Qun Chen · Jürgen Jost · Guofang Wang · Miaomiao Zhu

The boundary value problem for Dirac-harmonic maps

Received October 12, 2010 and in revised form June 17, 2011

Abstract. Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We show that a weakly Dirac-harmonic map is smooth in the interior of the domain. We also prove regularity results for Dirac-harmonic maps at the boundary when they solve an appropriate boundary value problem which is the mathematical interpretation of the D-branes of superstring theory.

Keywords. Dirac-harmonic map, regularity, boundary value

1. Introduction

In [6], a variational problem has been introduced that is an analogue for ordinary, that is, commuting fields of the non-linear supersymmetric sigma model of quantum field theory. Of course, this model is no longer supersymmetric, but it does share the other symmetries of the sigma model, in particular conformal invariance. Also, this model has a surprisingly subtle geometric and analytic structure. In the present paper, we explore some further geometric and analytic aspects. In particular, we look at boundary conditions that are of the type of the D-branes of superstring theory and involve the chirality operator of a spin structure. After a careful geometric derivation of these boundary conditions, we shall provide the analytic regularity theory for solutions of the field equations at such a boundary.
Let us now describe the model in some more detail. For the non-linear supersymmetric sigma model of quantum field theory (see e.g. [8] or [21] for mathematical background), one considers a map
\[Y : M^s \to N \] (1.1)
from a \((2|2)\)-dimensional supermanifold \(M^s\) to some Riemannian manifold \(N\). With local even coordinates \(x^1, x^2\) and odd (i.e., anticommuting) coordinates \(\theta^1, \theta^2\), the action is
\[S = \int \frac{1}{4} \epsilon^{\alpha\beta} (D_\alpha Y, D_\beta Y) \, dd^2x \, dd\theta^2 \, d\theta^1 \] (1.2)
where \(\epsilon\) is the usual antisymmetric tensor, the brackets \(\langle \cdot, \cdot \rangle\) denote the Riemannian metric on \(N\) (by conformal invariance, we may assume that the domain metric is flat), and \(d\theta\) indicates that a Berezin integral has to be taken.

The map \(Y\) has the following expansion:
\[Y = \phi(x) + \psi_\alpha(x) \theta^\alpha + F(x) \theta^1 \theta^2. \] (1.3)
Here, \(\phi\) is an ordinary map from the ordinary manifold \(M\) underlying the supermanifold \(M^s\) into \(N\); in fact, \(M\), being 2-dimensional, is considered as a Riemann surface. Moreover \(\psi\) is an anticommuting spinor with values in the pull-back tangent bundle \(\phi^{-1}TN\).

In fact, \(\psi\) is a real Euclidean Majorana spinor with respect to a real 2-dimensional Euclidean representation of the Clifford algebra \(\text{Cl}(2,0)\). The field \(F\) is needed to close the supersymmetry algebra off-shell, but will not be of importance for our subsequent purposes.

Using this expansion and carrying out the \(\theta\)-integration, the Lagrangian density in (1.2) becomes
\[\frac{1}{2} \parallel d\phi \parallel^2 + \frac{1}{4} \langle \psi, D\psi \rangle - \frac{1}{12} \epsilon^{\alpha\beta} \epsilon^{\gamma\delta} \langle \psi_\alpha, R(\psi_\beta, \psi_\gamma) \psi_\delta \rangle. \] (1.4)
\(D\) is the Dirac operator along the map \(\phi\); it involves the ordinary Dirac operator \(\nabla\) of \(M\) and the Levi-Civita connection of \(N\) (see e.g. [6, 21]). \(\parallel \cdot \parallel\) indicates again the metric of \(N\), and \(R\) is its curvature. In fact, the curvature term arises from the Berezin integration of the \(F\)-term, and again, we shall not need it below.

The reason why the spinor field \(\psi\) is taken as odd is that for \(\psi\) even, \(\langle \psi, D\psi \rangle\) would vanish upon integration by parts. This in turn results from the fact that we are working with a Clifford algebra \((\text{Cl}(2,0)\) in the present case) with a real representation. Were the representation imaginary, in contrast, the integral of \(\langle \psi, D\psi \rangle\) would vanish for \(\psi\) odd, but no longer for \(\psi\) even. Of course, \(\text{Cl}(2,0)\) does not have such a representation, but the Clifford algebra \(\text{Cl}(0,2)\) does. This is the basis of the model of [6].

To be concrete, consider the representation of \(\text{Cl}(0,2)\) with
\[e_1 \mapsto \gamma_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad e_2 \mapsto \gamma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \] (1.5)
acting on spinors. For a spinor field \(\omega : \mathbb{R}^2 \to \mathbb{C}^2\), we then have the Dirac operator
\[D\omega = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} \partial \omega_1 / \partial x_1 \\ \partial \omega_2 / \partial x_1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \partial \omega_1 / \partial x_2 \\ \partial \omega_2 / \partial x_2 \end{pmatrix} = 2i \begin{pmatrix} \partial \omega_2 / \partial z \\ \partial \omega_1 / \partial \bar{z} \end{pmatrix}, \] (1.6)
that is, the Cauchy–Riemann operator. Let \(\omega \) and \(\psi \) be two spinor fields with compact support on \(\mathbb{R}^2 \); we then have the integration by parts formula

\[
\int \langle \omega, \mathcal{J} \psi \rangle = \int \langle \mathcal{J} \omega, \psi \rangle.
\]

(1.7)

that is, \(\mathcal{J} \) is formally self-adjoint.

We can thus introduce the model of [6]. Let \(M \) be a Riemann spin surface, \(\Sigma M \) the spinor bundle over \(M \), and \(N \) a compact Riemannian manifold without boundary. Let \(\phi \) be a map from \(M \) to \(N \), and \(\psi \) a section of the bundle \(\Sigma M \otimes \phi^{-1}TN \). The Dirac operator \(\mathcal{D} \) along the map \(\phi \) is defined by

\[
\mathcal{D} \psi := \gamma_\alpha \cdot \widetilde{\nabla} \gamma_\alpha \psi,
\]

where \(\gamma_\alpha \) is a local orthonormal frame on \(M \). We consider the functional

\[
L(\phi, \psi) := \int_M (\|d\phi\|^2 + \langle \psi, \mathcal{D} \psi \rangle).
\]

(1.8)

Except for the curvature term (which we do not need as we are not concerned with supersymmetry), the Lagrangian density here is formally the same as in (1.4). However, in (1.8), all fields are commuting.

The critical points \((\phi, \psi)\) of (1.8) are called Dirac-harmonic maps from \(M \) to \(N \). They constitute the object of our study in this paper.

The focus of our paper is on boundary conditions and boundary regularity for such maps. The first issue is the identification of the correct boundary conditions. In a certain sense, we are translating the boundary conditions of the non-linear supersymmetric sigma model (see [1, 2]), into a geometric framework. Our Riemannian geometric perspective will clarify some geometric aspects. Let thus \(M \) be a Riemann surface with boundary \(\partial M \). This boundary should be mapped to a D-brane. Geometrically, this means that we have a submanifold \(S \) of \(N \), and \(\phi(\partial M) \) should be contained in \(S \) in such a way that it is critical for (1.8) with respect to all such boundary values. This simply means that, in the absence of the field \(\psi \), \(\phi(\partial M) \) should meet \(S \) orthogonally. In the harmonic map literature, this is called a free boundary condition with support \(S \). In analytic terms, this is a combination of Dirichlet and Neumann boundary conditions. Analytically, this is usually treated by some reflection method (see e.g. [13, 20, 26]). That is, one doubles \(M \) to \(\bar{M} \) by reflection across the boundary \(\partial M \) and extends \(\phi \) to \(\bar{M} \) by reflection across the submanifold \(S \). This clarifies the geometric meaning of the tensor \(R \) utilized in [1, 2], as we shall explain in more detail below. In any case, the reflection across \(S \) is particularly well controlled when \(S \) is a totally geodesic submanifold of \(N \). This condition is also required (in different terminology) in [1, 2]. In fact, we shall not need this condition for the formulation of the boundary condition, nor for the proof of continuity of our solutions, but we shall need it to get higher regularity of solutions at the boundary.

As our model couples the harmonic map equation to a Dirac type equation, besides the regularity theory for harmonic maps, also the one for solutions of Dirac equations, in the interior and at the boundary, is relevant. Some pertinent references are [3, 4, 5, 9, 23]. In our setting, for the spinor \(\psi \) we shall need a chirality boundary condition (first introduced by Gibbons–Hawking–Horowitz–Perry [10]). We explain this here only for the
linear case. The coupling between the boundary conditions for the fields ϕ and ψ in the non-linear case will be worked out in detail below. Mathematically, the chirality condition is explained in [16]. We consider the chirality operator $G = i\gamma_1\gamma_2$, and we can decompose the spinor bundle ΣM of M into the eigensubbundles of G for the eigenvalues ± 1. Restricting to the boundary, we have the decomposition $S := \Sigma M|_{\partial M} = V^+ \oplus V^-$. With \vec{n} being the outward unit normal vector field on ∂M, the orthogonal projection onto the eigensubbundle V^\pm,

$$B^\pm : L^2(S) \to L^2(V^\pm), \quad \psi \mapsto \frac{1}{2}(I \pm \vec{n}G)\psi,$$

defines a local elliptic boundary condition for the Dirac operator \slashed{D} (see [16]). We say a spinor $\psi \in W^{1,4/3}(\Sigma M)$ satisfies the boundary condition B^\pm if

$$B^\pm \psi|_{\partial M} = 0. \quad (1.9)$$

Our main analytical results are then concerned with weak solutions of the field equations with (1.8), that is, for weakly Dirac-harmonic maps (again, see the main text, e.g. Definition 2.1, for a precise definition) with such boundary conditions. We shall prove

Theorem 1.1. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian manifold, and S be a closed submanifold of N. Let (ϕ, ψ) be a weakly Dirac-harmonic map from M to N with free boundary on S. Then for any $\alpha \in (0, 1)$,

$$\phi \in C^{0,\alpha}(M, N).$$

Theorem 1.2. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian manifold, and S be a closed, totally geodesic submanifold of N. Let (ϕ, ψ) be a weakly Dirac-harmonic map from M to N with free boundary on S and suppose that $\phi \in C^{0,\alpha}(M, N)$ for any $\alpha \in (0, 1)$. Then there exists $\beta \in (0, 1)$ such that

$$\phi \in C^{1,\beta}(M, N), \quad \psi \in C^{1,\beta}(\Sigma M \oplus \phi^{-1}TN).$$

In fact, we shall start by showing the regularity of weakly Dirac-harmonic maps in the interior of M. This was shown independently by Wang–Xu [28] by a different method inspired by [24, 25]. Our methods will also utilize the general strategy of Rivière [24] who had achieved an important generalization of the earlier results of Wente [27] and Hélein [14, 15]. Rivière’s approach has been adapted to Dirichlet boundary regularity by Müller–Schikorra [22], and this work will also be useful for our purposes.

2. Interior regularity

Let M be a Riemann surface equipped with a conformal metric, which by conformal invariance of our functionals can then be assumed to be Euclidean, and with a fixed spin structure, ΣM the spinor bundle, and let ϕ be a smooth map from M to another Riemannian manifold (N, g) of dimension $d \geq 2$. Denote by $\phi^{-1}TN$ the pull-back bundle of TN
by \(\phi \) and consider the twisted bundle \(\Sigma M \otimes \phi^{-1} TN \). On \(\Sigma M \otimes \phi^{-1} TN \) there is a metric induced from the metrics on \(\Sigma M \) and \(\phi^{-1} TN \). Also we have a natural connection \(\nabla \) on \(\Sigma M \otimes \phi^{-1} TN \) induced from those on \(\Sigma M \) and \(\phi^{-1} TN \). In local coordinates, the section \(\psi \) of \(\Sigma M \otimes \phi^{-1} TN \) can be expressed as

\[
\psi(x) = \sum_{j=1}^{d} \psi^j(x) \otimes \partial y^j(\phi(x)),
\]

where \(\psi^j \) is a spinor and \(\{ \partial y^j \} \) is the natural local basis on \(N \). Then \(\nabla \psi \) can be expressed as

\[
\nabla \psi = \sum_{i=1}^{d} \nabla \psi^i(x) \otimes \partial y^i(\phi(x)) + \sum_{i,j,k=1}^{d} \Gamma^i_{jk}(\phi(x)) \partial y^k(\phi(x)) \otimes \partial y^i(\phi(x)).
\]

Now we define the \textit{Dirac operator along the map} \(\phi \) by

\[
\mathcal{D} \psi := \gamma_\alpha \cdot \nabla_{\gamma_\alpha} \psi
\]

\[
= \sum_{i} \mathcal{D} \psi^i(x) \otimes \partial y^i(\phi(x)) + \sum_{i,j,k=1}^{d} \Gamma^i_{jk}(\phi(x)) \partial y^k(\phi(x)) \gamma_\alpha \cdot \psi^j(x) \otimes \partial y^i(\phi(x)),
\]

where \(\gamma_1, \gamma_2 \) is the local orthonormal frame on \(M \) and \(\mathcal{D} := \sum_{\alpha=1}^{2} \gamma_\alpha \cdot \nabla_{\gamma_\alpha} \) is the usual Dirac operator.

Set

\[
\mathcal{X}(M, N) := \{(\phi, \psi) \mid \phi \in C^\infty(M, N) \text{ and } \psi \in C^\infty(\Sigma M \otimes \phi^{-1} TN)\}.
\]

On \(\mathcal{X}(M, N) \), we consider the following functional

\[
L(\phi, \psi) := \int_{M} [|d\phi|^2 + (\psi, \mathcal{D}\psi)] = \int_{M} \left[g_{ij}(\phi) \frac{\partial \phi^i}{\partial x^a} \frac{\partial \phi^j}{\partial x^a} + g_{ij}(\phi) \psi^i \psi^j \right].
\]

(Recall that the domain metric can be taken to be Euclidean.) The Euler–Lagrange equations of \(L(\cdot, \cdot) \) are

\[
\tau^m(\phi) - \frac{1}{2} R^m_{ij}(\phi)(\psi^i, \nabla \psi^j) = 0, \quad m = 1, \ldots, d, \tag{2.10}
\]

\[
\mathcal{D} \psi^i = \mathcal{D} \psi^i + \Gamma^i_{jk}(\phi) \partial \psi^j \gamma_\alpha \cdot \psi^k = 0, \quad i = 1, \ldots, d, \tag{2.11}
\]

where \(\tau(\phi) \) is the tension field of the map \(\phi \). Solutions \((\phi, \psi) \) to (2.10) and (2.11) are called \textit{Dirac-harmonic maps} from \(M \) to \(N \).

Let \((N', g') \) be another Riemannian manifold and \(f : N \to N' \) a smooth map. For any \((\phi, \psi) \in \mathcal{X}(M, N) \) we set

\[
\phi' = f \circ \phi \quad \text{and} \quad \psi' = f_\ast \psi.
\]
It is clear that ψ' is a spinor along the map ϕ'. Let A be the second fundamental form of f, i.e., $A(X, Y) = (\nabla_X df)(Y)$ for any $X, Y \in \Gamma(TN)$. The tension fields of ϕ and ϕ' are related by

$$\tau'(\phi') = \sum_{a=1}^{2} A(d\phi(\gamma_a), d\phi(\gamma_a)) + df(\tau(\phi)). \quad (2.12)$$

It is also easy to check that the Dirac operators \slashed{D} and \slashed{D}' corresponding to ϕ and ϕ' respectively are related by

$$\slashed{D}'\psi' = f_*(\slashed{D}\psi) + A(d\phi(\gamma_a), \gamma_a \cdot \psi), \quad (2.13)$$

where $A(d\phi(\gamma_a), \gamma_a \cdot \psi) := \phi_a^i \gamma_a^j \cdot \psi^j \otimes \partial y_i$. Furthermore, if $f : N \to N'$ is an isometric immersion, then $A(\cdot, \cdot)$ is the second fundamental form of the submanifold N in N', and

$$\nabla_X^\perp \xi = -P(\xi; X) + \nabla_X^\perp \xi, \quad \nabla_X Y = \nabla_X Y + A(X, Y),$$

for all $X, Y \in \Gamma(TN)$ and $\xi \in \Gamma(T^\perp N)$, where $P(\xi; \cdot)$ denotes the shape operator.

We can rewrite equations (2.10) and (2.11) in terms of A and the geometric data of the ambient space N'.

Denote

$$R(\phi, \psi) := \frac{1}{2} R_{ij}^m (\psi^i, \nabla^j \psi^j) \otimes \partial y_m.$$

By the equation of Gauss, we have (see [6, 7, 19, 29])

$$R(\phi, \psi) = \text{Re} \, P(A(d\phi(\gamma_a), \gamma_a \cdot \psi); \psi) + R'(\phi, \psi), \quad (2.14)$$

where $P(A(d\phi(\gamma_a), \gamma_a \cdot \psi); \psi) := P(A(\partial y^i, \partial y^j); \partial y^j (\psi^i, \gamma_a \cdot \psi^j) \phi_a^i)$. Therefore, by using (2.12) and (2.13), and identifying ϕ with ϕ' and ψ with ψ', we can rewrite (2.10) and (2.11) as follows:

$$\tau'(\phi) = A(d\phi(\gamma_a), d\phi(\gamma_a)) + \text{Re} \, P(A(d\phi(\gamma_a), \gamma_a \cdot \psi); \psi) + R'(\phi, \psi), \quad (2.15)$$

$$\slashed{D}'\psi = A(d\phi(\gamma_a), \gamma_a \cdot \psi). \quad (2.16)$$

In order to introduce the notion of weak solutions of the Euler–Lagrange equations, we embed N isometrically into some $N' = \mathbb{R}^K$ via the Nash–Moser embedding theorem. Then the above equations become

$$-\Delta \phi = A(d\phi, d\phi) + \text{Re} \, P(A(d\phi(\gamma_a), \gamma_a \cdot \psi); \psi), \quad (2.17)$$

$$\slashed{D}\psi = A(d\phi(\gamma_a), \gamma_a \cdot \psi). \quad (2.18)$$

Denote

$$H^1(M, N) := \{ \phi \in H^1(M, \mathbb{R}^K) \mid \phi(x) \in N \text{ a.e. } x \in M \},$$

$$W^{1,4/3}(\Sigma M \otimes \phi^{-1}TN) := \left\{ \psi \in \Gamma(\Sigma M \otimes \phi^{-1}TN) \mid \int_M |\nabla \psi|^{4/3} < \infty, \int_M |\psi|^4 < \infty \right\}.$$
Here, $\psi \in \Gamma(\Sigma M \otimes \phi^{-1}TN)$, the spinor field along the map ϕ, should be understood as a K-tuple of spinors (ψ^1, \ldots, ψ^K) satisfying
\[\sum_i v_i \psi^i = 0 \quad \text{for any normal vector } v = \sum_{i=1}^K v_i E_i \text{ at } \phi(x), \]
where $\{E_i \mid i = 1, \ldots, K\}$ is the standard basis of \mathbb{R}^K. Denote $X_{1,4/3}^1(M, N) := \{(\phi, \psi) \in H^1(M, N) \times W^{1,4/3}(\Sigma M \otimes \phi^{-1}TN)\}$.

Critical points $(\phi, \psi) \in X_{1,4/3}^1(M, N)$ of the functional $L(\cdot, \cdot)$ are called weakly Dirac-harmonic maps from M to N (see [7]); equivalently, we have

Definition 2.1. We call $(\phi, \psi) \in X_{1,4/3}^1(M, N)$ a weakly Dirac-harmonic map from M to N if
\[
\int_M [\langle d\phi, d\eta \rangle + \langle A(d\phi, d\phi) + \Re \mathcal{P}(A(d\phi(\gamma_\alpha), \gamma_\alpha \cdot \psi); \psi), \eta \rangle] = 0, \tag{2.19}
\]
\[
\int_M [\langle \psi, \delta \xi \rangle - \langle A(d\phi(\gamma_\alpha), \gamma_\alpha \cdot \psi), \xi \rangle] = 0, \tag{2.20}
\]
for all $\eta \in H^1_0 \cap L^\infty(M, \mathbb{R}^K)$ and $\xi \in W^{1,4/3}_0 \cap L^\infty(\Sigma M \otimes \mathbb{R}^K)$.

Let us recall the following regularity result for two-dimensional conformally invariant variational problems by Rivi`ere [24]. Denote by $B_1 := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1\}$ the unit disk in \mathbb{R}^2 and write $z = x_1 + i x_2$.

Theorem A. Let $u \in H^1(B_1, \mathbb{R}^K)$ be a weak solution of
\[- \Delta u = \Omega \cdot \nabla u \tag{2.21} \]
where $\Omega = (\Omega^j_{ij})_{1 \leq i, j \leq K} \in L^2(B_1, \mathfrak{so}(K) \otimes \mathbb{R}^2)$. Then u is continuous.

To prove the smoothness of weakly Dirac-harmonic maps, it is sufficient to show the continuity of the map (see [7]):

Theorem B. Let $(\phi, \psi) : B_1 \to N$ be a weakly Dirac-harmonic map. If ϕ is continuous, then (ϕ, ψ) is smooth.

When $N = S^d$, the continuity of weakly Dirac-harmonic maps was proved by Chen–Jost–Li–Wang [7], using Wente’s Lemma [27]. Zhu [29] extended this result to the case that N is a compact hypersurface in the Euclidean space \mathbb{R}^{d+1}. The case of a general target N was shown independently by Wang–Xu [28], where Hélein’s technique of moving frame [14, 15] and the Coulomb gauge construction, due to Rivière [24] and Rivière–Struwe [25], are combined.

Here, following the notations in [29], we show that the extrinsic equations (2.17) in the case of a general compact target can also be written in the same form as (2.21) and hence can be used to prove the continuity of weakly Dirac-harmonic maps.
Theorem 2.1. Let M be a Riemann spin surface, N be any compact Riemannian manifold, and (ϕ, ψ) a weakly Dirac-harmonic map from M to N. Then ϕ is continuous in the interior of M, and consequently (ϕ, ψ) is smooth.

Proof. We follow the approach in [29]. We assume without loss of generality that $M = B_1$ and take the orthonormal basis $\gamma_1 = \partial x_1, \gamma_2 = \partial x_2$. Fix a canonical coordinate (y^1, \ldots, y^K) of \mathbb{R}^K. Let $v_l, l = d + 1, \ldots, K$, be an orthonormal frame field for the normal bundle $T^\perp N$ to N (the target N considered is always assumed to be oriented). Denote by v_l the corresponding unit normal vector field along the map ϕ. We write

$$\phi = \phi^i \partial y^i, \quad \psi = \psi^j \otimes \partial y^j,$$

and denote $\phi^i := \phi_*(\gamma^i) = \phi_{i*}, \alpha = 1, 2$. Then, we proceed as in [29] to write (2.17) and (2.18) in the following extrinsic form in terms of the orthonormal frame field $v_l, l = d + 1, \ldots, K$, for $T^\perp N$:

$$- \Delta \phi^m = \phi^i \left(\phi^j \partial v^i_j v^m_j - \phi^j \partial v^m_j v^i_j \right) + \phi^i (\psi^k, \gamma^l \cdot \psi^j) \left(\partial v^i_j \left(\partial y^k \right)^{\top, m} - \partial v^m_j \left(\partial y^k \right)^{\top, i} \right),$$

(2.22)

$$\frac{\partial \psi^m}{\partial y^j} = \frac{\partial v^i_j}{\partial y^j} \phi^i \gamma^l \phi^l \cdot \psi^j.$$

(2.23)

Here \top denotes the orthogonal projection $\mathbb{R}^K \to T_y N$ and $(\cdot)^i$ denotes the i-th component of a vector in \mathbb{R}^K. Note that $\phi^i \in T N$ and $(\partial v^i_j/\partial y^j)^\perp \in T^\perp N$, hence

$$\sum_i \phi^i \left(\frac{\partial v^i_j}{\partial y^j} \right)^\perp, i = 0, \forall \alpha, l, j, \quad (2.24)$$

where \perp denotes the orthogonal projection $\mathbb{R}^K \to T^\perp_y N$. Decomposing the vector $\partial v^i_j/\partial y^j$ into its tangent part and normal part and then applying (2.24), we get

$$\frac{\partial v^i_j}{\partial y^j} \phi^i = \left(\frac{\partial v^i_j}{\partial y^j} \right)^\top, i + \left(\frac{\partial v^i_j}{\partial y^j} \right)^\perp, i = \left(\frac{\partial v^i_j}{\partial y^j} \right)^\top, i \phi^i.$$

(2.25)

Thus, the equations (2.22) and (2.23) become

$$- \Delta \phi^m = \phi^i \left(\phi^j \partial v^i_j v^m_j - \phi^j \partial v^m_j v^i_j \right) + \phi^i (\psi^k, \gamma^l \cdot \psi^j) \left(\partial v^i_j \left(\partial y^k \right)^{\top, m} - \partial v^m_j \left(\partial y^k \right)^{\top, i} \right),$$

(2.26)

$$\frac{\partial \psi^m}{\partial y^j} = \frac{\partial v^i_j}{\partial y^j} \phi^i \gamma^l \phi^l \cdot \psi^j.$$

(2.27)
Denote
\[\Omega_i^m := \left(\frac{\lambda_i^m}{\mu_i^m} \right), \quad i, m = 1, \ldots, K, \]
where
\[\lambda_i^m := \left(\frac{\partial y^i}{\partial y^j} \right) \phi_j^m - \left(\frac{\partial y^m}{\partial y^i} \right) \phi_j^1, \]
\[\mu_i^m := \left(\frac{\partial y^i}{\partial y^j} \right) \phi_j^m - \left(\frac{\partial y^m}{\partial y^i} \right) \phi_j^2. \]

Then we can write (2.26) in the form
\[-\Delta \phi^m = \Omega_i^m \cdot \nabla \phi^i. \]

It is easy to verify that \(\Omega = (\Omega_i^m)_{1 \leq i, m \leq K} \in L^2(B_1, \text{so}(K) \otimes \mathbb{R}^2) \). By Theorem A, we have \(\phi \in C^0(B_1, N) \), and consequently \((\phi, \psi)\) is smooth. \(\square \)

3. Free boundary problem for Dirac-harmonic maps

In this section, we shall study the free boundary problem for Dirac-harmonic maps.

First, we impose the free boundary condition for the map in the classical sense, namely, the boundary of the domain is mapped freely into a submanifold of the target. Next, motivated by the supersymmetric sigma model with boundaries (see Albertsson–Lindström–Zabzine [1, 2]), we impose the boundary condition for the spinor field using a chirality operator.

To begin, let us recall the chirality boundary conditions for the usual Dirac operator \(\slashed{D} \) (see [16]).

Chirality boundary conditions for the Dirac operator \(\slashed{D} \)

Let \(M \) be a compact Riemannian spin surface with boundary \(\partial M \neq \emptyset \). Then \(M \) admits a chirality operator \(G = \gamma(\omega_2) \), the Clifford multiplication by the complex volume form \(\omega_2 = i \gamma_1 \gamma_2 \). The operator \(G \) is an endomorphism of the spinor bundle \(\Sigma M \) satisfying
\[G^2 = I, \quad \langle G \psi, G \varphi \rangle = \langle \psi, \varphi \rangle, \quad (3.28) \]
\[\nabla_X (G \psi) = G \nabla_X \psi, \quad X \cdot G \psi = -G (X \cdot \psi), \quad (3.29) \]
for all \(X \in \Gamma(TM) \) and \(\psi, \varphi \in \Gamma(\Sigma M) \). Here \(I \) denotes the identity endomorphism of \(\Sigma M \).
Denote by

\[S := \Sigma M|_{\partial M} \]

the restricted spinor bundle with induced Hermitian product.

Let \(\vec{n} \) be the outward unit normal vector field on \(\partial M \). One can verify that \(\vec{n}G : \Gamma(S) \to \Gamma(S) \) is a self-adjoint endomorphism whose square is the identity:

\[
\langle \vec{n}G \psi, \varphi \rangle = \langle \psi, \vec{n}G \varphi \rangle, \\
(\vec{n}G)^2 = I.
\]

Hence, we can decompose \(S = V^+ \oplus V^- \), where \(V^\pm \) is the eigensubbundle corresponding to the eigenvalue \(\pm 1 \). One verifies that the orthogonal projection onto the eigensubbundle \(V^\pm \),

\[B^\pm : L^2(S) \to L^2(V^\pm), \quad \psi \mapsto \frac{1}{2}(I \pm \vec{n}G)\psi, \]
defines a local elliptic boundary condition for the Dirac operator \(\not{D} \) (see [16]). We say a spinor \(\psi \in W^{1,4/3}(\Sigma M) \) satisfies the boundary condition \(B^\pm \) if

\[B^\pm \psi|_{\partial M} = 0. \]

The following proposition was shown in [16]. For completeness, we present the proof using our notations.

Proposition 3.1. If \(\varphi, \psi \in W^{1,4/3}(\Sigma M) \) satisfy the boundary condition \(B^\pm \) then

\[
\langle \vec{n} \cdot \psi, \varphi \rangle = 0 \quad \text{on } \partial M.
\]

In particular,

\[
\int_{\partial M} \langle \vec{n} \cdot \psi, \varphi \rangle = 0.
\]

Proof. Let \(\varphi, \psi \in W^{1,4/3}(\Sigma M) \) satisfy the boundary condition \(B^\pm \), i.e., \(B^\pm \psi|_{\partial M} = B^\pm \varphi|_{\partial M} = 0 \). Then

\[
\vec{n}G\psi = \mp\varphi, \quad \vec{n}G\varphi = \mp\varphi.
\]

Hence, applying the properties (3.28)–(3.31) of \(G \), we get

\[
\langle \vec{n} \cdot \psi, \varphi \rangle = \langle G\vec{n} \cdot \psi, G\varphi \rangle = \langle -\vec{n}G\psi, -\vec{n}G\varphi \rangle = (-1)^2(\mp 1)^2 \langle \psi, \vec{n}\varphi \rangle = -\langle \vec{n} \cdot \psi, \varphi \rangle.
\]

Now (3.33) and (3.34) follow immediately. \(\square \)

Let \(M \) be the upper-half Euclidean space \(\mathbb{R}^2_+ \). We identify the Clifford multiplication by the orthonormal frame \(\partial x_1, \partial x_2 \) with the following matrices:

\[
\gamma_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]
Then we can take the chirality operator $G := i \gamma_1 \gamma_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$. Note that $\vec{n} = -\partial x_2 = (-1 0 0 0)^T$, and hence we can calculate $B^\pm = \frac{1}{2} (I \pm \vec{n} \cdot G) = \frac{1}{2} \left(\begin{array}{cc} 1 & \pm 1 \\ \pm 1 & 1 \end{array} \right)$.

By the standard chirality decomposition, we can write $\psi = (\psi_+ \psi_-)$; then the boundary condition (3.32) becomes

$$\psi_+ = \mp \psi_- \quad \text{on } \partial M.$$

Next, we will extend the chirality boundary condition to the Dirac operator along a map.

Chirality boundary condition for the Dirac operator \mathcal{D} along a map

When $\partial M \neq \emptyset$, the Dirac operator \mathcal{D} along a map ϕ is in general not formally self-adjoint. In fact, we have the following property analogous to one for the usual Dirac operator ∂.

Proposition 3.2.

$$\int_M \langle \psi, \mathcal{D} \phi \rangle = \int_M \langle \mathcal{D} \psi, \phi \rangle - \int_{\partial M} (\vec{n} \cdot \psi, \phi)$$

for all $\psi, \phi \in C^\infty(\Sigma M \otimes \phi^{-1} T N)$, where $\langle \psi, \phi \rangle := g_{ij}(\phi) \langle \psi^i, \phi^j \rangle$.

Proof. Choose a local orthonormal frame $\{\gamma_a\}_{a=1}^2$ on M. Given $\psi, \phi \in C^\infty(\Sigma M \otimes \phi^{-1} T N)$, define

$$f := \langle \gamma_a, \psi \rangle \gamma_a;$$

then f is independent of the choice of such a frame γ_a and hence is globally defined. We calculate

$$\int_M \langle \psi, \mathcal{D} \phi \rangle = \int_M \langle \mathcal{D} \psi, \phi \rangle - \int_M \gamma_a \langle \gamma_a \cdot \psi, \phi \rangle = \int_M \langle \mathcal{D} \psi, \phi \rangle - \int_M \text{div} f$$

$$= \int_M \langle \mathcal{D} \psi, \phi \rangle - \int_{\partial M} f \cdot \vec{n} = \int_M \langle \mathcal{D} \psi, \phi \rangle - \int_{\partial M} \langle \gamma_a \cdot \psi, \phi \rangle \langle \gamma_a, \vec{n} \rangle$$

$$= \int_M \langle \mathcal{D} \psi, \phi \rangle - \int_{\partial M} (\vec{n} \cdot \psi, \phi).$$

Here in the last step we have used the fact that $\vec{n} = \langle \gamma_a, \vec{n} \rangle \gamma_a$. \hfill \square

To extend the chirality boundary condition to the Dirac operator \mathcal{D} along a map from M to N, we need some geometric structure on the target N.

Given a submanifold S of N, we assume that there is an endomorphism $R(y) : T_y N \to T_y N$ for all $y \in S$. The $(1, 1)$ tensor R is called compatible if it preserves the metric on $T N$, that is,

$$\langle R(y)V, R(y)W \rangle = \langle V, W \rangle, \quad \forall V, W \in T_y N, \quad \forall y \in S$$
and it squares to the identity, more precisely,
\[R(y)R(y)V = V, \quad \forall V \in T_y N, \forall y \in S. \]

Such compatible \((1, 1)\) tensors on \(S\) always exist. For instance, we can take \(R \equiv \pm \text{id}\), where
\[\text{id} : T_y N \to T_y N, \quad \forall y \in S, \]
denotes the identity endomorphism.

Let \(S\) be a closed submanifold of \(N\) with a compatible \((1, 1)\) tensor \(R\) and consider a map \(\phi \in C^\infty(M, N)\) satisfying the free boundary condition in the classical sense, that is, \(\phi(\partial M) \subset S\). We denote by
\[S_\phi := (\Sigma M \otimes \phi^{-1} TN)|_{\partial M} \]
the restricted (twisted) spinor bundle with the induced metric.

Let \(\psi \in C^\infty(S_\phi)\). Given \(x \in \partial M\), we have \(\phi(x) \in S\). Choose a local orthonormal frame \(\{V_i\}\) on a neighborhood of \(\phi(x)\) (still denote by \(\{V_i\}\) the corresponding orthonormal frame along the map \(\phi\)). Locally, we can write
\[\psi = \sum_i \psi^i \otimes V_i. \]

Denote by \(\text{Id}\) the identity endomorphism acting on \(C^\infty(\phi^{-1} TN|_{\partial M})\). Then, one can verify that the endomorphism \(\tilde{n}G \otimes R : C^\infty(S_\phi) \to C^\infty(S_\phi)\) defined by
\[(\tilde{n}G \otimes R) \psi := \sum_i \tilde{n}G \psi^i \otimes RV_i, \quad \forall \psi = \sum_i \psi^i \otimes V_i \in C^\infty(S_\phi), \quad (3.35) \]
is self-adjoint and its square is the identity:
\[\langle (\tilde{n}G \otimes R) \psi, \varphi \rangle = \langle \varphi, (\tilde{n}G \otimes R) \psi \rangle, \quad \forall \psi, \varphi \in C^\infty(S_\phi), \quad (3.36) \]
\[(\tilde{n}G \otimes R)^2 = I \otimes \text{Id}. \quad (3.37) \]

Hence, we can decompose the twisted bundle \(S_\phi\) as \(V_\phi^+ \oplus V_\phi^-\), where \(V_\phi^\pm\) is the eigensubbundle corresponding to the eigenvalue \(\pm 1\). One verifies that the orthogonal projection onto the eigensubbundle \(V_\phi^\pm\),
\[B_\phi^\pm : C^\infty(S_\phi) \to C^\infty(V_\phi^\pm), \quad \psi \mapsto \frac{1}{2}(I \otimes \text{Id} \pm \tilde{n}G \otimes R) \psi, \]
defines an elliptic boundary condition for the Dirac operator \(\mathcal{D}\) along the map \(\phi\). We say a spinor field \(\psi \in C^\infty(\Sigma M \otimes \phi^{-1} TN)\) along a map \(\phi\) satisfies the boundary condition \(B_\phi^\pm\) if
\[B_\phi^\pm \psi|_{\partial M} = 0. \quad (3.38) \]

The following proposition generalizes the results of Proposition 3.1 to the case of spinor fields along a map:
Proposition 3.3. If $\varphi, \psi \in C^\infty(\Sigma M \otimes \phi^{-1}TN)$ satisfy the chirality boundary condition B^\pm, then

$$\langle \vec{n} \cdot \psi, \varphi \rangle = 0 \quad \text{on } \partial M. \quad (3.39)$$

In particular,

$$\int_{\partial M} \langle \vec{n} \cdot \psi, \varphi \rangle = 0. \quad (3.40)$$

Proof. Let $\psi, \varphi \in C^\infty(\Sigma M \otimes \phi^{-1}TN)$ satisfy the chirality boundary condition B^\pm, that is, $B^\pm|_{\partial M} = B^\pm|_{\partial M} = 0$. Choosing a local orthonormal frame $\{V_i\}$ on a neighborhood of $\phi(x)$ for $x \in \partial M$, we can write

$$\psi = \sum_i \psi^i \otimes V_i, \quad \varphi = \sum_j \varphi^j \otimes V_j.$$

Then the chirality boundary conditions B^\pm for ψ and φ read

$$\psi = \sum_i \psi^i \otimes V_i = \mp \sum_i \vec{n}G\psi^i \otimes RV_i, \quad \varphi = \sum_j \varphi^j \otimes V_j = \mp \sum_j \vec{n}G\varphi^j \otimes RV_j.$$

At the point x, we can calculate

$$\langle \vec{n} \cdot \psi, \varphi \rangle = \mp (1)^2 \sum_{i,j} \langle \vec{n}nG\psi^i \otimes RV_i, \vec{n}G\varphi^j \otimes RV_j \rangle = \sum_{i,j} \langle \vec{n}nG\psi^i, \vec{n}G\varphi^j \rangle \langle RV_i, RV_j \rangle$$

$$= \sum_{i,j} \langle \vec{n}\psi^i \otimes V_i, \varphi^j \otimes V_j \rangle = \sum_{i,j} \langle \psi^i \otimes V_i, \varphi^j \otimes V_j \rangle = \sum_{i,j} \langle \vec{n} \cdot \psi \otimes \varphi \rangle.$$

Since the point $x \in \partial M$ is arbitrary, we obtain (3.39) and (3.40).

Free boundary conditions for Dirac-harmonic maps

Let S be a closed p-dimensional submanifold of N. It turns out that one can associate to it a natural $(1, 1)$ tensor R that is compatible.

To see this, we consider a tubular neighborhood $U_\delta := \{z \in N \mid \text{dist}^N(z, S) < \delta\}$ of S in N, where $\delta > 0$ is a constant small enough such that for any $z \in U_\delta$, there exists a unique minimal geodesic γ_z connecting z and $z' \in S$ which attains the distance from z to the submanifold S.

On U_δ, we can define the geodesic reflection σ as follows:

$$\sigma : U_\delta \to U_\delta, \quad z := \exp_z v \mapsto \sigma(z) := \exp_z(-v),$$

where $v \in T_zN$ is uniquely determined by z. Clearly, $\sigma^2 = \text{id} : U_\delta \to U_\delta$, and for δ small enough, the map σ is a diffeomorphism. Associated to this σ, there is a $(1, 1)$ tensor R on Σ defined by

$$R(z) := D\sigma(z), \quad \forall z \in S.$$
The $(1, 1)$ tensor R is well defined on S, since $\sigma|_S = \text{id}$ and hence $R(z) : T_zN \to T_zN$ is an endomorphism for $z \in S$. To show the compatibility of R, it is most convenient to take the adapted coordinates $\{y^i\}_{i=1,\ldots,d}$ in some neighborhood $U \subset U_0$ of a given point $P \in S$, such that $\{y^a\}_{a=1,\ldots,p}$ are coordinates in S, $\{y^\lambda\}_{\lambda=p+1,\ldots,d}$ are the directions normal to S and

$$S \cap U = \{ y \in U \mid y^{p+1} = \cdots = y^d = 0 \}.$$

In what follows, the index ranges are:

$$1 \leq a, b, \ldots \leq p, \quad p + 1 \leq \lambda, \mu, \ldots \leq d, \quad 1 \leq i, j, k, \ldots \leq d.$$

Note that the adapted coordinates $\{y^i\}_{i=1,\ldots,d}$ are exactly the geodesic parallel coordinates for the submanifold S. These coordinates also go under the name of Fermi coordinates in the literature. We refer to [12] for more details. In such coordinates, the diffeomorphism $\sigma|_U : U \to U$ is given by

$$\sigma : (y^1, \ldots, y^p, y^{p+1}, \ldots, y^d) \to (y^1, \ldots, y^p, -y^{p+1}, \ldots, -y^d).$$

Consequently, we have

$$D\sigma(\partial y^k) = \partial y^k, \quad k = 1, \ldots, p,$$

$$D\sigma(\partial y^m) = -\partial y^m, \quad m = p + 1, \ldots, d.$$

The tensor R and the metric g take the forms

$$R = \begin{pmatrix} \delta^a_b & 0 \\ 0 & -\delta^\lambda_\mu \end{pmatrix}, \quad g = \begin{pmatrix} g_{ab} & 0 \\ 0 & g_{\lambda\mu} \end{pmatrix}.$$

It is easy to verify that R is compatible. Moreover, R has the following additional property:

$$R(z)|_{T_zS} = \text{id}, \quad R(z)|_{T_z^\perp S} = -\text{id}, \quad \forall z \in S,$$

where id denotes the identity endomorphism and $T_z^\perp S$ is the subspace of T_zN that is normal to T_zS.

Given a closed p-dimensional submanifold S of N, we will always associate to it the compatible $(1, 1)$ tensor R constructed via the geodesic reflection σ for S. It turns out that this tensor is the most natural one from a geometrical and analytical point of view.

Let $\phi \in C^\infty(M, N)$ satisfy the boundary condition $\phi(\partial M) \subset S$ and let $\psi \in C^\infty(\Sigma M \ominus \phi^{-1}T N)$. We impose the free boundary condition for ψ to be the chirality boundary condition corresponding to S,

$$\mathbf{B}^\perp_{\phi}\psi|_{\partial M} = 0,$$

or in local form

$$\psi^i = \mp R^i_j \bar{n}G\psi^j, \quad i = 1, \ldots, d, \quad \text{on } \partial M.$$
When $M = \mathbb{R}^2_+$, we identify the Clifford multiplication by $\partial x_1, \partial x_2$ with the matrices γ_1, γ_2, take the chirality operator $G := i\gamma_1\gamma_2$ and decompose $\psi = (\psi_+)^\dagger$. Then the chirality boundary condition B^\pm_ϕ corresponding to S becomes

$$\psi_i^+ = \mp R_i^j \psi_j^-, \quad i = 1, \ldots, d, \quad \text{on } \partial M. \quad (3.41)$$

Remark 3.1. In the physics literature (see [1]), the above coordinate system $\{y^i\}_{i=1,\ldots,d}$ is said to be adapted to the brane S. And (3.41) is the fermionic boundary condition considered in [1], where it is a priori assumed that there exists some compatible (1,1) tensor R defined on some region including S.

Set

$$X(M, N; S) := \{(\phi, \psi) | \phi \in C^\infty(M, N), \phi(\partial M) \subset S; \psi \in C^\infty(\Sigma M \otimes \phi^{-1} TN), B^\pm_\phi \psi |_{\partial M} = 0\}.$$

Definition 3.1. $(\phi, \psi) \in X(M, N; S)$ is called a Dirac-harmonic map from M to N with free boundary on S if it is a critical point of $L(\cdot, \cdot)$ in $X(M, N; S)$.

Let (ϕ, ψ) be a Dirac-harmonic map from M to N with free boundary on $S \subset N$.

First, we consider a family of $(\phi_t, \psi_t) \in X(M, N; S)$ with $\phi_t \equiv \phi$ and $\frac{d\psi_t}{dt} |_{t=0} = \xi$.

Then we calculate

$$\left. \frac{dL(\phi_t, \psi_t)}{dt} \right|_{t=0} = \int_M \frac{d}{dt} \langle \psi_t, \mathcal{D} \psi_t \rangle |_{t=0} = \int_M \langle \xi, \mathcal{D} \psi \rangle + \int_M \langle \psi, \mathcal{D} \xi \rangle$$

$$= 2 \int_M \text{Re} \langle \xi, \mathcal{D} \psi \rangle - \int_{\partial M} \langle \vec{n} \cdot \psi, \xi \rangle.$$

Note that ψ, ξ satisfy the boundary condition B^\pm_ϕ, hence Proposition 3.3 shows that $\int_{\partial M} \langle \vec{n} \cdot \psi, \xi \rangle = 0$.

Next, we consider a family of $(\phi_t, \psi_t) \in X(M, N; S)$ with $\frac{d\phi_t}{dt} |_{t=0} = \eta$ and $\psi_t = \psi^i \otimes \partial y^i(\phi_t), \psi^i_t \equiv \psi^i$. Then

$$\left. \frac{dL(\phi_t, \psi_t)}{dt} \right|_{t=0} = \int_M 2 \langle d\phi, d\eta \rangle + \int_M \left. \langle \psi, \frac{d}{dt} \mathcal{D} \psi \rangle \right|_{t=0}$$

$$= \int_M 2 \langle d\phi, d\eta \rangle + \int_M 2 \langle R(\phi, \psi), \eta \rangle + \int_M \langle \psi, \mathcal{D} (\psi^i \otimes \nabla_{\partial y^i}) \rangle$$

$$= \int_M 2 \langle -\tau(\phi), \eta \rangle + \int_M 2 \langle R(\phi, \psi), \eta \rangle + \int_M \langle \mathcal{D} \psi, \psi^i \otimes \nabla_{\partial y^i} \rangle$$

$$+ \int_{\partial M} 2 \langle \vec{n}, \eta \rangle - \int_{\partial M} \langle \vec{n} \cdot \psi, \psi^i \otimes \nabla_{\partial y^i} \rangle.$$
Here $\phi_0 = \partial \phi / \partial \vec{n}$. Note that, for simplicity, we used the local expression of ψ, namely, $\psi = \psi' \otimes \partial y'$, where y' is a local coordinate of N. By using the expression $\psi' \otimes \nabla \psi' = n^j \Gamma_{ij}^k \psi' \otimes \partial y^k$ and requiring the vanishing of the boundary integral, we have

$$0 = \int_{\partial M} 2(\phi_0 - \eta) - \int_{\partial M} \langle \vec{n} \cdot \psi, \psi' \otimes \nabla \psi' \rangle = \int_{\partial M} g_{mj}(2\phi_0^m - g^{mn} \langle \vec{n} \cdot \psi', \psi' \rangle \Gamma_{in}^k g_{kl} \eta^j).$$

Since $\eta = \frac{d\phi}{dt} |_{t=0}$ is arbitrary, it follows that

$$(2\phi_0^m - g^{mn} \langle \vec{n} \cdot \psi', \psi' \rangle \Gamma_{in}^k g_{kl} \eta^j) \perp S; \quad (3.42)$$

here and below, for simplicity, we write $\partial_t := \partial / \partial y^0$, $\partial_i := \partial / \partial y^i$, $\partial_a := \partial / \partial y^a$ etc.

From the free boundary conditions for the spinor fields,

$$\psi' = \mp R^j_i \vec{n} G \psi' \quad \text{on} \quad \partial M,$$

where $R = (R^j_i) = \left(\begin{array}{cc} 0 & 0 \\ 0 & -\delta^i_0 \end{array} \right)$, one easily verifies that

$$\langle \vec{n} \cdot \psi^a, \psi^b \rangle = 0, \quad \langle \vec{n} \cdot \psi^b, \psi^a \rangle = 0, \quad \text{on} \quad \partial M,$$

for $a, b = 1, \ldots, p$ and $\lambda, \mu = p + 1, \ldots, d$.

Let us continue to consider (3.42). We note that

$$g^{mn} g_{kl} \Gamma_{in}^k (\vec{n} \cdot \psi', \psi') = g^{mn} g_{kl} \Gamma_{in}^k (\vec{n} \cdot \psi', \psi') + g^{mn} g_{ad} \Gamma_{in}^a (\vec{n} \cdot \psi', \psi')$$

$$= g^{mn} g_{ad} \Gamma_{in}^a (\vec{n} \cdot \psi', \psi') + g^{mn} g_{ab} \Gamma_{in}^a (\vec{n} \cdot \psi', \psi')$$

$$= g^{mn} g_{ad} \Gamma_{in}^a (\vec{n} \cdot \psi', \psi') + g^{mn} g_{ab} \Gamma_{in}^a (\vec{n} \cdot \psi', \psi')$$

so that

$$g^{mn} g_{kl} \Gamma_{in}^k (\vec{n} \cdot \psi', \psi') = 2 g^{mn} g_{d\lambda} \Gamma_{in}^a (\vec{n} \cdot \psi', \psi'), \quad m = 1, \ldots, d.$$

Using this we have

$$(2\phi_0^m - g^{mn} \langle \vec{n} \cdot \psi', \psi' \rangle \Gamma_{in}^k g_{kl} \eta^j) \perp S \quad \Leftrightarrow \quad (2\phi_0^m - g^{nc} \langle \vec{n} \cdot \psi', \psi' \rangle \Gamma_{in}^k g_{kl} \eta^j) \partial_c = 0$$

$$\quad \Leftrightarrow \quad (\frac{\partial \phi}{\partial n})^T - g^{cd} \Gamma_{ad} g_{ac} (\vec{n} \cdot \psi', \psi') \partial_c = 0.$$

On the other hand, for the second fundamental form $A_S(\cdot, \cdot)$ of S in N, we have $A_S(\partial_t, \partial_a) = (\nabla_a \partial_t)^T = \Gamma_{ad} \partial_t$; using this in (3.42), we obtain

$$(2\phi_0^m - g^{mn} \langle \vec{n} \cdot \psi', \psi' \rangle \Gamma_{in}^k g_{kl} \eta^j) \perp S$$

$$\quad \Leftrightarrow \quad (\frac{\partial \phi}{\partial n})^T = g^{cd} (A_S(\partial_t, \partial_d) \partial_a + \partial_{\partial_a} \langle \vec{n} \cdot \psi', \psi' \rangle \partial_c = g^{cd} (A_S(\psi^T, \partial_d) \partial_a + \partial_{\partial_a} \langle \vec{n} \cdot \psi^T, \psi^T \rangle \partial_c$$

$$= g^{cd} (P_S(\vec{n} \cdot \psi^T; \psi^T), \partial_c) \partial_a = P_S(\vec{n} \cdot \psi^T; \psi^T).$$

Here $P_S(\cdot, \cdot)$ is the shape operator of S in N. Therefore, we have
Proposition 3.4. The condition \((3.42)\) is equivalent to
\[
\left(\frac{\partial \phi}{\partial \vec{n}} \right)^\top = P_S(\vec{n} \cdot \psi^\perp; \psi^\top);
\]
in particular, if \(S\) is a totally geodesic submanifold in \(N\), this reads
\[
\frac{\partial \phi}{\partial \vec{n}} \perp S.
\]

Remark 3.2. The condition \(\frac{\partial \phi}{\partial \vec{n}} \perp S\) is exactly the orthogonality condition in the theory of minimal surfaces with free boundaries (see the survey paper by Hildebrandt [17] and the references therein). In the case of Dirac-harmonic maps with free boundaries, the orthogonality condition appears when the supporting submanifold \(S\) is totally geodesic or the spinor field vanishes, i.e. \(\psi \equiv 0\).

The above discussion leads to the following equivalent definition of Dirac-harmonic maps with a free boundary on \(S\).

Definition 3.2. \((\phi, \psi) \in \mathcal{X}(M, N; S)\) is called a Dirac-harmonic map from \(M\) to \(N\) with free boundary \(S \subset N\) if \((\phi, \psi)\) is Dirac-harmonic in \(M\), i.e.,
\[
\tau(\phi) = R(\phi, \psi), \quad \mathcal{D}\psi = 0,
\]
and satisfies the following free boundary conditions:
(i) \(\left(\frac{\partial \phi}{\partial \vec{n}} \right)^\top = P_S(\vec{n} \cdot \psi^\perp; \psi^\top)\) on \(\partial M\),
(ii) \(\mathcal{B}^\pm_\phi \psi|_{\partial M} = 0\).

Weakly Dirac-harmonic maps with free boundary on \(S\)

In order to define the free boundary conditions for weakly Dirac-harmonic maps, we shall use the isometric embedding \(N \hookrightarrow \mathbb{R}^K\). Making use of the orthogonal decomposition \(\mathbb{R}^K = T_y N \oplus T^\perp_y N\) for any \(y \in N\), we can consider the bundles \(\Sigma M \otimes \phi^{-1} T N\) and \(S_\phi = (\Sigma M \otimes \phi^{-1} T N)|_{\partial M}\) as subbundles of \(\Sigma M \otimes \phi^{-1} \mathbb{R}^K\) and \((\Sigma M \otimes \phi^{-1} \mathbb{R}^K)|_{\partial M}\), respectively. Moreover, we denote
\[
L^2(S_\phi) := \{ \psi|_{\partial M} \mid \psi \in W^{1,4/3}(\Sigma M \otimes \phi^{-1} T N) \}.
\]

Let \(V_N\) be a tubular neighborhood of \(N\) in \(\mathbb{R}^K\) with a projection \(P : V_N \rightarrow N\) (see [15]). We define
\[
\tilde{R}(y) := D(\sigma \circ P)(y), \quad y \in S.
\]
For \(y \in S\), since \(R(y) = D\sigma(y)\), we have \(\tilde{R}(y) = D(\sigma \circ P)(y) = D\sigma(y) \circ (DP)(y) = R(y) \circ (DP)(y)\). Moreover, for all \(V, W \in T_y N\) and \(y \in S\), we have \(DP(y)V = V\) and hence
\[
\langle \tilde{R}(y)V, \tilde{R}(y)W \rangle_{\mathbb{R}^K} = \langle R(y)(DP)(y)V, R(y)(DP)(y)W \rangle_{\mathbb{R}^K} = \langle R(y)V, R(y)W \rangle_{T_y N} = \langle V, W \rangle_{T_y N} = \langle V, W \rangle_{\mathbb{R}^K}.
\]
On the other hand, since \((\sigma \circ P) \circ (\sigma \circ P) = \sigma \circ \sigma \circ P = \id\) on \(U_\delta \subset N\), we get
\[
\bar{R}(y) \bar{R}(y) V = V, \quad \forall V \in T_y N, \forall y \in S.
\]
Therefore, we can define, in analogy to the case of smooth sections, an endomorphism
\[
\tilde{n}G \otimes \bar{R} : L^2(S_\phi) \to L^2(S_\phi),
\]
which is self-adjoint and squares to the identity. Also, we can decompose \(S_\phi = V^+_\phi \oplus V^-_\phi\) and define an elliptic boundary condition
\[
\tilde{B}_\phi^{\pm} : L^2(S_\phi) \to L^2(V^{\pm}_\phi)
\]
for \(D\). For convenience, we still denote \(\tilde{B}_\phi^{\pm}\) by \(B_\phi^{\pm}\).

One easily verifies that the results in Proposition 3.3 hold for \(W^{1,4/3}\) sections of the bundle \(\Sigma M \otimes \phi^{-1}TN\) with \(\phi \in H^1(M, N)\). More precisely, we have

Proposition 3.5. If \(\varphi, \psi \in W^{1,4/3}(\Sigma M \otimes \phi^{-1}TN)\) satisfy the chirality boundary condition \(B_\phi^{\pm} \psi\), then
\[
\langle \bar{n} \cdot \psi, \varphi \rangle = 0 \quad a.e. \text{ on } \partial M.
\]

Definition 3.3. An element \((\varphi, \psi)\) of \(X^{1,2}_{1,4/3}(M, N; S)\) is called a weakly Dirac-harmonic map with free boundary on \(S\) if it is a critical point of the action functional \(L(\cdot, \cdot)\) in \(X^{1,2}_{1,4/3}(M, N; S)\).

One verifies, similarly to Wang–Xu [28], that a Dirac-harmonic map with free boundary on \(S\) is invariant under a totally geodesic, isometric embedding of the target. Therefore, adapting Hélein’s enlargement argument (see [14, 15]), we can assume that there exists a global orthonormal frame \(\{\hat{V}_i\}_{i=1}^d\) on \(N\). Set \(V_i(x) = \hat{V}_i(\phi(x)), i = 1, \ldots, d\); then \(\{V_i\}\) is an orthonormal frame along the map \(\phi\). The spinor field \(\psi\) along \(\phi\) can be written as
\[
\psi = \sum_{i=1}^d \psi^i \otimes V_i.
\]

Using the frame \(\{\hat{V}_i\}_{i=1}^d\), it is not difficult to derive (similarly to the calculations in [6, 28]) the following two propositions (proofs omitted):
The boundary value problem for Dirac-harmonic maps
Then by assumption (3.43), we have
\[\int_{B_1} (|d\tilde{\phi}|^2 + |\tilde{\psi}|^4) = \int_{B_2} (|d\phi|^2 + |\psi|^4) \leq \int_{B_1^+} (|d\phi|^2 + |\psi|^4) \leq \epsilon_0. \]
Provided that \(\epsilon_0 \) is sufficiently small, we can apply the \(\epsilon \)-regularity for Dirac-harmonic maps from surfaces (see [7, Theorem 3.2] or [6, Theorem 4.3]) to get
\[\|d\tilde{\phi}\|_{L^\infty(B_1/2)} \leq C \|d\tilde{\phi}\|_{L^2(B_1)} \leq C \sqrt{\epsilon_0}, \]
where \(C > 0 \) is a constant depending only on the geometry of \(N \). Note that \(d\tilde{\phi}(0) = R \cdot d\phi(x) \). Hence,
\[|d\phi(x)| = \frac{|d\tilde{\phi}(0)|}{R} \leq \frac{C \sqrt{\epsilon_0}}{R} \text{ for all } x \in B_{2R}(x_0). \]
Now we can use the same arguments as in the proof of [26, Lemma 3.1] to obtain
\[|\phi(x_0) - \bar{\phi}| \leq C \sqrt{\epsilon_0} \]
and
\[\text{dist}(\bar{\phi}, S) \leq C \left[R^{2-n} \int_{B_{2R}(x_0)} |d\phi|^2 \right]^{1/2} \leq C \sqrt{\epsilon_0}, \]
where \(\bar{\phi} := \int_{B_{2R}(x_0)} \phi \).
Furthermore, since \(S \) is compact, there is a point \(Q \in S \) such that \(\text{dist}(\bar{\phi}, S) = \text{dist}(\bar{\phi}, Q) \). Hence
\[\text{dist}(\phi(x_0), Q) \leq |\phi(x_0) - \bar{\phi}| + \text{dist}(\bar{\phi}, Q) \leq C \sqrt{\epsilon_0}. \]
The above lemma shows that
\[\phi(B_{1/\delta}^+) \subset U_\delta := \{ z \in N \mid \text{dist}^N(z, S) < \delta \} \]
for some \(\delta > 0 \), provided that the energy of \(\phi \) over the half-disk is sufficiently small.
Let \((\phi, \psi) \in X_{1,4/3}^{1,2}(B_1^+, N; S) \) be a weakly Dirac-harmonic map with free boundary on \(S \). By the conformal invariance of weakly Dirac-harmonic maps from surfaces, we can assume that \(\phi(B_1^+) \subset U_\delta \).
Denote
\[\Sigma(x) := D\sigma(\phi(x)), \quad x \in B_1^+. \]
Define a morphism \(T^\pm_\phi : W^{1,4/3}(\Sigma B_1^+ \otimes \phi^{-1}TN) \to W^{1,4/3}(\Sigma B_1^+ \otimes (\sigma \circ \phi)^{-1}TN) \) by
\[T^\pm_\phi := \pm i\gamma_1 \otimes \Sigma. \]
Here \(T^\pm_\phi \) corresponds to \(B^\pm_\phi \). Below, we will only consider the case of \((B_\phi^+, T^+_\phi) \) and omit the symbol “ + “, because the case of \((B_\phi^-, T^-_\phi) \) is analogous.
For \(x = (x_1, x_2) \), denoting \(x^* := (x_1, -x_2) \), we extend the fields \(\phi, \psi \) to the lower half-disk \(B^-_1 := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1, x_2 \leq 0 \} \) as follows (and still denote them by \(\phi, \psi \)):

\[
\phi(x^*) := \sigma(\phi(x)), \quad x^* \in B^-_1, \\
\psi(x^*) := T(\phi(x))\psi(x), \quad x^* \in B^-_1.
\]

This extension is well defined. To see this, we verify that for a.e. \(x \in I, \)

\[
\phi(x) = \sigma(\phi(x)), \quad \psi(x) = (-\overline{n} G \otimes R(x))\psi(x) = (i\gamma_1 \otimes \Sigma(x))\psi(x) = T(\phi(x))\psi(x).
\]

Using the extended map \(\phi \), we can extend \(\Sigma(x) \) to \(B_1 \). Since \(\sigma = \sigma^{-1} \), one verifies that (see also [26])

\[
\Sigma^{-1}(x) = D\sigma(\phi(x))^{-1} = D\sigma(\phi(x)) = D\sigma(\phi(x^*)) = \Sigma(x^*), \tag{3.44}
\]

so \(\Sigma(x)\Sigma(x^*) = \text{Id}(\phi(x)) \). Moreover, we can extend \(T(\phi) \) to some morphism (still denoted by \(T(\phi) \)) \(W^{1,4/3}(\Sigma B_1 \otimes \phi^{-1}TN) \to W^{1,4/3}(\Sigma B_1 \otimes (\sigma \circ \phi)^{-1}TN) \). Note that for \(\psi \in W^{1,4/3}(\Sigma B_1 \otimes \phi^{-1}TN), \) if we write \(\psi(x) = \psi^j(x) \otimes V_j(x), x \in B_1 \), then

\[
\psi(x^*) = T(\phi(x))\psi(x) = i\gamma_1\psi^j(x) \otimes \Sigma(x)V_j(x), \quad x^* \in B_1.
\]

One checks that \(T(\phi(x))T(\phi(x^*))\psi(x^*) = \psi(x^*) \) for any \(\psi \in W^{1,4/3}(\Sigma B_1 \otimes \phi^{-1}TN) \).

Remark 3.3. We note that our reflection for Dirac-harmonic maps is a natural generalization of the one for harmonic maps considered by Gulliver–Jost [13] and Scheven [26].

Using the geodesic reflection \(\sigma \), we are able to extend the metric on the bundle \(\phi^{-1}TN \to B^+_1 \) to some metric \(h \) on the bundle \(\phi^{-1}TN \to B_1 \) with the extended map \(\phi \) as follows:

\[
\langle V(x), W(x) \rangle_h := \begin{cases}
\langle V(x), W(x) \rangle, & x \in B^+_1, \\
\langle \Sigma(x)V(x), \Sigma(x)W(x) \rangle, & x \in B^-_1,
\end{cases}
\]

where \(V, W \in \Gamma(B_1, \phi^{-1}TN) \). Consequently, the induced metrics on \(\Sigma B_1^+ \otimes \phi^{-1}TN, \) \(TB^+_1 \otimes \phi^{-1}TN \) and \(T^*B^+_1 \otimes \phi^{-1}TN \) extend to metrics (with respect to \(h \)) on \(\Sigma B_1 \otimes \phi^{-1}TN, \) \(TB_1 \otimes \phi^{-1}TN \) and \(T^*B_1 \otimes \phi^{-1}TN \).

Lemma 3.2. For \(\psi, \varphi \in W^{1,4/3}(\Sigma B_1 \otimes \phi^{-1}TN), \)

\[
\langle \psi(x), \varphi(x) \rangle_h = \langle T(\phi(x))\psi(x), T(\phi(x))\varphi(x) \rangle, \quad \forall x \in B^-_1.
\]

Proof. Given \(\psi, \varphi \in W^{1,4/3}(\Sigma B_1 \otimes \phi^{-1}TN), \) we write \(\psi(x) = \psi^j(x) \otimes V_j(x) \) and \(\varphi(x) = \varphi^j(x) \otimes V_j(x) \). Then for \(x \in B^-_1 \),

\[
\langle \psi(x), \varphi(x) \rangle_h = \langle \psi^j(x), \varphi^j(x) \rangle \langle \Sigma(x)V_j(x), \Sigma(x)V_j(x) \rangle \\
= \langle i\gamma_1\psi^j(x), i\gamma_1\varphi^j(x) \rangle \langle \Sigma(x)V_j(x), \Sigma(x)V_j(x) \rangle \\
= \langle T(\phi(x))\psi(x), T(\phi(x))\varphi(x) \rangle.
\]
Note that given a vector field $V(x) \in T_{\phi(x)}N$ for $x \in B_1$, we have $\Sigma(x)V(x) = D\sigma(\phi(x))V(x) \in T_{\phi^{-1}(x)}N$. We define the covariant derivative ∇^h with respect to h as follows (see also [26]):

$$\nabla^h_{X(x)} V(x) := \begin{cases} \nabla_{\phi(x)} V(x), & x \in B_1^+, \\ \Sigma(x^*) \nabla_{\Sigma(x^*)\phi(x)} (\Sigma(x)V(x)) = \Sigma(x) \nabla_{\Sigma(x^*)\phi(x)} (\Sigma(x)V(x)), & x \in B_1^- \end{cases}$$

where $X \in \Gamma(TB_1)$, $V \in \Gamma(B_1, \phi^{-1}TN)$ and ∇ is the Levi-Civita connection on N (also denote the induced connection for $\phi^{-1}TN$ by ∇). One easily verifies that ∇^h is compatible with h:

$$d(\langle V(x), W(x) \rangle_h) = \langle \nabla^h V(x), W(x) \rangle_h + \langle V(x), \nabla^h W(x) \rangle_h, \quad x \in B_1.$$ \hfill (3.45)

Moreover, we define the tensor $R^h(\phi)$ (with symmetries similar to the Riemann curvature tensor $R(\phi)$) by

$$R^h(\phi)(V(x), W(x))U(x) := \begin{cases} R(\phi)(V(x), W(x))U(x), & x \in B_1^+, \\ \Sigma(x^*) R(\phi)(\Sigma(x)V(x), \Sigma(x)W(x))(\Sigma(x^*)U(x)), & x \in B_1^- \end{cases}$$

Recall that the Dirac operator along the map ϕ can be written as

$$D = \mathbb{J} \otimes \text{Id} + \gamma_\alpha \otimes \nabla_{\phi^*}(\gamma_\alpha).$$

Now we define the Dirac operator along the extended map ϕ with respect to the extended metric h as follows:

$$D^h := \mathbb{J} \otimes \text{Id} + \gamma_\alpha \otimes \nabla^h_{\phi^*}(\gamma_\alpha).$$

The following lemma gives a relation between D^h and D:

Lemma 3.3. For any $\xi \in W^{1,4/3}(\Sigma B_1 \otimes \phi^{-1}TN)$, denote $\xi^*(x) := T_{\phi}(\Sigma^x)\xi(x^*)$ for $x \in B_1$. Then

$$D^h \xi^*(x) = T_{\phi}(x) D_x \xi^*(x), \quad \forall x \in B_1.$$ \hfill (3.46)

Proof. Write $\xi = \xi^i \otimes V_i$. Then, for all $x \in B_1$,

$$T_{\phi}(x) D_x \xi^*(x) = T_{\phi}(x) D_x \left(i\gamma_1 \xi^i(x^*) \otimes \Sigma(x^*) V_i(x^*) \right)$$

$$= T_{\phi}(x) \left\{ i\gamma_1 \xi^i(x^*) \otimes \Sigma(x^*) V_i(x^*) + \gamma_\alpha (i\gamma_1) \xi^i(x^*) \otimes \nabla_{\phi^*}(\partial_\alpha)(\Sigma(x^*) V_i(x^*)) \right\}$$

$$= (i\gamma_1) \xi^i(x^*) \otimes \Sigma(x) \Sigma(x^*) V_i(x^*)$$

$$+ (i\gamma_1) \gamma_\alpha (i\gamma_1) \xi^i(x^*) \otimes \Sigma(x) \nabla_{\phi^*}(\partial_\alpha)(\Sigma(x^*) V_i(x^*))$$

$$= \mathbb{J}^x \xi^i(x^*) \otimes V_i(x^*) + \gamma_\alpha \xi^i(x^*) \otimes \Sigma(x) \nabla_{\Sigma(x^*)\phi^*}(\partial_\alpha)(\Sigma(x^*) V_i(x^*)).$$ \hfill (3.46)
Here, we have used the fact that
\[(i\gamma^1)\partial_x (i\gamma^1 \xi^i (x^*)) = \partial_x \xi^i (x^*)\]
and the following identities (which can be verified using \(\phi(x) = \sigma (\phi(x^*))\)):
\[
\phi_\flat (\partial x_1) = \Sigma (x^*) \phi_\flat (\partial x_1^*), \quad \phi_\flat (\partial x_2) = -\Sigma (x^*) \phi_\flat (\partial x_2^*).
\]
On the other hand, by the definition of \(\mathcal{D}h\), we see that for all \(x^* \in B_1\),
\[
\mathcal{D}^h_{x^*} \xi (x^*) = \partial_{x^*} \xi^i (x^*) \otimes V_i (x^*) = \gamma^a \xi^i (x^*) \otimes \Sigma (x^*) \nabla_{\Sigma (x^*) \phi_\flat (\partial x_2^*)} (\Sigma (x^*) V_i (x^*))\] (3.47)
Combining (3.46) and (3.47) proves the lemma.

\[\square\]

Theorem 3.1. Let \((\phi, \psi) \in \mathfrak{X}^{1,4/3}_{1,4/3} (B_1^+, N; S)\) be a weakly Dirac-harmonic map with free boundary on \(S\). Extend the fields \(\phi, \psi\) to the whole disk \(B_1\) as before. Then
\[
\int_{B_1} d\phi \cdot h \nabla^h V + \int_{B_1} \left\langle \psi^j, \gamma_a \cdot \psi^j \right\rangle (V_i, R^h (\phi) (V, \phi_\flat (\partial x_2^*)) V_j)^h = 0,
\]
\[
\int_{B_1} \left\langle \psi, \mathcal{D}^h \xi \right\rangle^h = 0,
\]
for all compactly supported \(V \in H^1 \cap L^\infty (B_1, \phi^{-1} TN)\) and all compactly supported \(\xi \in W^{1,4/3} \cap L^\infty (\Sigma B_1 \otimes \phi^{-1} TN)\).

Proof. First, given a compactly supported vector field \(V \in H^1 \cap L^\infty (B_1, \phi^{-1} TN)\), we proceed as in [26] to decompose the vector field \(V\) into the equivariant and the antiequivariant part with respect to the diffeomorphism \(\sigma\), namely, \(V = V_\sigma + V_a\), where for \(x \in B_1\),
\[
V_\sigma (x) := \frac{1}{2} [V(x) + \Sigma (x^*) V (x^*)], \quad V_a (x) := \frac{1}{2} [V(x) - \Sigma (x^*) V (x^*)].
\]
Since \(\Sigma (x) \Sigma (x^*) = \text{Id} (\phi(x))\), one checks that
\[
V_\sigma (x^*) = \Sigma (x) V (x), \quad V_a (x^*) = -\Sigma (x) V_a (x).
\]
By (3.44), we have, for \(x_0 \in I\),
\[
V_{\sigma} (x_0) = \frac{1}{2} [V(x_0) + \Sigma (x_0) V (x_0)] \in T_{\phi(x_0)} S.
\]
Hence, \(V_\sigma |_{B_1^+}\) is an admissible variation vector field for \(\phi\) with respect to the free boundary condition \(\phi(I) \subset S\). It follows from Proposition 3.7 that
\[
\int_{B_1^+} d\phi \cdot \nabla V_\sigma + \int_{B_1^+} \left\langle \psi^j, \gamma_a \cdot \psi^j \right\rangle (V_i, R (\phi) (V_e, \phi_\flat (\partial x_2^*)) V_j) = 0. \quad (3.48)
\]
Applying the equivariance of V_e and the symmetry properties of ∇^h (see its definition), one verifies
\[
\int_{B_1^-} d\phi \cdot h \nabla^h V_e = \int_{B_1^-} d\phi \cdot \nabla V_e. \tag{3.49}
\]
In view of the antiequivariance of V_a, we analogously obtain
\[
\int_{B_1^-} d\phi \cdot h \nabla^h V_a = -\int_{B_1^-} d\phi \cdot \nabla V_a. \tag{3.50}
\]
Recall that $\psi(x^*) = (i\gamma_a)\psi^j(x) \otimes \Sigma(x)V_j(x)$. We claim that the following two identities hold:
\[
\int_{x^* \in B_1^-} ((i\gamma_1)\psi^j(x), \gamma_a \cdot (i\gamma_1)\psi^j(x)) \langle \Sigma(x)V_j(x), R^h(\phi)(V_e, \phi_a(\partial x_a^x)) \Sigma(x)V_j(x) \rangle_h = \int_{x \in B_1^-} \langle (i\gamma_1)\psi^j(x), \gamma_a \cdot (i\gamma_1)\psi^j(x) \rangle \langle V_j(x), R(\phi)(V_e(x), \phi_a(\partial x_a))V_j(x) \rangle_h, \tag{3.51}
\]
\[
 \int_{x^* \in B_1^-} ((i\gamma_1)\psi^j(x), \gamma_a \cdot (i\gamma_1)\psi^j(x)) \langle \Sigma(x)V_j(x), R(\phi)(V_a, \phi_a(\partial x_a^x)) \Sigma(x)V_j(x) \rangle_h = -\int_{x \in B_1^-} \langle (i\gamma_1)\psi^j(x), \gamma_a \cdot (i\gamma_1)\psi^j(x) \rangle \langle V_j(x), R(\phi)(V_a, \phi_a(\partial x_a))V_j(x) \rangle. \tag{3.52}
\]
If the claim is true, then combining (3.48)–(3.52) gives
\[
\int_{B_1^-} d\phi \cdot h \nabla^h V + \int_{B_1^-} \langle \psi^j, \gamma_a \cdot \psi^j \rangle \langle V_j, R^h(\phi)(V, \phi_a(\partial x_a))V_j \rangle_h = 0.
\]
Now it is sufficient to prove the claim. Let $x = (x_1, x_2) \in B_1^+$; then $x^* = (x_1, -x_2) \in B_1^-$. Since $\phi(x^*) = \sigma(\phi(x))$, we have
\[
\phi_a(\partial x_1^x) = \Sigma(x)\phi_a(\partial x_1), \quad \phi_a(\partial x_2^x) = -\Sigma(x)\phi_a(\partial x_2).
\]
Hence,
\[
((i\gamma_1)\psi^j(x), \gamma_a \cdot (i\gamma_1)\psi^j(x)) \langle \Sigma(x)V_j(x), R^h(\phi)(V_e(x^*), \phi_a(\partial x_a^x)) \Sigma(x)V_j(x) \rangle_h = ((i\gamma_1)\psi^j(x), \gamma_1 \cdot (i\gamma_1)\psi^j(x))
\]
\[
\times \langle \Sigma(x)V_j(x), R^h(\phi)(\Sigma(x)V_e(x), \Sigma(x)\phi_a(\partial x_1)) \Sigma(x)V_j(x) \rangle_h + \langle (i\gamma_1)\psi^j(x), \gamma_2 \cdot (i\gamma_1)\psi^j(x) \rangle \times \langle \Sigma(x)V_j(x), R^h(\phi)(\Sigma(x)V_e(x), -\Sigma(x)\phi_a(\partial x_2)) \Sigma(x)V_j(x) \rangle_h
\]
\[
= \langle \psi^j(x), \gamma_a \cdot \psi^j(x) \rangle \langle \Sigma(x)V_j(x), R^h(\phi)(\Sigma(x)V_e(x), \Sigma(x)\phi_a(\partial x_a)) \Sigma(x)V_j(x) \rangle_h
\]
\[
= \langle \psi^j(x), \gamma_a \cdot \psi^j(x) \rangle \langle V_j(x), R(\phi)(V_e(x), \phi_a(\partial x_a))V_j(x) \rangle_h
\]
\[
= \langle \psi^j(x), \gamma_a \cdot \psi^j(x) \rangle \langle V_j(x), R(\phi)(V_e(x), \phi_a(\partial x_a))V_j(x) \rangle.
\]
Integrating the above identity for \(x^* \in B_1^- \) and changing variables \(x^* \mapsto x \), we have (3.51). Similarly, using the fact that \(\nabla_v(x^*) = -\Sigma(x)\nabla_v(x) \), one checks (3.52).

Next, given a compactly supported \(\xi \in W^{1,4/3} \cap L^\infty(\Sigma B_1 \ominus \phi^{-1}TN) \), we have (recall that \(\vec{n} = -\gamma_2 \))

\[
\int_{B_1^+} \langle \psi, \nabla_v^h \xi \rangle_h = \int_{B_1^+} \langle \nabla \psi, \xi \rangle_h - \int_I \langle (-\gamma_2) \cdot \psi, \xi \rangle_h.
\]

By Lemmas 3.2 and 3.3,

\[
\int_{x^* \in B_1^-} \langle \psi(x^*), \nabla_{v_{x^*}} \xi(x^*) \rangle_h = \int_{x^* \in B_1^-} \langle T_{\phi}(x^*) \psi(x^*), T_{\phi}(x^*) \nabla_{v_{x^*}} \xi(x^*) \rangle
\]

\[
= \int_{x^* \in B_1^-} \langle \psi(x), \nabla_{x^*} \xi(x^*) \rangle
\]

\[
= \int_{x^* \in B_1^-} \langle \nabla \psi(x), \xi^*(x) \rangle - \int_I \langle (-\gamma_2) \cdot \psi(x), \xi^*(x) \rangle.
\]

Hence,

\[
\int_{B_1} \langle \psi, \nabla_v^h \xi \rangle_h = \int_{B_1^+} \langle \nabla \psi, \xi + \xi^* \rangle - \int_I \langle (-\gamma_2) \cdot \psi, \xi + \xi^* \rangle. \tag{3.53}
\]

For \(x \in I \), one verifies that

\[
B_\phi(\xi + \xi^*)(x) = \frac{1}{2}(I \otimes \text{Id} - i\gamma_1 \otimes \Sigma)(\xi + \xi^*) = \frac{1}{2}(I \otimes \text{Id} - i\gamma_1 \otimes \Sigma)(\xi + i\gamma_1 \otimes \Sigma \xi)
\]

\[
= \frac{1}{2}[(I \otimes \text{Id})\xi - ((i\gamma_1)^2 \otimes \Sigma^2)\xi] = 0.
\]

Therefore, \(\xi + \xi^* \) satisfies the following chirality boundary condition on \(I \):

\[
B_\phi(\xi + \xi^*)|_I = 0.
\]

Recall that, by assumption, \(\psi \) satisfies the same chirality boundary condition. Hence, by Proposition 3.5,

\[
\int_I \langle \vec{n} \cdot \psi, \xi + \xi^* \rangle = \int_I \langle (-\gamma_2) \cdot \psi, \xi + \xi^* \rangle = 0.
\]

Noting that \(\nabla \psi = 0 \) in \(B_1^+ \), we conclude from (3.53) that \(\int_{B_1} \langle \psi, \nabla_v^h \xi \rangle_h = 0 \). \(\square \)

Continuity of weakly Dirac-harmonic maps at a free boundary

Starting with the global orthonormal frame \(V_i(x) = \nabla_{\phi(x)}(\phi(x)), i = 1, \ldots, d, \) on \(\phi^{-1}TN \), we can apply the Gram–Schmidt orthonormalization procedure to construct an \(H^1 \)-tangent frame \(e_i(x) \in T_{\phi(x)}N \) that is orthonormal with respect to \(h \) (see [26]). This construction gives the estimate

\[
\sup_{1 \leq i \leq d} |\nabla e_i(x)| \leq C|d\phi(x)|, \quad x \in B_1, \tag{3.54}
\]

where \(C = C(S, N) \) is a constant.
Proposition 3.8. We have
\[\mathcal{R}_{lm} := \sum_{i,j,a} \langle \psi^I(x), \psi^{J}(x) \rangle (e_i, R^k(\phi)(e_l, e_m)e_j) dx_a. \]

Then, by the symmetry properties of \(R^k(\phi) \), one can verify (similarly to [28]) that \(\mathcal{R}_{lm} = -\mathcal{R}_{ml} \) and \(\mathcal{R}_{lm} = \mathcal{R}_{im} \), for \(1 \leq l, m \leq d \). Moreover, we get

Proposition 3.9. We have \(\mathcal{R} = (\mathcal{R}_{lm}) \in L^2(B_1, so(d) \otimes \bigwedge^1 \mathbb{R}^2) \).

Using \(\mathcal{R}_{lm} \), we can write
\[
\langle \psi^I(x), \psi^{J}(x) \rangle (e_i, R^k(\phi)(e_l, \phi_\alpha(\partial x_a))e_j) h = \langle \psi^I(x), \psi^{J}(x) \rangle (e_i, R^k(\phi)(e_l, \phi_\alpha(\partial x_a) \cdot h e_m)e_j) h
\]
\[
= (\phi_\alpha(\partial x_a) \cdot h e_m)(\psi^I(x), \psi^{J}(x)) (e_i, R^k(\phi)(e_l, e_m)e_j) h = R_{lm} \cdot (d\phi \cdot h e_m).
\]

Note that here \(d\phi = \phi_\alpha(\partial x_a)dx_a \) and \(d\phi \cdot h e_m = (\phi_\alpha(\partial x_a) \cdot h e_m)dx_a \).

Given any \(\varphi \in C_0^\infty(B_1) \), fix \(1 \leq i \leq d \) and take \(V = \varphi e_i \) in Theorem 3.1 to get
\[
0 = \int_{B_1} d\phi \cdot h \nabla^h(\varphi e_i) + \int_{B_1} \langle \psi^I(x), \psi^{J}(x) \rangle (e_i, R^k(\phi)(\varphi e_i, \phi_\alpha(\partial x_a))e_m) h
\]
\[
= \int_{B_1} (d\phi \cdot h e_i) d\varphi + \int_{B_1} (\nabla^h e_i \cdot h e_j)(d\phi \cdot h e_j) d\varphi + \int_{B_1} \mathcal{R}_{ij} \cdot (d\phi \cdot h e_j) d\varphi.
\]

Since \(\varphi \in C_0^\infty(B_1) \) is arbitrary, we have
\[
d^* (d\phi \cdot h e_i) = ((\nabla^h e_i \cdot h e_j) + \mathcal{R}_{ij})(d\phi \cdot h e_j). \tag{3.55}
\]

Noting that \(e_i(x) \in T_{\varphi(x)/N} \) is an \(H^1 \)-tangent frame that is orthonormal with respect to \(h \) and \(\nabla^h \) is compatible with \(h \), one verifies that \((\nabla^h e_i \cdot h e_j) \) is antisymmetric with respect to the indices \(i \) and \(j \). Moreover, we have

Proposition 3.9. We have \((\nabla^h e_i \cdot h e_j)_{i,j} \in L^2(B_1, so(d) \otimes \bigwedge^1 \mathbb{R}^2) \).

To proceed, let us recall the Coulomb gauge construction theorem due to Rivi ère [24] and Rivi ère–Struwe [25] (we only need to consider the case that the domain is two-dimensional and hence we use the norm \(L^2 \) instead of \(M^{2,2} \)).

Lemma 3.4. There exist \(\epsilon_1 > 0 \) and \(C > 0 \) such that if \(\Omega \in L^2(B_1, so(d) \otimes \bigwedge^1 \mathbb{R}^2) \) satisfies
\[
\| \Omega \|_{L^2(B_1)} \leq \epsilon_1,
\]
then there exist \(P \in H^1(B_1, SO(d)) \) and \(\xi \in H^1(B_1, so(d) \otimes \bigwedge^2 \mathbb{R}^2) \) such that
\[
P^{-1} dP + P^{-1} \Omega P = d^* \xi \quad \text{in } B_1,
\]
\[
d\xi = 0 \quad \text{in } B_1,
\]
\[
\xi = 0 \quad \text{on } \partial B_1.
\]

Moreover, \(\nabla P \) and \(\nabla \xi \) belong to \(L^2(B_1) \) with
\[
\| \nabla P \|_{L^2(B_1)} \leq C \| \Omega \|_{L^2(B_1)} \leq C \epsilon_1.
\]
The boundary value problem for Dirac-harmonic maps

The above lemma can be applied to study the regularity of weakly Dirac-harmonic maps with free boundary when the two fields are extended to the whole disk.

Lemma 3.5. There exists $\epsilon_2 > 0$ such that if $(\phi, \psi) \in X^{1,2}_{1,4}(B^+_1, N; S)$ is a weakly Dirac-harmonic map with free boundary on S satisfying

$$\|d\phi\|^2_{L^2(B^+_1)} + \|\psi\|^4_{L^4(B^+_1)} \leq \epsilon_2^2,$$

then $\phi \in C^{0,\alpha}(B^{1/2}_1, N)$ for any $\alpha \in (0, 1)$. Moreover,

$$[\phi]_{C^{0,\alpha}(B^{1/2}_1)} \leq C \|d\phi\|_{L^2(B^+_1)}.$$

Remark 3.4. The scheme of proof will be similar to the ones of [25, 28], but we need to present the details here in order to set up our framework for the extended metric h.

Proof. First we extend the fields ϕ, ψ to the whole disk B_1 as before. Then, combining Propositions 3.8 and 3.9 gives

$$P = (P_{ij}) = ((\nabla^h e_i \cdot e_j)^0) \in L^2(B_1), \text{ so}(d \otimes \wedge_1 \mathbb{R}^2).$$

Moreover, (3.54) gives

$$\|\Omega\|_{L^2(B_1)} \leq C \|d\phi\|_{L^2(B^+_1)} + \|\psi\|_{L^4(B^+_1)} \leq C \epsilon_2 \leq \epsilon_1,$$

where $\epsilon_1 > 0$ is as in Lemma 3.3 and $\epsilon_2 > 0$ is chosen to be sufficiently small. Hence, Lemma 3.4 yields $P \in H^1(B_1, \text{SO}(d))$ and $\xi \in H^1(B_1, \text{so}(d) \otimes \wedge_1 \mathbb{R}^2)$ satisfying

$$P^{-1} dP + P^{-1} \Omega P = d^* \xi \quad \text{in } B_1,$$

$$d\xi = 0 \quad \text{in } B_1,$$

$$\xi = 0 \quad \text{on } \partial B_1,$$

and

$$\|\nabla P\|_{L^2(B_1)} + \|\nabla \xi\|_{L^2(B_1)} \leq C \|\Omega\|_{L^2(B_1)} \leq C \epsilon_2.$$

We write $P = (P_{ij}), P^{-1} = (P_{ji}),$ and $\xi = (\xi_{ij}).$ Since $P \in H^1(B_1, \text{SO}(d))$ and hence $P^{-1} P = P^T P = I_d$, we have $dP^{-1} = -P^{-1} dP P^{-1}.$ Using (3.55) and (3.56), we calculate

$$d^* \left[P^{-1} \begin{pmatrix} d\phi \cdot h e_1 \\ \vdots \\ d\phi \cdot h e_d \end{pmatrix} \right] = (dP^{-1} + P^{-1} \Omega P) \cdot P^{-1} \begin{pmatrix} d\phi \cdot h e_1 \\ \vdots \\ d\phi \cdot h e_d \end{pmatrix} = -d^* \xi \cdot P^{-1} \begin{pmatrix} d\phi \cdot h e_1 \\ \vdots \\ d\phi \cdot h e_d \end{pmatrix}.$$

Equivalently, we have

$$-d^* (P_{ji} (d\phi \cdot h e_j)) = d^* \xi_{il} \cdot (P_{ml} (d\phi \cdot h e_m)), \quad i = 1, \ldots, d, \quad \text{in } B_1. \quad (3.57)$$
For any $0 < R \leq 1/4$, let $B_R \subset B_{1/2}$ be an arbitrary disk of radius R and $\tau \in C_0^\infty (B_{1/2})$ satisfying $0 \leq \tau \leq 1$, $\tau \equiv 1$ in B_R, $\tau \equiv 0$ outside B_{2R}, and $|\nabla \tau| \leq 4/R$. Denote $\phi := \tau (\phi - \overline{\phi}_R)$, where $\overline{\phi}_R := f_{BR} \phi$.

For each $1 \leq i \leq d$, the 1-form $\sum_{j=1}^d P_{ji} (d\phi \cdot \epsilon_j) \in L^2 (\mathbb{R}^2, \bigwedge^1 \mathbb{R}^2)$, extended by 0 outside of B_{2R}, admits a Hodge–de Rham decomposition of the form

$$
\sum_{j=1}^d P_{ji} (d\phi \cdot \epsilon_j) = df_i + d^* g_i + h_i ,
$$

(3.58)

where $f_i \in H^1_0 (B_R)$, $g_i \in H^1_0 (B_R \setminus \mathbb{R}^2)$ is a closed 2-form, i.e., $dg_i = 0$ in B_R, and $h_i \in L^2 (B_R \setminus \mathbb{R}^2)$ is a harmonic 1-form (we refer to Iwaniec–Martin [18] for more details on the Hodge decomposition of forms in Sobolev spaces).

Taking first d^* and then d of both sides of (3.58) and applying (3.57) gives in B_R, for $1 \leq i \leq d$.

$$
- \Delta f_i = d^* \zeta_i (P_{ji} (d\phi \cdot \epsilon_j)), \quad \Delta g_i = dP_{ji} \wedge (d\phi \cdot \epsilon_j) + P_{ji} d\phi \wedge \epsilon_i d\epsilon_j.
$$

For $1 < p < 2$, let $q = p/(p - 1)$ be the conjugate exponent. By the duality characterization of $\|\nabla f \|_{L^p(B_R)}$ for $f \in W^{1,p}_0 (B_R)$, we get

$$
\|\nabla f \|_{L^p(B_R)} \leq C \sup \left\{ \int_{B_R} \nabla f \cdot \nabla \varphi \, dx \mid \varphi \in W^{1,q}_0 (B_R), \|\nabla \varphi \|_{L^q(B_R)} \leq 1 \right\}.
$$

(3.59)

Since $q > 2$, by the Sobolev embedding theorem, we have $W^{1,q}_0 (B_R) \hookrightarrow C^{0,1-2/q} (B_R)$, and for $\varphi \in W^{1,q}_0 (B_R)$ with $\|\nabla \varphi \|_{L^q(B_R)} \leq 1$ the following estimates hold:

$$
\|\varphi\|_{L^\infty(B_R)} \leq C R^{1-2/q}, \quad \|\varphi\|_{L^2(B_R)} \leq C R^{1-2/q}.
$$

(3.60)

For any such φ, we can estimate f_i (similarly to Rivièr–Struwe [25] and Wang–Xu [28]) as follows:

$$
\int_{B_R} df_i \cdot d\varphi = - \int_{B_R} \Delta f_i \cdot \varphi = \int_{B_R} d^* \zeta_i \cdot (P_{ji} (d\phi \cdot \epsilon_j)) \cdot \varphi
$$

$$
= \int_{B_R} d^* \zeta_i \cdot (P_{ji} (d\phi \cdot \epsilon_j)) \cdot \varphi = - \int_{B_R} d^* \zeta_i \cdot d (P_{ji} \epsilon_j \varphi) \tilde{\varphi}
$$

$$
\leq C \|d^* \zeta_i \cdot d (P_{ji} \epsilon_j \varphi)\|_{L^1 (\mathbb{R}^2)} \|\tilde{\varphi}\|_{\text{BMO}(B_R)}
$$

$$
\leq C \|\nabla \zeta\|_{L^2(B_R)} \|\nabla P\|_{L^2(B_R)} \sum_{j} \|\nabla \epsilon_j\|_{L^2(B_R)} \|\varphi\|_{L^\infty(B_R)} \|\tilde{\varphi}\|_{\text{BMO}(B_R)}
$$

$$
+ C \|\nabla \zeta\|_{L^2(B_R)} \|\nabla \varphi\|_{L^2(B_R)} \|\tilde{\varphi}\|_{\text{BMO}(B_R)}
$$

$$
\leq C \|\nabla \zeta\|_{L^2(B_R)} (\|\nabla P\|_{L^2(B_R)} + \|d\phi\|_{L^2(B_R)}) \|\nabla \varphi\|_{L^\infty(B_R)} \|\tilde{\varphi}\|_{\text{BMO}(B_R)}
$$

$$
+ C \|\nabla \zeta\|_{L^2(B_R)} \|\nabla \tilde{\varphi}\|_{L^2(B_R)} \|d\phi\|_{\text{BMO}(B_R)}
$$

$$
\leq C \epsilon_1 \|\nabla \varphi\|_{L^\infty(B_R)} + \|\nabla \tilde{\varphi}\|_{L^2(B_R)} \|\tilde{\varphi}\|_{\text{BMO}(B_R)}
$$

$$
\leq C \epsilon_2 R^{2/p-1} \|\tilde{\varphi}\|_{\text{BMO}(B_R)},
$$
where we have used the notations \(d\phi \cdot h \cdot e_j = d\phi \cdot (h_j e_i) \), \(\hat{e}_j := h_j e_i \), \(\hat{e}_j := h_j e_i \) (3.54) and the estimates
\[
\sum_j |\hat{e}_j| \leq C \sum_j |e_j|, \quad \sum_j \|\nabla \hat{e}_j\|_{L^2(B_R)} \leq C \|d\phi\|_{L^2(B_R)}.
\]

By (3.59), we get
\[
\left(R^{p-2} \int_{B_R} |\nabla f_i|^p \right)^{1/p} \leq C \epsilon_2 \|\phi\|_{\text{BMO}(B_R)}.
\]

(3.61)

Similarly, for any \(\varphi \in W^{1,d}_0(B_R) \) satisfying (3.60), we can estimate \(g_i \) as follows
\[
\int_{B_R} d g_i \cdot d \varphi = - \int_{B_R} \Delta g_i \cdot \varphi = - \int_{B_R} [d P_{ji} \wedge (d\phi \cdot h \cdot e_j) + P_{ji} d\phi \wedge h \cdot de_j] \varphi
\]
\[
= - \int_{B_R} [d P_{ji} \wedge (d\phi \cdot \hat{e}_j) + P_{ji} d\phi \wedge (h_j de_i)] \varphi
\]
\[
= \int_{B_R} [d P_{ji} \wedge d(\varphi \hat{e}_j) + d(P_{ji} h_j \varphi) \wedge de_i] \tilde{\varphi}
\]
\[
\leq C \|d P_{ji} \wedge d(\varphi \hat{e}_j)\|_{L^2(B_R)} + \|d(P_{ji} h_j \varphi) \wedge de_i\|_{L^2(B_R)} \|\phi\|_{\text{BMO}(B_R)}
\]
\[
\leq C \|\nabla P\|_{L^2(B_R)} \left(\|\nabla \varphi\|_{L^2(B_R)} + \sum_j \|\nabla \hat{e}_j\|_{L^2(B_R)} \|\varphi\|_{L^\infty(B_R)} \right) \|\phi\|_{\text{BMO}(B_R)}
\]
\[
+ C \left(\sum_j \|\nabla e_i\|_{L^2(B_R)} \right) \times \left(\|\nabla \varphi\|_{L^2(B_R)} + \|\nabla P\|_{L^2(B_R)} + \|\nabla h\|_{L^2(B_R)} + \|\varphi\|_{L^\infty(B_R)} \right) \|\phi\|_{\text{BMO}(B_R)}
\]
\[
\leq C \|\nabla P\|_{L^2(B_R)} \left(\|\nabla \varphi\|_{L^2(B_R)} + \|\nabla h\|_{L^2(B_R)} \|\varphi\|_{L^\infty(B_R)} + \|\varphi\|_{L^\infty(B_R)} \right) \|\phi\|_{\text{BMO}(B_R)}
\]
\[
\leq C \epsilon_2 R^{2/p-1} \|\phi\|_{\text{BMO}(B_R)}.
\]

Again, using (3.59), we have
\[
\left(R^{p-2} \int_{B_R} |g_i|^p \right)^{1/p} \leq C \epsilon_2 \|\phi\|_{\text{BMO}(B_R)}.
\]

(3.62)

To estimate the harmonic 1-form \(h_i \), we apply the classical Campanato estimates for harmonic functions (see Giaquinta [11]) (3.61) and (3.62) to get, for any \(0 < r < R \),
\[
r^{p-2} \int_{B_r} |h_i|^p \leq C \frac{r}{R} \left(R^{p-2} \int_{B_r} |h_i|^p \right)
\]
\[
\leq C \left(\frac{r}{R} \right)^p \left(R^{p-2} \int_{B_r} |P_{ji}(d\phi \cdot h \cdot e_j) - df_i - d^* g_i|^p \right)
\]
\[
\leq C \left(\frac{r}{R} \right)^p \left(R^{p-2} \int_{B_r} (|d\phi|^p + |\nabla f_i|^p + |\nabla g_i|^p) \right)
\]
\[
\leq C \left(\frac{r}{R} \right)^p \left(R^{p-2} \int_{B_r} |d\phi|^p + \epsilon_2^p \|\phi\|_{\text{BMO}(B_R)}^p \right).
\]
To proceed, we note that by the definition of the extended metric h, we have (we may need to take $\delta > 0$ small enough so that the tubular neighborhood U_δ is sufficiently close to S)

$$|d\phi| \leq C(N, S) \sum_i |d\phi \cdot \eta_i|.$$

Then using $d\tilde{\phi} \cdot \eta_j = P_{ij}(df + d^* g_i + h_i)$ and $P \in H^1(B_1, SO(d))$, we can estimate

$$r^{p-2} \int_{B_r} |d\phi|^p \leq Cr^{p-2} \int_{B_R} (|\nabla f_i|^p + |\nabla g_i|^p + |h_i|^p) \leq C r^{p-2} \int_{B_r} (|\nabla f_i|^p + |\nabla g_i|^p + |h_i|^p) \leq C \left(\frac{r}{R} \right)^p \left(R^{p-2} \int_{B_R} |d\phi|^p + \epsilon_2^p [\phi]_{BMO(B_R)}^p \right).$$

An iteration argument (see [25, 28] for more details), combined with Morrey’s decay lemma (see [11]), implies that $\phi \in C^{\alpha, \alpha}(B_1)$ for any $\alpha \in (0, 1)$, and $[\phi]_{C^{0, \alpha}(B_1)} \leq C\|d\phi\|_{L^2(B_1)}$. Since ϕ is extended to B_1 by reflection, it follows that $[\phi]_{C^{0, \alpha}(B_1)} \leq C\|d\phi\|_{L^2(B_1)}$.

Theorem 3.2. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian manifold, and S be a closed submanifold of N. Let (ϕ, ψ) be a weakly Dirac-harmonic map from M to N with free boundary on S. Then $\phi \in C^{0, \alpha}(M, N)$ for any $\alpha \in (0, 1)$.

Proof. Apply Lemma 3.5 and rescale the fields ϕ, ψ if necessary. \qed

Higher regularity of continuous weakly Dirac-harmonic maps at a free boundary

Let (ϕ, ψ) be a weakly Dirac-harmonic map from M to N with free boundary on $S \subset N$ and suppose that $\phi \in C^{0, \alpha}(M, N)$ for any $\alpha \in (0, 1)$. For simplicity, we assume that $M = B_1^+$ and consider the higher regularity of ϕ at the boundary point $0 \in I$. As before, we take the adapted coordinates $\{y^i\}_{i=1, \ldots, d}$ in some neighborhood $U \subset U_\delta$ of the point $\phi(0) \in S$. By conformal invariance and continuity of ϕ, we can assume that $\phi(B_1^+) \subset U \subset U_\delta$. Denote

$$\eta_i := \begin{cases} 1, & i = 1, \ldots, p, \\ -1, & i = p+1, \ldots, d. \end{cases}$$

Then the extended fields ϕ, ψ can be written as follows for $k = 1, \ldots, d$:

$$\phi^k(x) = \begin{cases} \phi^k(x), & x \in B_1^+, \\ \eta_k \phi^k(x^*), & x \in B_1^- \end{cases}.$$
It is easy to verify that

\[\tilde{\eta}_k \psi^k(\phi(x^*)) = \eta_k \psi^k(\phi(x^*)), \quad x \in B^+_1, \]

and

\[\psi^k_+(x) = \begin{cases} \psi^k_+(x), & x \in B^+_1, \\ \eta_k \psi^k_+(x^*), & x \in B^-_1, \end{cases} \quad \psi^k_-(x) = \begin{cases} \psi^k_-(x), & x \in B^+_1, \\ \eta_k \psi^k_-(x^*), & x \in B^-_1. \end{cases} \]

One can verify that

\[\partial y^k(\phi(x^*)) = \eta_k D\sigma(\phi(x)) \partial y^k(\phi(x)) \]

\[= \eta_k \Sigma(x) \partial y^k(\phi(x)), \quad x \in B_1, \quad k = 1, \ldots, d. \]

For convenience, we shall henceforth also denote the extended metric \(\tilde{g} \) by \(\tilde{g} \).

Now we define some geometric data associated to the extended metric \(\tilde{g} \), for \(x \in B_1 \):

\[\tilde{g}_{ij}(\phi(x)) := (\partial y^i(\phi(x)), \partial y^j(\phi(x))) \tilde{g}, \]

\[\tilde{\Gamma}^{ij}_{kl}(\phi(x)) := \frac{\partial g^{ij}(\phi(x))(\nabla \phi(x)) \partial y^l(\phi(x))}{\tilde{g}(\phi(x))} \tilde{g}, \quad x \in B^+_1, \]

\[\tilde{R}_{mlij}(\phi(x)) := (\partial y^i(\phi(x)), R^h(\phi) \partial y^m(\phi(x)), \partial y^j(\phi(x))) \partial y^l(\phi(x))) \tilde{g}, \]

\[\tilde{R}^m_{lij}(\phi(x)) := \tilde{g}^{mk}(\phi(x)) \tilde{R}_{mlij}(\phi(x)) \]

where \((\tilde{g}^{mk}(\phi(x)))_{mk} \) is the inverse matrix of \((\tilde{g}_{mk}(\phi(x)))_{mk} \). Then we have

Lemma 3.6.

\[\tilde{g}_{ij}(\phi(x)) = \begin{cases} g_{ij}(\phi(x)), & x \in B^+_1, \\ \eta_i \eta_j \tilde{g}_{ij}(\phi(x^*)), & x \in B^-_1, \end{cases} \]

\[\tilde{\Gamma}^{ij}_{kl}(\phi(x)) = \begin{cases} \Gamma^i_{kl}(\phi(x)), & x \in B^+_1, \\ \eta_i \eta_j \eta_k \tilde{\Gamma}^{ij}_{kl}(\phi(x^*)), & x \in B^-_1, \end{cases} \]

\[\tilde{R}_{mlij}(\phi(x)) = \begin{cases} R_{mlij}(\phi(x)), & x \in B^+_1, \\ \eta_i \eta_j \eta_l \eta_m \tilde{R}_{mlij}(\phi(x^*)), & x \in B^-_1, \end{cases} \]

\[\tilde{R}^m_{lij}(\phi(x)) = \begin{cases} R^m_{lij}(\phi(x)), & x \in B^+_1, \\ \eta_i \eta_j \eta_l \eta_m \tilde{R}^m_{lij}(\phi(x^*)), & x \in B^-_1. \end{cases} \]

Proof. By definition of \(h \) and \(R^h(\phi) \), it is sufficient to consider the case of \(x \in B^-_1 \). For such \(x \),

\[\tilde{g}_{ij}(\phi(x)) = (\partial y^i(\phi(x)), \partial y^j(\phi(x))) \tilde{g} = (\Sigma(x) \partial y^i(\phi(x)), \Sigma(x) \partial y^j(\phi(x))) \]

\[= (\eta_i \partial y^i(\phi(x^*)), \eta_j \partial y^j(\phi(x^*))) = \eta_i \eta_j \tilde{g}_{ij}(\phi(x^*)). \]

It is easy to verify that \(\tilde{g}^{ij}(\phi(x)) = \eta_i \eta_j \tilde{g}^{ij}(\phi(x^*)). \) Moreover,

\[\tilde{\Gamma}^{ij}_{kl}(\phi(x)) = \tilde{g}^{ij}(\phi(x)) \Sigma(x) \Sigma(x^*) \nabla \phi(x^*) \partial y^l(\phi(x)), \Sigma(x) \partial y^j(\phi(x)) \]

\[= \eta_i \eta_j \tilde{g}^{ij}(\phi(x^*)) \eta_i \eta_j \eta_l \eta_m \tilde{R}_{mlij}(\phi(x^*)), \partial y^l(\phi(x^*)) \]

\[= \eta_i \eta_j \eta_l \eta_m \tilde{R}^m_{lij}(\phi(x^*)), \]
It follows that \(\{ \text{the normal index} \} \) vanish on \(S \); show that the terms \(S \) are arbitrarily chosen.

With the assumptions and notations as before, if in addition we assume
\[\ominus \otimes \]
are arbitrarily chosen.

With the assumptions and notations as before, the extended fields \(\eta \) satisfy, in \(B \),
\[\ominus \otimes \]
Proof. Noting that \(\phi(B_1^+) \subset U \), the proposition follows by applying Lemma 3.6 and
Theorem 3.1 with \(V_i(x) = \partial y^i(\phi(x)), V(x) = g^{mij}(\phi(x))\eta_j(x) \otimes \partial y^m(\phi(x)), \xi = g^{mij}(\phi(x))\xi_k(x) \otimes \partial y^m(\phi(x)), \) where \(\eta_j \in H^1_{0} \cap L^\infty(B_1) \) and \(\xi_k \in W^{1,4/3} \cap L^\infty(\Sigma B_1) \) are arbitrarily chosen. \(\square \)

Proposition 3.11. With the assumptions and notations as before, if in addition we assume that \(S \) is totally geodesic, then for all \(m, i, j \in [1, \ldots, d] \) and any \(y \in (0, 1) \),
\[\ominus \otimes \]
Proof. By definition, we have \(\Gamma_{ij}^m(\phi(x)) = \eta_i \eta_j \eta_m \Gamma_{ij}^m(\phi(x^*)) \) for \(x \in B_1^+ \). Note that both \(\Gamma_{ij}^m \) and \(\phi \) are continuous, hence, to prove the continuity of \(\Gamma_{ij}^m(\phi) \), it is sufficient to show that the terms
\[\ominus \otimes \]
vanish on \(S \). Here and below, \(\top \) denotes the tangential index \([1, \ldots, p] \) and \(\bot \) denotes the normal index \([p + 1, \ldots, d] \). To verify this, firstly we note that (see [12])
\[\ominus \otimes \]
It follows that
\[\ominus \otimes \]
\[\ominus \otimes \]
\[\ominus \otimes \]
Next, we calculate
\[
\Gamma^\perp_{\mathbb{T}^\perp T} = \frac{1}{2} g^{\perp \perp}(g_{\mathbb{T} \perp \mathbb{T}} + g_{\mathbb{T} \perp \perp} - g_{\perp \perp \mathbb{T}}) = -\frac{1}{2} g^{\perp \perp} g_{\perp \perp \mathbb{T}} \quad \text{on } U,
\]
\[
\Gamma^\perp_{\mathbb{T}^\perp \mathbb{T}} = \frac{1}{2} g^{\perp \perp}(g_{\mathbb{T} \perp \mathbb{T}} + g_{\perp \perp \mathbb{T}} - g_{\mathbb{T} \perp \perp} - g_{\perp \perp \mathbb{T}}) = \frac{1}{2} g^{\perp \perp} g_{\perp \perp \mathbb{T}} \quad \text{on } U,
\]
\[
\Gamma^\perp_{\perp \perp} = \frac{1}{2} g^{\perp \perp} g_{\perp \perp \perp} = 0 \quad \text{on } U.
\]
Since S is totally geodesic, we have $\Gamma^\perp_{\mathbb{T}^\perp T} = 0$ on S. Therefore,
\[
\Gamma^\perp_{\mathbb{T}^\perp \mathbb{T}} = -\frac{1}{2} g^{\perp \perp} g_{\perp \perp \mathbb{T}} = 0 \quad \text{on } S.
\]
By (3.64), it follows that
\[
\Gamma^\perp_{\mathbb{T}^\perp \mathbb{T}} = \frac{1}{2} g^{\perp \perp} g_{\perp \perp \mathbb{T}} = 0 \quad \text{on } S.
\]
Now we have verified that all the terms in (3.63) vanish on S and hence $\widetilde{\Gamma}_m^m(\phi) \in C^0$.
Moreover, we can write
\[
\widetilde{\Gamma}_m^m(\phi(x)) = \begin{cases}
\Gamma_m^m(\phi(x)), & x \in B_1^+, \\
\Gamma_m^m(\phi(x^+)), & x \in B_1^-.
\end{cases}
\]
Note that $\phi(B_1^+) \subset U$, $\Gamma_m^m \in C^1(\overline{\mathbb{U}})$ and $\phi \in C^{0,\gamma}(B_1^+)$ for any $\gamma \in (0, 1)$. Therefore, for any $\gamma \in (0, 1)$, we have $\|\widetilde{\Gamma}_m^m(\phi)\|_{C^{0,\gamma}(B_1)} \leq 2\|\Gamma_m^m(\phi)\|_{C^{0,\gamma}(B_1^+)} < \infty$. \qed

Theorem 3.3. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian manifold, and S be a closed, totally geodesic submanifold of N. Let (ϕ, ψ) be a weakly Dirac-harmonic map from M to N with free boundary on S and suppose that $\phi \in C^{1,\alpha}(M, N)$ for any $\alpha \in (0, 1)$. Then there exists $\beta \in (0, 1)$ such that $\phi \in C^{1,\beta}(M, N)$ and $\psi \in C^{1,\beta}(\Sigma M \otimes \phi^{-1}TN)$.

Proof. Combining Lemma 3.6, Proposition 3.10, Proposition 3.11 and applying arguments similar to the proof of [7, Theorem 2.3], we get $\phi \in C^{1,\beta}(M, N)$ and $\psi \in C^{1,\beta}(\Sigma M \otimes \phi^{-1}TN)$ for some $\beta \in (0, 1)$. \qed

Remark 3.6. Following the same strategy as in the proof of [7, Theorem 2.3], take $G = (G^1, \ldots, G^d)$, where
\[
G^m(x, \phi, d\phi) := \widetilde{\Gamma}_m^m(\phi)\phi^m_\alpha \phi^\alpha_l - \frac{1}{2} \widetilde{R}_m^m(\phi)(\psi^l \cdot \psi^l).
\]
Then using the formulas Lemma 3.6, we have the following pointwise estimate (used in [7, (2.41), p. 70]):
\[
|\nabla G| \leq C(N, S)(|d\phi|^3 + |\psi| |\nabla \psi| |d\phi| + |\psi|^2 |d\phi|^2 + |\nabla^2 \phi| |d\phi| + |\nabla^2 \phi| |\psi|^2)
\]
a.e. in B_1.

4. Dirichlet boundary problem for Dirac-harmonic maps

In this section, we shall study the Dirichlet boundary problem for weakly Dirac-harmonic maps.
To proceed, we recall that the regularity up to the boundary for weak solutions satisfying (2.21) with continuous boundary trace was established by Müller–Schikorra [22]. More precisely, they proved

Theorem C. Let \(D \subset \mathbb{R}^2 \) be a simply connected domain with \(C^2 \) boundary \(\partial D \). Let \(u \in H^1(D, \mathbb{R}^K) \) and \(f \in L^s(D, \mathbb{R}^K), s > 1 \), satisfy

\[
-\Delta u = \Omega \cdot \nabla u + f, \quad u|_{\partial D} \in C^0,
\]

where \(\Omega = (\Omega^j_i)_{1 \leq i, j \leq K} \in L^2(D, so(K) \otimes \mathbb{R}^2) \). Then \(u \) is continuous up to the boundary.

In view of the extrinsic equation (2.26) in the proof of Theorem 2.1, we can apply Theorem C to obtain the following Dirichlet boundary regularity for weakly Dirac-harmonic maps:

Theorem 4.1. Let \((\phi, \psi)\) be a weakly Dirac-harmonic map from \(B_1 \) to a compact Riemannian manifold \(N \). If \(\phi \) satisfies the Dirichlet boundary value condition \(\phi|_{\partial B_1} \in C^0 \), then \(\phi \) is continuous up to the boundary.

Proof. We proceed as in the proof of Theorem 2.1. Recall that the equations for the map \(\phi \) can be written in the form

\[
-\Delta \phi^m = \Omega^m_i \cdot \nabla \phi^i
\]

with some \(\Omega = (\Omega^m_i)_{1 \leq i, m \leq K} \in L^2(B_1, so(K) \otimes \mathbb{R}^2) \). Theorem C implies that \(\phi \) is continuous up to the boundary. \(\square \)

Acknowledgments. The research leading to these results has received funding from the European Research Council under the European Union–Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 267087.

The research of QC was partially supported by NSFC (Grant No. 10871149) and RFDP (Grant No.200804860046). M. Zhu was supported in part by Institute for Mathematical Research (FIM) at ETH Zürich and The Leverhulme Trust. The authors also thank the Max Planck Institute for Mathematics in the Sciences for providing the environment in which this work could be carried out. The authors appreciate the referees’ valuable comments and help in improving the contents of this paper.

References

The boundary value problem for Dirac-harmonic maps

