Regular elements in CAT(0) groups

Pierre-Emmanuel Caprace1 and Gašper Zadnik2

Abstract. Let X be a locally compact geodesically complete CAT(0) space and Γ be a discrete group acting properly and cocompactly on X. We show that Γ contains an element acting as a hyperbolic isometry on each indecomposable de Rham factor of X. It follows that if X is a product of d factors, then Γ contains \mathbb{Z}^d.

Mathematics Subject Classification (2010). 20F65.

Keywords. CAT(0) group, regular elements, flat closing conjecture.

Let X be a proper CAT(0) space and Γ be a discrete group acting properly and cocompactly by isometries on X. The flat closing conjecture predicts that if X contains a d-dimensional flat, then Γ contains a copy of \mathbb{Z}^d (see [Gro93], Section 6.B.3). In the special case $d = 2$, this would imply that Γ is hyperbolic if and only if it does not contain a copy of \mathbb{Z}^2. This notorious conjecture remains however open as of today. It holds when X is a real analytic manifold of non-positive sectional curvature by the main result of [BS91]. In the classical case when X is a non-positively curved symmetric space, it can be established with the following simpler and well known argument: by [BL93], Appendix, the group Γ must contain a so called \mathbb{R}-regular semisimple element, i.e., a hyperbolic isometry γ whose axes are contained in a unique maximal flat of X. By a lemma of Selberg [Sel60], the centraliser $Z_\Gamma(\gamma)$ is a lattice in the centraliser $\mathbb{Z}_{\text{Isom}(X)}(\gamma)$. Since the latter centraliser is virtually \mathbb{R}^d with $d = \text{rank}(X)$, one concludes that Γ contains \mathbb{Z}^d, as desired.

It is tempting to try and mimic that strategy of proof in the case of a general CAT(0) space X: if one shows that Γ contains a hyperbolic isometry γ which is maximally regular in the sense that its axes are contained in a unique flat of maximal possible dimension among all flats of X, then the flat closing conjecture will follow as above. The main result of this note provides hyperbolic isometries satisfying a weaker notion of regularity.

1F.R.S.-FNRS Research Associate, supported in part by FNRS (grant F.4520.11) and the European Research Council (grant #278469).

2Supported by the Slovenian Research Agency and in part by the Slovene Human Resources Development and Scholarship Fund.
Theorem. Assume that \(X \) is geodesically complete.

Then \(\Gamma \) contains a hyperbolic element which acts as a hyperbolic isometry on each indecomposable de Rham factor of \(X \).

Every CAT(0) space \(X \) as in the theorem admits a canonical de Rham decomposition, see [CM09a], Corollary 5.3 (ii). Notice that the number of indecomposable de Rham factors of \(X \) is a lower bound on the dimension of all maximal flats in \(X \), although two such maximal flats need not have the same dimension in general. As expected, we deduce a corresponding lower bound on the maximal rank of free abelian subgroups of \(\Gamma \).

Corollary 1. If \(X \) is a product of \(d \) factors, then \(\Gamma \) contains a copy of \(\mathbb{Z}^d \).

We believe that those results should hold without the assumption of geodesic completeness; in case \(X \) is a CAT(0) cube complex, this is indeed so, see [CS11], § 1.3.

The proof of the theorem and its corollary relies in an essential way on results from [CM09a] and [CM09b]. The first step consists in applying [CM09a], Theorem 1.1, which ensures that \(X \) splits as

\[
X \cong \mathbb{R}^d \times M \times Y_1 \times \cdots \times Y_q,
\]

where \(M \) is a symmetric space of non-compact type and the factors \(Y_i \) are geodesically complete indecomposable CAT(0) spaces whose full isometry group is totally disconnected. Moreover this decomposition is canonical, hence preserved by a finite index subgroup of \(\text{Isom}(X) \) (and thus of \(\Gamma \)). The next essential point is that, by [CM09b], Theorem 3.8, the group \(\Gamma \) virtually splits as \(\mathbb{Z}^d \times \Gamma' \), and the factor \(\Gamma' \) (resp. \(\mathbb{Z}^d \)) acts properly and cocompactly on \(M \times Y_1 \times \cdots \times Y_q \) (resp. \(\mathbb{R}^d \)). Therefore, our main theorem is a consequence of the following.

Proposition 2. Let \(X = M \times Y_1 \times \cdots \times Y_q \), where \(M \) is a symmetric space of non-compact type and \(Y_i \) is a geodesically complete locally compact CAT(0) space with totally disconnected isometry group.

Any discrete cocompact group of isometries of \(X \) contains an element acting as an \(\mathbb{R} \)-regular hyperbolic element on \(M \), and as a hyperbolic element on \(Y_i \) for all \(i \).

As before, this yields a lower bound on the rank of maximal free abelian subgroups of \(\Gamma \), from which Corollary 1 follows.

Corollary 3. Let \(X = M \times Y_1 \times \cdots \times Y_q \) be as in the proposition. Then any discrete cocompact group of isometries of \(X \) contains a copy of \(\mathbb{Z}^{\text{rank}(M)+q} \).

Proof. Let \(\Gamma < \text{Isom}(X) \) be a discrete subgroup acting cocompactly. Upon replacing \(\Gamma \) by a subgroup of finite index, we may assume that \(\Gamma \) preserves the given product
decomposition of X (see [CM09a], Corollary 5.3 (ii)). Let $\gamma \in \Gamma$ be as in Proposition 2 and let γ_M (resp. γ_i) be its projection to Isom(M) (resp. Isom(Y_i)). Then $\text{Min}(\gamma_M) = \mathbb{R}^{\text{rank}(M)}$ and for all i we have $\text{Min}(\gamma_i) \cong \mathbb{R} \times C_i$ for some CAT(0) space C_i, by [BH99], Theorem II.6.8 (5). Hence the desired conclusion follows from the following lemma.

\begin{proof}

By hypothesis, we have $\text{Min}(\gamma_M) \cong \mathbb{R}^{d_1} \times C_1$ for some CAT(0) space C_1. Therefore $\text{Min}(\gamma) \cong \mathbb{R}^{d_1+d_2+\cdots+d_p} \times C_1 \times \cdots \times C_p$. By [Rua01], Theorem 3.2, the centraliser $Z_{\gamma}(\gamma)$ acts cocompactly (and of course properly) on $\text{Min}(\gamma)$. Therefore, in view of [CM09b], Theorem 3.8, we infer that $Z_{\gamma}(\gamma)$ contains a subgroup isomorphic to $\mathbb{Z}^{d_1+d_2+\cdots+d_p}$.

It remains to prove Proposition 2. We proceed in three steps. The first one provides an element $\gamma_Y \in \Gamma$ acting as a hyperbolic isometry on each Y_i. This combines an argument of E. Swenson [Swe99], Theorem 11, with the phenomenon of Alexandrov angle rigidity, described in [CM09a], Proposition 6.8, and recalled below. The latter requires the hypothesis of geodesic completeness. The second step uses that Γ has subgroups acting properly cocompactly on M, and thus contains an element γ_M acting as an \mathbb{R}-regular isometry of M by [BL93]. The last step uses a result from [PR72] ensuring that for all elements δ' in some Zariski open subset of Isom(M) and all sufficiently large $n > 0$, the product $\gamma_M^n \delta'$ is \mathbb{R}-regular. Invoking the Borel density theorem, we finally find an appropriate element $\delta \in \Gamma$ such that the product $\gamma = \gamma_M^n \delta \gamma_Y$ has the requested properties. We now proceed to the details.

Proposition (Alexandrov angle rigidity). Let Y be a locally compact geodesically complete CAT(0) space and G be a totally disconnected locally compact group acting continuously, properly and cocompactly on Y by isometries.

Then there is $\varepsilon > 0$ such that for any elliptic isometry $g \in G$ and any $x \in X$ not fixed by g, we have $\angle_c(gx, x) \geq \varepsilon$, where c denotes the projection of x on the set of g-fixed points.

\begin{proof}

See [CM09a], Proposition 6.8.
\end{proof}
Proposition 5. Let $Y = Y_1 \times \cdots \times Y_q$, where Y_i is a geodesically complete locally compact CAT(0) space with totally disconnected isometry group, and G be a locally compact group acting continuously, properly and cocompactly by isometries on Y.

Then G contains an element acting on Y_i as a hyperbolic isometry for all i.

Proof. Upon replacing G by a finite index subgroup, we may assume that G preserves the given product decomposition of Y, see [CM09a], Corollary 5.3 (ii). Let $\rho: [0, \infty) \to Y$ be a geodesic ray which is regular, in the sense that its projection to each Y_i is a ray (in other words the end point $\rho(\infty)$ does not belong to the boundary of a subproduct).

Since G is cocompact, we can find a sequence (g_n) in G and a strictly increasing sequence (t_n) in \mathbb{Z}_+ such that the sequence of maps

$$\rho_n: [-t_n, \infty) \to Y, \quad t \mapsto g_n \cdot \rho(t + t_n),$$

converges uniformly on compact subsets of \mathbb{R} to a geodesic line $\ell: \mathbb{R} \to Y$. Set $h_{i,j} = g_i^{-1}g_j \in G$ and consider the angle

$$\theta = \angle_{\rho(t_i)}(h_{i,j}^{-1} \cdot \rho(t_i), h_{i,j} \cdot \rho(t_i)).$$

As in [Swe99], Theorem 11, observe that θ is arbitrarily close to π for $i < j$ large enough.

We shall prove that for all $i < j$ large enough, the isometry $h_{i,j}$ is regular hyperbolic, in the sense that its projection to each factor Y_k is hyperbolic. We argue by contradiction and assume that this is not the case. Notice that $\text{Isom}(Y_k)$ does not contain any parabolic isometry by [CM09a], Corollary 6.3 (iii). Therefore, upon extracting and reordering the factors, we may then assume that there is some $s \leq q$ such that for all $i < j$, the projection of $h_{i,j}$ on $\text{Isom}(Y_1), \ldots, \text{Isom}(Y_s)$ is elliptic, and the projection of $h_{i,j}$ on $\text{Isom}(Y_{s+1}), \ldots, \text{Isom}(Y_q)$ is hyperbolic. We set $Y' = Y_1 \times \cdots \times Y_s$ and $Y'' = Y_{s+1} \times \cdots \times Y_q$. We shall prove that for $i < j$ large enough, the projections of $(h_{i,j})$ on $\text{Isom}(Y')$ forms a sequence of elliptic isometries which contradict Alexandrov angle rigidity.

Fix some small $\delta > 0$. Let x_i (resp. y_i) be the point at distance δ from $\rho(t_i)$ and lying on the geodesic segment $[h_{i,j}^{-1} \cdot \rho(t_i), \rho(t_i)]$ (resp. $[\rho(t_i), h_{i,j} \cdot \rho(t_i)]$). By construction, for $i < j$ large enough, the union of the two geodesic segments $[x_i, \rho(t_i)] \cup [\rho(t_i), y_i]$ lies in an arbitrary small tubular neighbourhood of the geodesic ray ρ. Since the projection $Y \to Y'$ is 1-Lipschitz, it follows that the Y'-component of $[x_i, \rho(t_i)] \cup [\rho(t_i), y_i]$, which we denote by $[x_i', \rho'(t_i)] \cup [\rho'(t_i), y_i']$, is uniformly close to the Y'-component of ρ, say ρ'. Since ρ is a regular ray, its projection ρ' is also a geodesic ray. Therefore, the angle

$$\theta' = \angle_{\rho'(t_i)}(x_i', y_i')$$

is arbitrarily close to π for $i < j$ large enough. Pick $i < j$ so large that $\theta' > \pi - \epsilon$, where $\epsilon > 0$ is the constant from Alexandrov angle rigidity for Y'. Set $h = h_{i,j}$ and
let h' be the projection of h on $\text{Isom}(Y_i)$. By assumption h' is elliptic. Let c denote the projection of $\rho'(t_i)$ on the set of h'-fixed points. Then the isosceles triangles $\Delta(c, (h')^{-1} \cdot \rho'(t_i), \rho'(t_i))$ and $\Delta(c, \rho'(t_i), h' \cdot \rho'(t_i))$ are congruent, and we deduce

$$
\angle_c (\rho'(t_i), h' \cdot \rho'(t_i)) \leq \pi - \angle_{\rho'(t_i)}(c, h' \cdot \rho'(t_i)) \leq \pi - \angle_{\rho'(t_i)}((h')^{-1} \cdot \rho'(t_i), h' \cdot \rho'(t_i)) = \pi - \theta' < \varepsilon.
$$

This contradicts Alexandrov angle rigidity.

\begin{proof}[Proof of Proposition 2] Let Γ be a discrete group acting properly and cocompactly on X. First observe that (after passing to a finite index subgroup) we may assume that Γ preserves the given product decomposition of X, see [CM09a], Corollary 5.3 (ii).

Let G be the closure of the projection of Γ to $\text{Isom}(Y_1) \times \cdots \times \text{Isom}(Y_q)$. Then G acts properly cocompactly on $Y = Y_1 \times \cdots \times Y_q$. Therefore it contains an element g acting as a hyperbolic isometry on Y_i for all i by Proposition 5. Since Γ maps densely to G and since the stabiliser of each point of Y in G is open by [CM09a], Theorem 1.2, it follows that Γ-orbits on $Y \times Y$ coincide with the G-orbits. In particular, given $y \in \text{Min}(g)$, we can find $\gamma_Y \in \Gamma$ such that $\gamma_Y(y, g^{-1}y) = (gy, y)$. Since $\angle_y(g^{-1}y, gy) = \pi$, we infer that γ_Y is hyperbolic and has an axis containing the segment $[g^{-1}y, gy]$. In particular γ_Y acts as a hyperbolic isometry on Y_i for all i.

Let $\gamma_Y = (\alpha, h)$ be the decomposition of γ_Y along the splitting $\text{Isom}(X) = \text{Isom}(M) \times \text{Isom}(Y)$. By construction h acts as a hyperbolic isometry on Y_i for all i.

Let $U \leq \text{Isom}(Y)$ be the pointwise stabiliser of a ball containing y, $\gamma_Y y$ and $\gamma_Y^{-1} y$. Notice that every element of $\text{Isom}(Y)$ contained in the coset Ug maps y to hy and $h^{-1}y$ to y, and therefore acts also as a hyperbolic isometry on Y_i for all i.

On the other hand U is a compact open subgroup of $\text{Isom}(Y)$ by [CM09a], Theorem 1.2. Set $\Gamma_U = \Gamma \cap (\text{Isom}(M) \times U)$. Notice that Γ_U acts properly and cocompactly on M by [CM09b], Lemma 3.2. In other words the projection of Γ_U to $\text{Isom}(M)$ is a cocompact lattice. Abusing notation slightly, we shall denote this projection equally by Γ_U.

By the appendix from [BL93] (see also [Pra94] for an alternative argument), the group Γ_U contains an element γ_M acting as an \mathbb{R}-regular element on M. By [PR72], Lemma 3.5, there is a Zariski open set $V = V(\gamma_M)$ in $\text{Isom}(M)$ with the following property. For any $\delta \in V$ there exists n_δ such that an element $\gamma_M^n \delta$ is \mathbb{R}-regular for any $n \geq n_\delta$. By the Borel density theorem, the intersection $\Gamma_U \cap V \alpha^{-1}$ is nonempty. Pick an element $\delta \in \Gamma_U \cap V \alpha^{-1}$. Then $\delta \alpha \in V$ which means by definition that $\gamma_M^n \delta \alpha$ is \mathbb{R}-regular for all $n \geq n_0$ for some integer n_0.

Pick an element $\gamma'_M \in \Gamma$ (resp. $\delta' \in \Gamma$) which lifts γ_M (resp. δ). Set

$$
\gamma = (\gamma'_M)^{n_0} \delta' \gamma_Y \in \Gamma_U.
$$

\end{proof}
The projection of γ to $\text{Isom}(M)$ is $\gamma^0_M \delta \alpha$ and is thus \mathbb{R}-regular. The projection of γ to $\text{Isom}(Y)$ belongs to the coset Uh, and therefore acts as a hyperbolic isometry on Y_i for all i.

References

Received December 21, 2011; revised January 28, 2012
P.-E. Caprace, Université catholique de Louvain, IRMP, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
E-mail: pe.caprace@uclouvain.be

G. Zadnik, Inštitut za matematiko, fiziko in mehaniko, Jadranska ulica 19, SI-1111 Ljubljana, Slovenia
E-mail: zadnik@fmf.uni-lj.si