminaries

We fix the notation $Y = \{1, 2, \ldots, m\}$, $\mathcal{T}_m = \mathcal{T}(Y)$, $\mathcal{A}_m = \mathcal{A}(Y)$ and we let $\text{Perm}(Y)$ be the group of permutations of Y. A permutation $\gamma \in \text{Perm}(Y)$ is extended to an automorphism of the tree by $\gamma : yu \to \gamma yu$, fixing the non-initial letters of every sequence. An automorphism $\alpha \in \mathcal{A}_m$ is represented as $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)\sigma(\alpha)$, where $\alpha_i \in \mathcal{A}_m$ and $\sigma(\alpha) \in \text{Perm}(Y)$. Successive developments of α_i produce for us α_u (a state of α) for every finite string u over Y.

The product of $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)\sigma(\alpha)$ and $\beta = (\beta_1, \beta_2, \ldots, \beta_m)\sigma(\beta)$ in \mathcal{A}_m is

$$\alpha\beta = (\alpha_1\beta_1)\sigma(\alpha)\ldots(\alpha_m\beta_m)\sigma(\alpha)\sigma(\beta).$$

Let G be a subgroup of \mathcal{A}_m. Denote the subgroup of G which fixes the vertices of the i-th level of the tree by $\text{Stab}_G(i)$. Given $y \in Y$, denote by $\text{Fix}_G(y)$ the subgroup of G consisting of the elements of G, which fix y. The group G is said to be recurrent provided it is transitive and $\text{Fix}_G(1)$ projects in the 1st coordinate onto G.

The group \mathcal{A}_m is the inverse limit of its quotients by the i-th level stabilizers $\text{Stab}_{\mathcal{A}_m}(i)$ of the tree and is as such a topological group where each $\text{Stab}_{\mathcal{A}_m}(i)$ is an open and closed subgroup. For a subgroup G of automorphisms of the tree, its topological closure \tilde{G} coincides with the set of all infinite products $\ldots g_1 \ldots g_1 g_0$ or alternately, $g_0 g_1 \ldots g_i \ldots$, where $g_i \in \text{Stab}_{\mathcal{A}_m}(i)$. The group \tilde{G} satisfies the same group identities as G. We note that the property of being state-closed is also preserved by the topological closure operation.

Let α be an automorphism of the tree. Then $\langle \alpha \rangle = \{\alpha^p \mid p \in \mathbb{Z}_m\}$. More generally, for $q = \sum_{i \geq 0} q_i x^i \in \mathbb{Z}_m[[x]]$ with $q_i \in \mathbb{Z}_m$, we write the expression

$$\alpha^q = \alpha^{q_0} \alpha^{q_1 x} \ldots \alpha^{q_i x^i} \ldots,$$

which can be verified to be a well-defined automorphism of the tree.

We recall the reduction of group actions to transitive ones, with a view to a similar reduction for state-closed groups of automorphisms of trees. Let G be a subgroup of $\text{Perm}(Y)$, let $\{Y_i \mid i = 1, \ldots, s\}$ be the set of orbits of G on Y and let $\{\rho_i : G \to \text{Perm}(Y_i) \mid i = 1, \ldots, s\}$ be the set of induced representations. Then, each ρ_i is transitive and $\rho : G \to \prod_{1 \leq i \leq s} \text{Perm}(Y_i) \leq \text{Perm}(Y)$ defined by $g \to (g^{\rho_1}, \ldots, g^{\rho_s})$ is a monomorphism. The reduction for tree actions follows from

Lemma 1. Let G be a state-closed group of automorphisms of the tree $\mathcal{T}(Y)$ and let X be a $P(G)$-invariant subset of Y. Then $\mathcal{T}(X)$ is G-invariant and for the resulting representation $\mu : G \to \mathcal{A}(X)$ the group G^μ is state-closed. If G is diagonally closed or is topologically closed then so is G^μ.

Proof. Let xu be a sequence from X and let $\alpha \in G$. Then $(xu)^\alpha = x^{\sigma(\alpha)}u^{\alpha_x}$. As $x^{\sigma(\alpha)} \in X$ and $\alpha_x \in G$, it follows that $(xu)^\alpha$ is a sequence from X. Also, for any sequence u from X, we have $(\alpha^\mu)_u = (\alpha_u)^\mu$. Thus, G^μ is state-closed. The last assertion is clear. \qed
We note the following important properties of transitive state-closed abelian groups A.

Proposition 1. Let A be an abelian transitive state-closed group of degree m. Then $\text{Stab}_A(i) \leq A^{(i)}$ for all $i \geq 0$. The group \tilde{A} is an abelian transitive state-closed group and is a minimal recurrent group containing A. Moreover, the topological closure and diagonal closure operations commute when applied to A. The diagonal-topological closure A^* of A is an abelian transitive state-closed group.

Proof. Let $\alpha = (\alpha_1, \ldots, \alpha_m)\sigma, \beta = (\beta_1, \ldots, \beta_m) \in A$. Then the conjugate of β by α is $\beta^\alpha = (\beta_1^{\alpha_1}, \ldots, \beta_m^{\alpha_m})^\sigma$. As $\alpha_i, \beta_i \in A$ and A is abelian, it follows that $\beta = (\beta_1, \ldots, \beta_m)^\sigma$. Furthermore, since A is transitive, $\beta = (\beta_1, \ldots, \beta_1) = (\beta_1)^{(1)}$. Thus, $\text{Stab}_A(i) \leq A^{(i)}$ for all i. A similar verification shows that $Q_A = \langle \alpha \rangle$ is abelian.

Let G be a recurrent group such that $A \leq G \leq \tilde{A}$. Given $\alpha \in G$, as G is recurrent, there exists $\beta \in \text{Stab}_G(1)$ such that $\beta = (\beta_1, \ldots, \beta_m)$ with $\beta_1 = \alpha$. Since G is transitive and abelian, we have $\beta_1 = \cdots = \beta_m = \alpha$; that is, $\beta = \alpha^{(1)}$. Hence, $A^{(i)} \leq G$ and $G = \tilde{A}$ follows.

The last two assertions of the proposition are clear.

The following result indicates the smallness of recurrent transitive abelian groups from the point of view of centralizers.

Proposition 2 (Theorem 7 [1]). (1) Let A be a recurrent abelian group of degree m and let $C_A(A)$ be the centralizer of A in A. Then $C_A(A) = \tilde{A}$.

(2) Let m be a prime number and A be an infinite transitive state-closed abelian group. Then $C_A(A) = \tilde{A}$.

This result will be used in the proofs of Lemma 3 and step 4 of Theorem 9.

3. A presentation for A^*

Let A be a transitive abelian state-closed group of degree m and let A^* be its diagonal-topological closure. Then A^* is additively a $\mathbb{Z}_m[[x]]$-module having the following properties. Given $\alpha \in A^*$, then

(i) $x\alpha = 0$ implies $\alpha = 0$;

(ii) $m\alpha = x\gamma$ for some $\gamma \in A^*$.

Let $P(A)$ be given by its presentation

$$\langle \sigma_i \mid 1 \leq i \leq k \mid \sigma_i^{m_i} = e, \text{ abelian} \rangle.$$
Choose for each σ_i an element β_i in A, which induces σ_i on Y; denote β_i by $\beta(\sigma_i)$. Then, for any $n \geq 0$, the automorphism of the tree $\beta(\sigma_i)^{(n)}$ is an element of A which induces $(\sigma_i)^{(n)}$ on the $(n + 1)$-th level of the tree. Although the notation β_i has been used to indicate the ith entry in an automorphism β, we hope this new usage will not cause confusion.

Theorem 5. Let A be a transitive abelian state-closed group of degree m. Then A^* is additively a $\mathbb{Z}_m[[x]]$-module generated by

$$\{\beta_i \mid 1 \leq i \leq k\}$$

subject to the set of defining relations

$$\{r_i = \sum_{1 \leq j \leq k} m_i \beta_i - p_{ij} \beta_j x = 0 \mid 1 \leq i \leq k\}$$

for some $p_{ij} \in \mathbb{Z}_m[[x]]$.

Moreover, there exist $r, q \in \mathbb{Z}_m[[x]]$ such that $r = m - xq$ and $rA^* = (0)$. The elements of A^* can be represented additively as $\sum_{1 \leq i \leq k} p_i \beta_i$, where $p_i = \sum_{j \geq 0} p_{ij} x^j$ and each $p_{ij} \in \mathbb{Z}$ with $0 \leq p_{ij} < m$.

Proof. Let $\alpha \in A^*$ and $\sigma(\alpha) = \prod_{1 \leq i \leq k} \sigma_i^{r_{i1}}$, $0 \leq r_{i1} < m_i$. Then either $\alpha(\prod_{1 \leq i \leq k} \beta_i^{r_{i1}})^{-1}$ is the identity element or there exists $l_2 \geq 1$ such that

$$\alpha(\prod_{1 \leq i \leq k} \beta_i^{r_{i1}})^{-1} \in \text{Stab}(l_2) \setminus \text{Stab}(l_2 + 1)$$

and so, $\alpha(\prod_{1 \leq i \leq k} \beta_i^{r_{i1}})^{-1} = (\gamma)^{(l_2)}$ for some $\gamma \in A^*$. We treat γ in the same manner as α. In the limit, we obtain

$$\alpha = \prod_{1 \leq i \leq k} (\beta_i^{r_{i1}}(\beta_i^{r_{i2}}(\beta_i^{r_{i3}}(\ldots \beta_i^{r_{ij}}(\ldots))) = \prod_{1 \leq i \leq k} \beta_i^{q_i},$$

where $0 \leq r_{ij} < m_i$, $1 \leq l_2 < l_3 < \cdots < l_j < \cdots$, and $q_i = r_{i1} + \sum_{j \geq 2} r_{ij} x^{l_j}$ are formal power series in x. Additively we then have

$$\alpha = \sum_{1 \leq i \leq k} q_i \beta_i \in \sum_{1 \leq i \leq k} \mathbb{Z}_m[[x]] \beta_i.$$
Let $F = \bigoplus_{1 \leq i \leq k} \mathbb{Z}_m[[x]] \hat{\beta}_i$ be a free $\mathbb{Z}_m[[x]]$-module of rank k. Define the $\mathbb{Z}_m[[x]]$-homomorphism

$$
\phi: \sum_{1 \leq i \leq k} \mathbb{Z}_m[[x]] \hat{\beta}_i \rightarrow A^*, \quad \sum_{1 \leq i \leq k} p_i \hat{\beta}_i \mapsto \prod_{1 \leq i \leq k} \hat{\beta}_i^{p_i},
$$

and let R be the kernel ϕ. Define J to be the $\mathbb{Z}_m[[x]]$-submodule of R generated by

$$
\hat{r}_i = m_i \hat{\beta}_i - x(\sum_{1 \leq j \leq k} p_{ij} \hat{\beta}_j) \quad (1 \leq i \leq k).
$$

We will show that $J = R$. So let $v \in R$ and write $v = \sum_{1 \leq i \leq k} v_i \hat{\beta}_i$, where

$$
v_i = \sum_{j \geq 0} v_{ij} x^j, \quad v_{ij} = v_{ij,0} + mw_{ij} \in \mathbb{Z}_m.
$$

Then $m_i | v_{i0,0}, v_{i0,0} = m_i v'_{i0,0}$; factor $m = m_i m'_i$. Therefore,

$$
v_i = v_{i0} + (\sum_{j \geq 1} v_{ij} x^{j-1})x,
$$

$$
v_{i0} = m_i v'_{i0,0} + mw_{i0} = (v'_{i0,0} + m_i w_{i0})m_i,
$$

$$
v_i \hat{\beta}_i = (v'_{i0,0} + m_i w_{i0})(m_i \hat{\beta}_i) + (\sum_{j \geq 1} v_{ij} x^{j-1})x \hat{\beta}_i,
$$

$$
\equiv (v'_{i0,0} + m_i w_{i0})(x \sum_{1 \leq j \leq k} p_{ij} \hat{\beta}_j) + (\sum_{j \geq 1} v_{ij} x^{j-1})x \hat{\beta}_i \mod J.
$$

Hence

$$
v = \sum_{1 \leq i \leq k} v_i \hat{\beta}_i + x \mu + J, \quad \mu = \sum_{1 \leq i \leq k} \mu_i \hat{\beta}_i \in R.
$$

Hence, by repeating the argument, we obtain

$$
v \in \left(\bigcap_{i \geq 1} x^i R \right) + J = J, \quad J = R.
$$

On re-writing the relations $m_i \hat{\beta}_i = \sum_{1 \leq j \leq k} p_{ij} x \hat{\beta}_j$ in the form

$$
p_{i1} x \hat{\beta}_1 + \cdots + (p_{ii} x - m_i) \hat{\beta}_i + \cdots + p_{kk} x \hat{\beta}_k = 0
$$

we see that the $k \times k$ matrix of coefficients of these equations has determinant $r = m - qx$ for some $q \in \mathbb{Z}_m[[x]]$ and thus r annihilates A^*.

The last assertion of the theorem follows by using $r = m - qx \in R$ to reduce the coefficients modulo m.

4. The m-congruence property

A group G of automorphisms of the m-ary tree is said to satisfy the m-congruence property, provided that given m^i there exists $l(i) \geq 1$ such that $\text{Stab}_G(l(i)) \leq G^{m^i}$ for all i, in which case the topology on G inherited from $\mathcal{A}(Y)$ is equal to the pro-m topology. Since when A^* is written additively, we have $\text{Stab}_G(l(i)) = x^{l(i)} A^*$, the m-congruence property reads $x^{l(i)} A^* \leq m^i A^*$.
Theorem 6. Let \(r = m - qx^j \in \mathbb{Z}_m[[x]] \) with \(q \in \mathbb{Z}_m[[x]] \) and \(j \geq 1 \). Let \(S \) be quotient ring \(\mathbb{Z}_m[[x]]_{(r)} \). Suppose that \(S \) is torsion-free. Then \(S \) is a finitely generated pro-\(m \) group.

Proof. From the decomposition \(\mathbb{Z}_m[[x]] = \bigoplus_{1 \leq i \leq s} \mathbb{Z}_{p_i^{k_i}}[[x]] \) corresponding to the prime decomposition \(m = \prod_{1 \leq i \leq s} p_i^{k_i} \), we obtain

\[
\begin{align*}
 r &= \sum_{1 \leq i \leq s} r_i, \\
 r_i &= \varepsilon_i r = p_i^{k_i} - q_i(x)x^j, \\
 S &= \sum_{1 \leq i \leq s} S_i, \quad S_i = \frac{\mathbb{Z}_{p_i^{k_i}}[[x]]}{(r_i)},
\end{align*}
\]

where each \(S_i \) is torsion-free. Thus, it is sufficient to address the case where \(m \) is a prime power \(p^k \).

(1) First, we show that \(S \) is a pro-\(m \) group.

So let \(r = p^k - qx^j \) and decompose \(q = q(x) = s(x) + p \cdot t(x) \), where each non-zero coefficient of \(s(x) \) is an integer relatively prime to \(p \). If \(s(x) = 0 \) then \(q(x) = p \cdot t(x) \) and

\[
r = p^k - q(x)x^j = p^k - p \cdot t(x)x^j = p(p^{k-1} - t(x)x^j) \in (r);
\]

but as by hypothesis \(S \) is torsion free, we have \(p^{k-1} - t(x)x^j \in (r) \), which is not possible.

Write \(s(x) = x^lu(x) \), where \(l \geq 0 \) and \(u(x) \) is invertible in \(\mathbb{Z}_m[[x]] \) with inverse \(u'(x) \). Then \(q(x) = x^lu(x) + p \cdot t(x) \) and

\[
r = p^k - (x^lu(x)x^j + p \cdot t(x)x^j) = p(p^{k-1} - t(x)x^j) - x^{j+l}u(x).
\]

Therefore, on multiplying by \(u'(x) \), the inverse of \(u(x) \), we obtain

\[
p(p^{k-1} - t(x)x^j)u'(x) \equiv x^{j+l} \mod r.
\]

It follows that

\[
x^{j+l}S \leq pS, \quad x^{n(j+l)}S \leq p^nS.
\]

(2) Now we show that \(S \) is finitely generated as a \(\mathbb{Z}_m \)-module.

By the previous step there exist \(l \geq 1 \) and \(v(x) \in \mathbb{Z}[[x]] \) such that

\[
x^l \equiv mv(x) \mod r.
\]

Decompose \(v(x) = v_1(x) + v_2(x)x^l \) where the degree of \(v_1(x) \) is less than \(l \). Then
we deduce modulo r:

\[\begin{align*}
v(x) & \equiv v_1(x) + v_2(x)mv(x), \\
v_2(x)v(x) & \equiv w(x) \in \mathbb{Z}[x], \\
w(x) & = w_1(x) + w_2(x)x^l, \\
v(x) & \equiv v_1(x) + mw(x) \\
& \equiv v_1(x) + mw_1(x) + mw_2(x)x^l \\
& \vdots \\
v(x) & \equiv a_0 + a_1x + \cdots + a_{l-1}x^{l-1}, \quad a_i \in \mathbb{Z}_m.
\end{align*}\]

We have shown that S is generated by $1, x, \ldots, x^{l-1}$ as a pro-m group. \qed

Corollary 1. Let A be an abelian transitive state-closed group of degree m. Suppose that the group A^*/ETX is torsion-free. Then A^*/ETX is a finitely generated pro-m group.

Proof. With previous notation, the group A^* is a $\mathbb{Z}_m[[x]]$-module generated by

\[\{\beta_i = \beta(\sigma_i) \mid 1 \leq i \leq k\}\]

and is annihilated by $r = m - qx^j \in \mathbb{Z}_m[[x]]$ for some $q \in \mathbb{Z}_m[[x]]$ and $j \geq 1$.

It follows that A^* is an S-module, where $S = \mathbb{Z}_m[[x]](r)$. Since S satisfies the m-congruence property, it follows that A^* is a pro-m group.

That A^* is a finitely generated \mathbb{Z}_m-module, is a consequence of S being a finitely generated \mathbb{Z}_m-module. \qed

5. **Torsion in state-closed abelian groups**

5.1. **Preliminaries on virtual endomorphisms of groups.** Let G be a transitive state-closed subgroup of $\mathcal{A}(Y)$, where $Y = \{1, 2, \ldots, m\}$. Then $[G : \text{Fix}_G(1)] = m$ and the projection on the 1st coordinate of $\text{Fix}_G(1)$ produces a subgroup of G; that is, $\pi_1 : \text{Fix}_G(1) \to G$ is a virtual endomorphism of G. This notion has proven to be effective in studying state-closed groups. We give a quick review below.

Let G be a group with a subgroup H of finite index m and a homomorphism $f : H \to G$. A subgroup U of G is **semi-invariant** under the action of f, provided that $(U \cap H)^f \leq U$. If $U \leq H$ and $U^f \leq U$ then U is **f-invariant**.

The largest subgroup K of H which is normal in G and f-invariant is called the **f-core(H)**. If the f-core(H) is trivial then f and the triple (G, H, f) are said to be a **simple**.

Given a triple (G, H, f) and a right transversal $L = \{x_1, x_2, \ldots, x_m\}$ of H in G, the permutational representation $\pi : G \to \text{Perm}(1, 2, \ldots, m)$ is $g^\pi : i \to j$, which
is induced from the right multiplication $H x_i g = H x_j$. We produce recursively a representation $\varphi: G \to \mathcal{A}(m)$ as follows:

$$g^\varphi = ((x_i g \cdot (x(i)g)^{-1})^f \varphi)^{1 \leq i \leq m g^\pi}.$$

One further expansion of g^φ is

$$g^\varphi = (((x_j g_i \cdot x_i^{-1})^f \varphi)^{1 \leq j \leq m g_i^\pi})^{1 \leq i \leq m g^\pi},$$

where $g_i = (x_i g \cdot x_i^{-1})^f$.

The kernel of φ is precisely the f-core(H), G^φ is state-closed and $H^\varphi = \text{Fix}_{G^\varphi}(1)$.

5.1.1. Changing transversals.

We will show below that changing the transversal of H in G produces another representation of G, conjugate to the original one by an explicit automorphism of the m-ary tree.

Proposition 3. Let (G, H, f) be a triple and

$$L = \{x_1, x_2, \ldots, x_m\}, L' = \{x'_1 = h_1 x_1, x'_2 = h_2 x_2, \ldots, x'_m = h_m x_m\}$$

right transversals of H in G where $h_i \in H$. Let $\varphi = \varphi_{x_i}$, $\varphi' = \varphi_{h_i x_i}: G \to \mathcal{A}(m)$ be the corresponding tree representations and define the following elements of $\mathcal{A}(m)$,

$$\gamma = \gamma_{h_i, \varphi'} = ((h_i f \varphi')^{1 \leq i \leq m},$$

$$\lambda = \lambda_{h_i, \varphi'} = \gamma^{(1)} \ldots \gamma^{(n)}.$$

Then

$$\varphi_{h_i x_i} = \varphi_{x_i}(\lambda_{h_i^{-1}, \varphi_{x_i}}).$$

Proof. The representations $\varphi, \varphi': G \to \mathcal{A}(m)$ are defined by

$$g^\varphi = ((x_i g \cdot (x(i)g)^{-1})^f \varphi)^{1 \leq i \leq m g^\pi},$$

$$g^{\varphi'} = ((x_i' g \cdot (x'(i)g)^{-1})^f \varphi')^{1 \leq i \leq m g^\pi}.$$

The relationship between φ' and φ is established as follows,

$$g^{\varphi'} = ((h_i x_i g \cdot (h(i)g)^{-1} x(i) g^{-1})^f \varphi')^{1 \leq i \leq m g^\pi}$$

$$= ((h_i x_i g \cdot x(i) g^{-1} h(i) g^{-1})^f \varphi')^{1 \leq i \leq m g^\pi}$$

$$= ((h_i f \varphi')^{1 \leq i \leq m} \cdot (x_i g \cdot x(i) g^{-1} h(i) g^{-1})^f \varphi')^{1 \leq i \leq m g^\pi}$$

$$= ((h_i f \varphi')^{1 \leq i \leq m} \cdot (x_i g \cdot x(i) g^{-1} h(i) g^{-1})^f \varphi')^{1 \leq i \leq m g^\pi}.$$
Thus in the limit we obtain
\[g_{\varphi'} = \gamma \cdot ((x_i g \cdot x_i^{-1})g_i)_{1 \leq i \leq m} \cdot \gamma^{-1}, \]
where \(\gamma = ((h_i)_{i \leq j < m}) \) is independent of \(g \). Repeating this development for each \(g_i = (x_i g \cdot x_i^{-1})g_i \), we find that
\[g_{\varphi'} = \gamma \gamma^{(1)} \cdot ((x_j g_i \cdot x_i^{-1})g_i)_{1 \leq i \leq m} \cdot \gamma^{(1)} \gamma^{-1}. \]
Thus in the limit we obtain \(\lambda = \gamma \gamma^{(1)} \cdots \gamma^{(n)} \cdots \) such that
\[g_{\varphi'} = \lambda g_{\varphi'} \lambda^{-1} \quad \text{for all} \quad g \in G, \]
\[\varphi = \varphi' \lambda. \]

Introducing the explicit dependence of \(\varphi, \varphi', \lambda \) on the transversals, the previous equation becomes
\[\varphi x_i = (\varphi_{h_i x_i})(\lambda_{h_i, \varphi_{h_i x_i}}). \]
On replacing \(h_i \) by \(h_i^{-1} \) and on denoting \(h_i^{-1} x_i \) by \(x_i' \), we obtain
\[\varphi_{h_i x_i'} = (\varphi_{x_i'})(\lambda_{h_i^{-1}, \varphi_{x_i'}}). \]

\[\square \]

Example 1. Let \(G = C = \langle a \rangle \) be the infinite cyclic group, let \(H = \langle a^2 \rangle \) and let \(f : H \to G \) be defined by \(a^2 \to a \). Given \(l, k \geq 0 \), then on choosing the transversal \(L_{k,l} = \{a^{2k}, a^{2l+1}\} \) for \(H \) in \(G \), we obtain the representation \(\varphi_{k,l} : G \to A(m), \) where \(\varphi_{k,l} : a \to \alpha = (a^{2k-l}, a^{-k+l+1}) \).

5.1.2. Subtriples, quotient triples.

Given a triple \((G, H, f) \) and given subgroups \(V \leq G, U \leq H \cap V \) such that \((U)_{f} \leq V \), we call \((V, U, f|_{V})\) a sub-triple of \(G \). If \(N \) is a normal semi-invariant subgroup of \(G \), then \(\tilde{f} : \frac{H N}{N} \to \frac{G}{N} \) given by \(\tilde{f} : Nh \to Nh f \) is well defined and \((\frac{G}{N}, \frac{H N}{N}, \tilde{f})\) is a quotient triple.

Let \((G, H, f)\) be a simple triple where \(G \) is abelian and \([G : H] = m\). Then any sub-triple of \(G \) is simple. Let \(T = \text{tor}(G) \) denote the torsion subgroup of \(G \) and for \(l \geq 1 \) define \(G(l) = \{g \in T \mid o(g)|l\}, H(l) = G(l) \cap H \). Then, clearly, \(f : \text{tor}(H) \to \text{tor}(G) \) and \(f : H(l) \to G(l) \). Therefore, \(\text{tor}(G) \) and \(G(l) \) are semi-invariant and \((\text{tor}(G), \text{tor}(H), f|_{\text{tor}(H)})\) and \((G(l), H(l), f|_{H(l)})\) are simple sub-triples.

Lemma 2. Let \((G, H, f)\) be a simple triple. The triple \((\frac{G}{\text{tor}(G)}, \frac{H G(l)}{\text{tor}(H)}, \tilde{f})\) is also simple.

Proof. For suppose \(K \leq H \) is such that \(G(l) K F \leq G(l) K \). Then
\[(G(l) K F)^l = (K F)^l = (K^l)^F \leq (G(l) K)^l = (K)^l; \]
that is, \(K^l \) is \(f \)-invariant. Since \(f \) is simple, \(K^l = \{e\} \), and so \(K \leq G(l) \). \(\square \)
5.2. The torsion subgroup

Proposition 4. Let A be transitive state-closed abelian group of degree m. Then $\text{tor}(A)$ has finite exponent and is therefore a direct summand of A.

Proof. Let $T = \text{tor}(A)$, $A_1 = \text{Stab}_A(1)$, $T_1 = T \cap A_1$ and $[T : T_1] = m'$. Then the projection on the 1st coordinate of T_1 is a subgroup of T and the triple $(T, T_1, \pi_1|T_1)$ is simple of degree $m'|m$; let $m = m'm''$. Hence, in this representation T is a torsion transitive state-closed subgroup of $A_{m''}$, the automorphism group of the tree $T_{m'}$.

Fixing this last representation of T, let $Q = P(T)$ and let $\sigma_i (1 \leq i \leq k)$ be a minimal set of generators of Q and as before, let $\beta_i = \beta(\sigma_i) \in T$ be such that $\sigma(\beta_i) = \sigma_i$. Let r be the maximum order of the elements β_1, \ldots, β_k. As any $\alpha \in T$ can be written in the form

$$\alpha = \prod_{1 \leq i \leq k} \beta_i^{r_i} (\beta_i^{r_2})(l_2) \ldots (\beta_i^{r_j})(l_j) \ldots,$$

it follows that $\alpha^r = e$.

Since T has finite exponent, it is a pure bounded subgroup of A and therefore it is a direct summand of A ([6], Theorem 4.3.8).

We recall a classic example of an abelian group G which does not split over its torsion subgroup (see [6], p. 108).

Example 2. Let G be the direct product of groups $\prod_{i \geq 1} C_i$, where $C_i = \langle c_i \rangle$ is cyclic of order p^i and let H be the direct sum $\sum_{i \geq 1} C_i$. Then $H \leq \text{tor}(G) = \bigcup_{i \geq 1} G(p^i)$. Moreover, H is a basic subgroup of G and in particular, G/H is p-divisible. This observation leads directly to a proof that G does not split over $\text{tor}(G)$.

The proof of the previous proposition did not establish the exponent of $\text{tor}(A)$. This we do in the next two lemmas.

Lemma 3. Let m be a prime number and A an abelian transitive state-closed torsion group of degree m. Then A is conjugate by a tree automorphism to a subgroup of the diagonal-topological closure of $\langle \sigma \rangle$ and so has exponent m.

Proof. We observe that $A(m)$ is not contained in $A_1 = \text{Stab}_A(1)$. For otherwise, $A(m)$ would be invariant under the projection on the first coordinate. Choose $a \in A \setminus A_1$ of order m. Therefore, $A = A_1 \langle a \rangle$. On choosing $\{a^i \mid 0 \leq i \leq m - 1\}$ as a transversal of A_1 in A, the image of a acquires the form $\sigma = (1, \ldots, m)$ in this tree representation of A. Thus, we may suppose by Proposition 3 that $\sigma \in A$. Therefore, \tilde{A} contains the subgroup $\langle \tilde{\sigma} \rangle = \langle \sigma^i \mid i \geq 0 \rangle$. By Proposition 2, we have $C_{\tilde{A}}(\tilde{\sigma}) = \langle \sigma \rangle^*$ and thus, $A \leq C_{\tilde{A}}(A) \leq \langle \sigma \rangle^*$.
Lemma 4. Suppose that A is an abelian transitive state-closed torsion group of degree m. Then the exponent of A is equal to the exponent of $P(A)$.

Proof. By induction on $|P(A)| = m$. The exponent of A is a multiple of the exponent of $P(A)$. By the previous lemma, we may assume m to be composite. Let p be a prime divisor of m and $A(p) = \{a \in A \mid a^p = e\}$. Then $A(p)$ is a nontrivial subgroup and $P(A(p)) \leq \{\sigma \in P \mid \sigma^p = e\}$. By Lemma 2, $(\frac{A}{A(p)}, \frac{A(A(p))}{A(p)}, \pi_0)$ is simple; also, $P(A) = P(A(p)).$ The proof follows by induction.

Theorem 7. Suppose that A is an abelian transitive state-closed torsion group of degree m. Then A is conjugate to a subgroup of the topological closure of $\widehat{P(A)} = \langle \sigma^i \mid \sigma \in P(A), i \geq 0 \rangle$.

Proof. Let $P = P(A)$ have exponent r and let B be a maximal homogeneous subgroup of P of exponent r (that is, B is a direct sum of cyclic groups of order r), minimally generated by $\{\sigma_i \mid 1 \leq i \leq s\}$. Choose for each σ_i an element $\beta_i = \beta(\sigma_i) \in A$ and let $\hat{B} = \langle \beta_i \mid 1 \leq i \leq s \rangle$. Then, as the order of each β_i is a multiple of r, while the exponent of A is r, we conclude from the previous lemma that $o(\beta_i) = o(\sigma_i) = r$ for $1 \leq i \leq s$. Since $\beta_i \rightarrow \sigma_i$ defines a projection of \hat{B} onto B we conclude that $\hat{B} \cong B$ and $\hat{B} \cap A_1 = \{e\}$, where $A_1 = \text{Stab}_A(1)$.

Clearly \hat{B} is a pure bounded subgroup and so it has a complement L in A, which may be chosen to contain A_1. Choose a right transversal W of A_1 in L. Then the set $W\hat{B}$ is a right transversal of A_1 in A. With respect to this transversal, the triple (A, A_1, π_1) produces a transitive state-closed representation φ where $B^\varphi = B$. By Proposition 3, we may rewrite A^φ as A. Then the diagonal-topological closure A^* contains B^*. Let V be a complement of B in P. Each $\alpha \in A^*$ can be factored as $\alpha = \beta \gamma$, where $\beta \in B^*$ and γ is such that each of its states γ_u have activity $\sigma(\gamma_u) \in V$. Therefore, the set of these γ’s is a group Γ such that $\Gamma = \Gamma^* \oplus B^*$. Then $(\Gamma, \Gamma \cap A_1, \pi_1)$ is a simple triple with $P(\Gamma)$ having exponent smaller than r. The proof is finished by induction on the exponent.

The example below illustrates some of the ideas developed so far.

Example 3. Let $m = 4$, $Y = \{1, 2, 3, 4\}$ and let σ be the cycle $(1, 2, 3, 4)$. Furthermore, let $\alpha = (e, e, e, \alpha^2) \sigma \in A(4)$ and let $A = \langle \alpha \rangle$. Then

$$\alpha^2 = (\alpha^2, e, e, \alpha^2)(1, 3)(2, 4),$$

$$\alpha^4 = (\alpha^2)(1) = \alpha^{2x}, \quad (\alpha^{2-x})^2 = e.$$

Thus A is cyclic, torsion-free, transitive and state-closed; it is, however, not diagonally closed because $\alpha^x \not\in A$. Even though A is torsion-free, its diagonal closure $\bar{A} = \langle \alpha^{x^i} \mid i \geq 0 \rangle$ is not; for $\kappa = \alpha^{2-x}$ has order 2. Let $K = \langle \kappa^{x^i} \mid i \geq 0 \rangle$.

Then $K \leq \text{tor}(A)$ and it is direct to check that $\tilde{A} = \langle \alpha, K \rangle$. Therefore, $K = \text{tor}(\tilde{A})$ and
\[\tilde{A} = \text{tor}(\tilde{A}) \oplus A. \]

Let $Y_1 = \{1, 3\}$, $Y_2 = \{2, 4\}$. Then $\{Y_1, Y_2\}$ is a complete block system for the action of α on Y. Also, α^2 induces the binary adding machine on both $\mathcal{T}(Y_1)$ and $\mathcal{T}(Y_2)$. The topological closure \tilde{A} of A is torsion-free and
\[\text{tor}(A^*) = \text{tor}(\tilde{A}), \quad A^* = \text{tor}(A^*) \oplus \tilde{A}. \]

Moreover, $\text{tor}(A^*)$ induces a faithful state-closed, diagonally and topologically closed actions on the binary tree $\mathcal{T}(Y_1)$. Therefore, $\text{tor}(A^*)$ is isomorphic to $\mathbb{Z}_2[[x]]$. Furthermore, α is represented as the binary adding machine on $\mathcal{T}(\{Y_1, Y_2\})$ and \tilde{A} is represented on this tree as the topological closure of the image of A.

6. Cyclic $\mathbb{Z}_m[[x]]$-modules

Cyclic automorphism groups $\langle \alpha \rangle$ of the tree, for which their state-diagonal-topological closure is isomorphic to a cyclic \mathbb{Z}_m-module have the form
\[\alpha = (\alpha^{q_1}, \ldots, \alpha^{q_m})\sigma, \]
where $q_i \in \mathbb{Z}_m[[x]]$ for $1 \leq i \leq m$; here
\[q_i = \sum_{j \geq 0} q_{ij} x^j, \quad q_{ij} = \sum_{u \geq 0} q_{ij,u} m^u \in \mathbb{Z}_m. \]

We prove

Theorem 8. (i) The expression
\[\alpha = (\alpha^{q_1}, \ldots, \alpha^{q_m})\sigma \]

is a well-defined automorphism of the m-ary tree.

(ii) Let A be the state closure of $\langle \alpha \rangle$. Then A^* is abelian, isomorphic to the quotient ring $\mathbb{Z}_m[[x]]/(r)$, where
\[r = m - qx \quad \text{and} \quad q = q_1 + \cdots + q_m. \]

Proof. (1) Let $\sigma(l)$ denote the permutation induced by α on the l-th level. Then the expression $\alpha = (\alpha^{q_1}, \ldots, \alpha^{q_m})\sigma$ represents
\[\sigma(1) = \sigma, \quad \sigma(l) = (\sigma(l - 1)\overline{q_l}, \ldots, \sigma(l - 1)\overline{q_m})\sigma, \]
where $\overline{q_l} = \overline{q_{l,0}} + \overline{q_{l,1}} x + \cdots + \overline{q_{l,(l-1)}} x^{l-1}$ and $\overline{q_{ij}} = q_{ij,0} + q_{ij,1} m + \cdots + q_{ij,l-1} m^{l-1}$.
(2.1) The states of α are words in α^p for $p \in \mathbb{Z}_m[[x]]$. Let $v = \alpha^{l_1} \ldots \alpha^{l_n}$, $w = \alpha^{n_1} \ldots \alpha^{n_m} \in \mathbb{A}^n$. Then clearly $[v, w] \in \text{Stab}_4(1)$. We will prove that the entries of $[v, w]$ are products of conjugates of words in elements of the form $[\alpha^s, \alpha^t]$ where $s, t \in \mathbb{Z}_m[[x]]$.

Clearly $[v, w]$ can be developed into a word in conjugates of $[\alpha^{l_i}, \alpha^{n_j}]$.

Write $p = p_0 + p'x, n = n_0 + n'x$. We compute

$$[\alpha^p, \alpha^n] = ([\alpha^{p_0}, \alpha^{n_0}] \alpha^{p'x} \alpha^{n'x})$$

Therefore, we have to check $[\alpha^x, \alpha^n]$ where $\xi \in \mathbb{Z}_m, n \in \mathbb{Z}_m[[x]]$. Write $\xi = \xi_0 + m\xi'$. Then

$$[\alpha^x, \alpha^n] = [\alpha^{\xi_0 + m\xi'}, \alpha^n] = [\alpha^{\xi_0}, \alpha^n] \alpha^{m\xi'} = [\alpha^x, \alpha^{m\xi'}].$$

Now

$$\alpha^{\xi_0} = (v_1, v_2, \ldots, v_m)\sigma^{\xi_0},$$

where v_i are words in $\alpha^{q_1}, \ldots, \alpha^{q_m}$ and

$$\alpha^{m} = (\alpha^{q_1} \ldots \alpha^{q_m}, \alpha^{q_2} \ldots \alpha^{q_m}, \alpha^{q_1}, \ldots, \alpha^{q_m} \alpha^{q_1} \ldots \alpha^{q_{m-1}}).$$

Therefore,

$$[\alpha^{\xi_0}, \alpha^n] = ([v_1, \alpha^n], \ldots, [v_m, \alpha^n])$$

and similarly

$$[\alpha^{m\xi'}, \alpha^n] = ([\alpha^{q_1} \ldots \alpha^{q_m} \alpha^{q_1} \ldots \alpha^{q_{m-1}} \alpha^{\xi'}, \alpha^n]).$$

Now we write $\beta = \alpha^{q_1} \ldots \alpha^{q_m}$. Then $[\beta^{\xi'}, \alpha^n]$ can be developed further, as asserted. The same applies to the other entries.

(2.2) First, clearly $r\alpha = 0$. Now let $u = u(x)$ annul α; write $u = u_0 + u'x$ where $u_0 = u(0)$. Then $m|u_0$ and so

$$u = m\frac{u_0}{m} + u'x = (xq)\frac{u_0}{m} + u'x + vr = xw_1 + vr$$

for some $v = v(x)$ and $w_1 = q\frac{u_0}{m} + u'$. Then xw_1 annuls α and so does w_1. On repeating, we find w_i such that $u \equiv x^i w_i \mod r$ and w_i annuls α for all $i \geq 1$.

In other words, $u \in \bigcap_{n \geq 1} (x\mathbb{Z})^n + (r) = (r).$

The group $D_m(j)$. Recall $\alpha = (e, \ldots, e, \alpha^{x^{j-1}}) \in \mathbb{A}_m$. Then $\alpha^m = \alpha^{x^j}$; that is, $\alpha^r = e$ where $r = m - x^j$. The states of α are $\alpha^x, \ldots, \alpha^{x^{j-1}}$ and

$$D_m(j) = \{\alpha, \alpha^x, \ldots, \alpha^{x^{j-1}}\};$$

therefore $D_m(j)$ is diagonally closed. The topological closure $D_m(j)$ is isomorphic to the quotient ring $S = \mathbb{Z}_m[[x]]/(r)$, which is clearly a free \mathbb{Z}_m-module of rank j.

6.1. The case \(P(A) \) cyclic of prime order

Theorem 9. Let \(m \) be a prime number. Let \(A \) be a torsion-free abelian transitive state-closed subgroup of \(A_m \). Let \(\beta \in A \setminus \text{Stab}_A(j) \). Then \(A^* = (\beta)^* \) and is topologically finitely generated. Furthermore, \(A^* \) is conjugate to \(D_{m(j)} \) for some \(j \geq 1 \).

The proof is developed in four steps.

Step 1. For \(z \in A \), define \(\zeta(z) = j \) such that \(z^m \in \text{Stab}(j) \setminus \text{Stab}(j + 1) \). As \(A \) is torsion-free, \(\zeta(z) \) is finite for all nontrivial \(z \) and \(z^m = (v)^{(j)} \), \(v \in A \setminus \text{Stab}_A(1) \).

Choose \(\beta = (\beta_1, \beta_2, \ldots, \beta_m)\sigma \in A \setminus \text{Stab}_A(1) \) having minimum \(\zeta(\beta) = j \). If \(z \in \text{Stab}_A(1) \), \(z \neq e \), then there exists \(l > 0 \) such that \(z^m = (c)^{(l)} \) and \(c \in A \setminus \text{Stab}_A(1) \). Therefore, by minimality of \(\beta \) we have \(\zeta(c) \geq \zeta(\beta) \) and \(\zeta(z) > \zeta(\beta) \).

Lemma 5 (Uniform gap). Let \(z \in \text{Stab}_A(1) \). Then \(\zeta(z\beta) = \zeta(\beta) \).

Proof. First note that

\[
\beta^m = (\beta_1\beta_2 \cdots \beta_m)^{(1)},
\beta_1\beta_2 \cdots \beta_m = (\gamma)^{(j-1)}, \quad \gamma \in A \setminus \text{Stab}_A(1).
\]

We have \(z = c^{(1)} \) and \(z\beta = (c\beta_1, c\beta_2, \ldots, c\beta_m)\sigma \), \((z\beta)^m = (u)^{(1)} \), where \(u = c^m\beta_1 \ldots \beta_m = c^m(\gamma)^{(j-1)} \). If \(c \in A \setminus \text{Stab}_A(1) \) then \(\zeta(c) = n \geq j \), \(c^m \in \text{Stab}(n) \setminus \text{Stab}(n + 1) \), and so, \(u \in \text{Stab}_A(j - 1) \setminus \text{Stab}(j) \). If \(c \in \text{Stab}_A(1) \) then \(\zeta(c) > j \) and so \(c^m \in \text{Stab}(k) \), where \(k > j \) and again \(u \in \text{Stab}(j - 1) \setminus \text{Stab}(j) \).

Step 2. Note that

\[
\beta^m = (\gamma)^{(j)}, \quad \gamma^m = (\lambda)^{(j)},
\beta^m = (\lambda)^{(2j)},
\]

where, by the uniform gap lemma above, \(\gamma, \lambda \in A \setminus \text{Stab}_A(1) \). Therefore, repeating this process, we find that \(\beta^{m^{t}} \) induces \(\sigma^{(sj)} \) on the \((sj)\)-th level of the tree for all \(s \geq 0 \). Now given a level \(t \geq 0 \), dividing \(t \) by \(j \), we get \(t = sj + i \) with \(0 \leq i \leq j - 1 \), and then \((\beta^{(i)})^{m^t} = (\beta^{m^t})^{(i)} \) induces \(\sigma^{(sj)}(i) = \sigma^{(sj+i)} = \sigma^{(i)} \) on the \(t \)-th level of the tree. It follows that the group \(A \) is a subgroup of the topological closure of \(\langle \beta, \beta^{(1)}, \ldots, \beta^{(j-1)} \rangle \).

Step 3. We have for \(\beta = (\beta_1, \beta_2, \ldots, \beta_m)\sigma \),

\[
\beta_i = \beta^{p_i}, \quad p_i = r_{i0} + r_{i1}x + \cdots + r_{i(j-1)}x^{j-1} \in \mathbb{Z}_m[x],
\]

and

\[
\beta^m = (\beta_1\beta_2 \cdots \beta_m)^{(1)},
\beta_1\beta_2 \cdots \beta_m = \beta^{p_1 + \cdots + p_m},
\]

\[
p_1 + \cdots + p_m = q \cdot x^{j-1},
\]
where \(q \) is an invertible element of \(\mathbb{Z}_m[[x]] \).

Proposition 5. The element \(\beta = (\beta_1, \beta_2, \ldots, \beta_m) \sigma \) is conjugate in \(\mathbb{A}_m \) to \(\alpha = (e, \ldots, e, \alpha^{x^{j-1}}) \sigma \).

Proof. Let \(h = (h_1, h_2, \ldots, h_m) \) be an automorphism of the tree. Then
\[
\beta^h = (h_1^{-1} \beta_1 h_2, h_2^{-1} \beta_2 h_3, \ldots, h_m^{-1} \beta_m h_1) \sigma.
\]
Therefore \(\beta^h = \alpha \) holds if and only if
\[
h_2 = \beta_1^{-1} h_1, \quad h_3 = \beta_2^{-1} h_2, \quad \ldots, \quad h_m = \beta_m^{-1} h_{m-1}, \quad h_1 = \beta_m^{-1} h_m \alpha^{x^{j-1}}.
\]
These conditions can be rewritten as
\[
h_2 = \beta_1^{-1} h_1, \quad h_3 = \beta_2^{-1} \beta_1^{-1} h_1, \quad \ldots, \quad h_m = \beta_m^{-1} \ldots \beta_1^{-1} h_1, \quad h_1 = \beta_m^{-1} \beta_{m-1}^{-1} \ldots \beta_1^{-1} h_1 \alpha^{x^{j-1}},
\]
or as
\[
h = (h_1, \beta_1^{-1} h_1, \beta_2^{-1} \beta_1^{-1} h_1, \ldots, \beta_m^{-1} \ldots \beta_1^{-1} h_1) = (e, \beta_1^{-1}, \beta_2^{-1} \beta_1^{-1}, \ldots, \beta_m^{-1} \ldots \beta_1^{-1})(h_1)^{(1)},
\]
and
\[
(\beta_1 \beta_2 \ldots \beta_m)^{h_1} = \alpha^{x^{j-1}}.
\]
Since
\[
\beta_1 \beta_2 \ldots \beta_m = \beta^q x^{j-1},
\]
we repeat the above procedure replacing \(\beta \) by \(\beta^q \) and replacing \(h_1 \) by \((h_1')^{x^{j-1}} \). This leads to the conjugation equation
\[
(\beta^q)^{h_1'} = \alpha.
\]
In this manner, we determine an automorphism \(h \) of the tree which effects the required conjugation
\[
\beta^h = \alpha.
\]

Example 4. Let \(\beta = (e, \beta^q) \sigma \), where \(q = 1 + x \). Then \(\beta \) is conjugate to the adding machine \(\alpha = (e, \alpha) \sigma \). Note that from Example 1, \(\beta \) is not obtainable from \(\alpha \) by simply choosing a different transversal. To exhibit the conjugator \(h: \beta \to \alpha \) constructed in the proof, define the polynomial sequences
\[
c_0 = 1, \quad c_1 = q, \quad c_n = 2c_{n-2} + c_{n-1};
\]
\[
c'_{n-1} = 0, \quad c'_0 = 0, \quad c'_n = c_{n-1} + c'_{n-1}.
\]
Then
\[
h = (e, e^{(0)})(e, \beta^{-1})^{(1)}(e, \beta^{-(1+q)})^{(2)} \ldots (e, \beta^{-c'_n})^{(n)} \ldots.
\]
Step 4. By Proposition 2, we have $A \leq \tilde{\mathcal{A}} = C_A(\alpha)$ and

$$A^h \leq C_A(\alpha^h) = C_A(\beta) = D_m(j).$$

This finishes the proof of the theorem.

References

Received July 20, 2009; revised October 2, 2009

A. M. Brunner, Department of Mathematics, University of Wisconsin-Parkside, Kenosha, Wisconsin 53141-2000, U.S.A.
E-mail: brunner@uwp.edu

S. N. Sidki, Departamento de Matematica, Universidade de Brasília, Brasília DF 70910-900, Brazil
E-mail: sidki@mat.unb.br