Some questions on quasinilpotent groups and related classes

M. J. Iranzo, J. Medina and F. Pérez-Monasor

Abstract

In this paper we will prove that if G is a finite group, X a subnormal subgroup of $XF^*(G)$ such that $XF^*(G)$ is quasinilpotent and Y is a quasinilpotent subgroup of $N_G(X)$, then $YF^*(N_G(X))$ is quasinilpotent if and only if $YF^*(G)$ is quasinilpotent. Also we will obtain that $F^*(G)$ controls its own fusion in G if and only if $G = F^*(G)$.

The generalized Fitting subgroup $F^*(G)$ of a finite group G is the product of the Fitting subgroup and the semisimple radical of G.

This generalized Fitting subgroup satisfies $C_G(F^*(G)) \leq F^*(G)$, for every finite group G. This property is similar to the corresponding one for the Fitting subgroup of a soluble group: $C_G(F(G)) \leq F(G)$. Quasinilpotent groups are those groups which coincide with their generalized Fitting subgroup. A group G such that $F^*(G) = F(G)$ is a nilpotent-constrained group.

H. Bender stated that if G is a nilpotent-constrained group, X a subgroup of G such that $XF(G)$ is nilpotent and $Y \leq N_G(X)$, then $YF(N_G(X))$ is nilpotent if and only if $YF(G)$ is nilpotent.

A well known theorem of Frobenius states that if a p-Sylow subgroup of G controls its own fusion in G, then G has a normal p-complement.

In this paper we will prove that if G is a finite group, X a subnormal subgroup of $XF^*(G)$ such that $XF^*(G)$ is quasinilpotent and Y is a quasinilpotent subgroup of $N_G(X)$, then $YF^*(N_G(X))$ is quasinilpotent if and only if $YF^*(G)$ is quasinilpotent. Also we characterize when a nilpotent

\textit{2000 Mathematics Subject Classification:} 20D10, 20F19.

\textit{Keywords:} Nilpotent group, quasinilpotent group, injector, fusion.
injector controls its own fusion in a nilpotent-constrained group or when a quasinilpotent injector controls its own fusion in a finite group.

Notations. All groups considered in this paper are assumed to be finite. The non-explicit notations are standard, see for instance [3]. We quote nevertheless the following:

- \(N \): class of nilpotent groups,
- \(S \): class of soluble groups,
- \(N^* \): class of quasinilpotent groups,
- \(F(G) \) is the Fitting subgroup of \(G \), i.e., the largest nilpotent normal subgroup of \(G \).

If \(\mathfrak{F} \) is a class of groups, \(S_n \mathfrak{F} = \{ G; G \triangleleft X \text{ for some } X \in \mathfrak{F} \} \), \(N_0 \mathfrak{F} = \{ G; G = \langle X_1, \ldots, X_n \rangle \text{ for some } X_i \trianglelefteq \trianglelefteq G, X_i \in \mathfrak{F}, 1 \leq i \leq n \} \).

A **Fitting class** \(\mathfrak{F} \) is an \(S_n \)- and \(N_0 \)-closed class, that is, a class such that \(\mathfrak{F} = S_n \mathfrak{F} = N_0 \mathfrak{F} \).

If \(\mathfrak{F} \) is a Fitting class, a subgroup \(H \) of \(G \) is an \(\mathfrak{F} \)-injector of \(G \) whenever \(H \cap N \) is an \(\mathfrak{F} \)-maximal subgroup of \(N \), for every subnormal subgroup \(N \) of \(G \). We denote by \(\text{Inj}_{\mathfrak{F}}(G) \) the set of all \(\mathfrak{F} \)-injectors of \(G \). The quasinilpotent injectors of a group \(G \) are characterized as the maximal quasinilpotent subgroups containing the generalized Fitting subgroup of \(G \) ([3]).

A group \(G \) is said to be **quasisimple** if \(G \) is perfect and \(G/Z(G) \) is simple.

The quasisimple subnormal subgroups of a (finite) group \(G \) are called the **components** of \(G \). The **semisimple radical** \(E(G) \) of \(G \) is the join of its components.

We will need the description of some properties about the semisimple radical of a group. As we did not find any complete reference to it in the literature, for the sake of being self-contained, we include the following:

Lemma 1 Let \(G \) be a group. Then:

1. If \(F^*(G) \leq H \leq G \) it follows that \(E(H) = E(G) \).
2. If \(H \) is a subnormal subgroup of \(G \) then \(E(H) \) is the product of all components \(Q \) of \(G \) such that \([Q, H] \neq 1 \). In particular \(E(G) \leq N_G(H) \).
3. If \(H \trianglelefteq H F^*(G) \), then \(E(N_G(H)) = E(G) \).
Proof. (1) Clearly $E(G) \leq E(H)$. As $F^*(G) \leq N_G(E(H))$ then $E(H) \leq E(G)$ ([2] 4.25), thus $E(G) = E(H)$.

(2) If Q is a component of G and $H \leq G$, then either $[Q, H] = 1$ or $Q \leq [Q, H]$ ([7], X 13.18). When $H \trianglelefteq G$ the second alternative implies that $Q \leq H$. Therefore $E(H)$ is the product of all components Q of G such that $[Q, H] \neq 1$. In consequence $E(G) \leq N_G(H)$.

(3) By ([2], 4.26) $E(N_G(H)) \leq E(G)$. On the other hand, by (1) and (2) we have that $E(H F^*(G)) = E(G) \leq N_G(H)$, thus $E(G) \leq E(N_G(H))$. Therefore $E(G) = E(N_G(H))$.

In [8] we proved the following result:

Suppose that N is a nilpotent normal subgroup of G and let X be a nilpotent subgroup of G satisfying $C_G(N \cap X) \leq X$. Then $N X$ is nilpotent.

As a consequence of this result, it is easy to obtain:

If X is a subgroup of $F(G)$ and Y is a nilpotent subgroup of $N_G(X)$ containing $F(N_G(X))$, then $Y F(G)$ is nilpotent.

A generalization of this result would be:

If $X F(G)$ is a nilpotent subgroup of G and Y a subgroup of $N_G(X)$ satisfying $Y F(N_G(X))$ is nilpotent, then $Y F(G)$ is nilpotent.

In [1] H. Bender had given an affirmative answer when G is a nilpotent-constrained group. Next we will prove that this result is true without any restriction:

Proposition 2 Let $X \leq G$ with $X F(G)$ nilpotent and let $Y \leq N_G(X)$ with $Y F(N_G(X))$ nilpotent, then $Y F(G)$ is nilpotent.

Proof. Work by induction on the order of G.

If $R = F(G) N_G(X) < G$ then $X F(G) \leq R$ thus $X F(G) \leq F(R)$ and $X F(R) = F(R)$. Therefore, since $N_G(X) = N_R(X)$, by the inductive hypothesis, it follows that $Y F(R)$ is nilpotent, so $Y F(G)$ is nilpotent.

Thus we can suppose that $G = F(G) N_G(X)$, so $X F(G) \leq G$, then $X \leq F(G)$ and by the consequence of ([8], 2.2), it follows that $Y F(N_G(X)) F(G)$ is nilpotent, so $Y F(G)$ is nilpotent.
Proposition 3 Let X be a quasinilpotent subgroup of G satisfying $X \cap F^*(G) \leq F^*(G)$. If $C_{F^*(G)}(X \cap F^*(G)) \leq X$ then $X F^*(G)$ is quasinilpotent.

Proof. Since $U = X \cap F^*(G) \leq F^*(G)$ and $C_{F^*(G)}(U) \leq U$, by ([7], X 15.1) it follows that $U = E(G)(U \cap F(G))$ and $C_{F^*(G)}(U \cap F(G)) \leq U$.

Then

$$C_{F^*(G)}(F(X) \cap F(G)) = C_{F^*(G)}((X \cap F(G)) \leq U \cap F(G) = F(X) \cap F(G).$$

Next, we will prove that $F(X) F(G)$ is nilpotent. It suffices to show that $F(X) O_p(G)$ is nilpotent for every prime p in order of $F(G)$. Consider the action of $(O_p(G) \cap O_p(X)) \times O_p(F(X))$ on $O_p(G)$. Since

$$C_{O_p(G)}(O_p(G) \cap O_p(X)) \leq C_{F^*(G)}(F(G) \cap F(X)) \leq F(X),$$

we have $C_{O_p(G)}(O_p(G) \cap O_p(X)) \leq O_p(X)$ and $O_p(F(X))$ acts trivially on $C_{O_p(G)}(O_p(G) \cap O_p(X))$. The Thompson’s $P \times Q$-lemma implies that $O_p(F(X))$ also acts trivially on $O_p(G)$. Then $F(X) O_p(G)$ is nilpotent.

On the other hand, since $E(X)$ is a quasinilpotent perfect U-invariant subgroup, by ([7], X 15.2), it follows that $E(X) \leq E(G)$ so $E(X) = E(G)$, then $X F^*(G) = E(X)(F(X) F(G))$ that is quasinilpotent. ■

Remarks.

1. Notice that, as the following example shows, the condition of subnormality in the above result is necessary.

Let $G = \text{GL}(2, 5)$ and $Z = Z(G)$. By ([6], II 7.3) there exists $X \leq G$, $X \cong C_2$ satisfying $C_G(X) = X$. If $D = X \cap \text{SL}(2, 5)$ then $|D| = 6$ and if $\langle x \rangle \leq D$ such that $o(x)|4$ then by ([10], page 163) $C_{\text{SL}(2, 5)}(\langle x \rangle) = D$. Since $F^*(G) = \text{SL}(2, 5)Z$, then:

$$C_{F^*(G)}(F^*(G) \cap X) = Z C_{\text{SL}(2, 5)}(\text{SL}(2, 5)Z \cap X) = Z C_{\text{SL}(2, 5)}(\text{SL}(2, 5) \cap X) \leq Z C_{\text{SL}(2, 5)}(\langle x \rangle) = ZD \leq X.$$

As $|X \text{SL}(2, 5)| = |G|$, it follows that $G = X \text{SL}(2, 5) = X F^*(G)$, that is not quasinilpotent.

2. It is easy to prove that Proposition 3 is equivalent to the following:

Let $H \leq G$ such that $C_{F^*(G)}(H \cap F^*(G)) \leq H$ and $H \cap F^*(G) \leq F^*(G)$. If X is a quasinilpotent subgroup of G, such that $F^*(H) \leq X \leq H$, then $X F^*(G)$ is quasinilpotent.
Next we will obtain a version for quasinilpotent groups of ([12], 2.1).

Recall that if N is a normal subgroup of G and $\theta \in \text{Irr}(N)$, then $I_G(\theta) = \{g \in G|\theta^g = \theta\}$ is the stabilizer of θ in G.

Corollary 4 Let N be a quasinilpotent normal subgroup of G. Let $\theta \in \text{Irr}(N)$ and let $T = I_G(\theta)$ the stabilizer of θ in G. If $T \cap F^*(G) \trianglelefteq F^*(G)$ and X is a quasinilpotent subgroup of G satisfying $F^*(T) \leq X \leq T$ then $X F^*(G)$ is quasinilpotent.

Proof. Since $N C_G(N) \leq T$ we have

$$C_{F^*(G)}(F^*(G) \cap T) \leq C_{F^*(G)}(N \cap T) = C_{F^*(G)}(N) \leq T.$$

Now, by Remark 2, we obtain that $X F^*(G)$ is quasinilpotent.

Corollary 5 If $X \trianglelefteq F^*(G)$ and Y is a quasinilpotent subgroup satisfying $F^*(N_G(X)) \leq Y \leq N_G(X)$, then $Y F^*(G)$ is quasinilpotent.

Proof. Since $X \trianglelefteq F^*(G)$, by Lemma 1 (3), it follows that $E(G) = E(N_G(X))$, thus

$$N_G(X) \cap F^*(G) = E(G)(N_G(X) \cap F(G)) \leq E(G) F(N_G(X))$$

$$= F^*(N_G(X)) \leq Y.$$

Hence,

$$Y \cap F^*(G) = N_G(X) \cap F^*(G) \trianglelefteq F^*(G)$$

Then

$$C_{F^*(G)}(Y \cap F^*(G)) = C_{F^*(G)}(N_G(X) \cap F^*(G)) \leq C_{F^*(G)}(X) \leq N_{F^*(G)}(X)$$

$$= F^*(G) \cap N_G(X) \leq Y.$$

Therefore, by Proposition 3, it follows that $Y F^*(G)$ is quasinilpotent.

The following example shows that, in the above result, the subnormality condition is necessary:

Example. Let $\Sigma_7 = A_7\langle(6,7)\rangle$ and $A_5 \leq A_7 = E(\Sigma_7) = F^*(\Sigma_7)$ (where A_5 is considered as the group of all even permutations of the set $\{1, 2, 3, 4, 5\}$). Clearly $N_{A_5}(A_5) = A_5\langle(6,7)\rangle$ and $F^*(N_{A_5}(A_5)) = A_5\langle(6,7)\rangle$ however $F^*(N_{A_5}(A_5)) F^*(\Sigma_7)$ coincides with Σ_7, that is not quasinilpotent.
Theorem 6 Let $X \trianglelefteq X F^*(G)$ where $X F^*(G)$ is quasinilpotent and let Y be a quasinilpotent subgroup of $N_G(X)$. Then $Y F^*(N_G(X))$ is quasinilpotent if and only if $Y F^*(G)$ is quasinilpotent.

Proof. Suppose that $Y F^*(N_G(X))$ is quasinilpotent. We argue by induction on $|G|$.

If $R = N_G(X) F^*(G) < G$, then $X F^*(G) \trianglelefteq R$ and $X F^*(G) \leq F^*(R)$, thus $X \trianglelefteq X F^*(G) \trianglelefteq F^*(R)$. Since $N_G(X) = N_R(X)$, by induction we obtain that $Y F^*(R)$ is quasinilpotent. Since $F^*(G) \leq Y F^*(R)$, by Lemma 1 (1) we have $E(Y F^*(R)) = E(G)$, thus $Y F^*(G) / E(G) \leq Y F^*(R) / E(G)$ is nilpotent so $Y F^*(G) \trianglelefteq Y F^*(R)$, then $Y F^*(G)$ is quasinilpotent.

Thus we can suppose that $G = N_G(X) F^*(G)$. Then $X F^*(G) \leq G$ and $G \trianglelefteq X F^*(G)$. Using Corollary 5 it follows that $Y F^*(N_G(X)) F^*(G)$ is quasinilpotent. Since $E(Y F^*(N_G(X)) F^*(G)) = E(G)$ we have $Y F^*(G)$ is a subnormal subgroup of $Y F^*(N_G(X)) F^*(G)$ and $Y F^*(G)$ is quasinilpotent as desired.

Assume now that $Y F^*(G)$ is quasinilpotent. As $Y F^*(G) / E(G)$ is nilpotent, then $Y E(G)$ is a subnormal quasinilpotent subgroup of $Y F^*(G)$. Write $Y_1 = Y E(G)$. Then $Y_1 \leq N_G(X)$ by Lemma 1 (3). Notice that $F(X), F(Y_1)$, $F(N_G(X))$ are subgroups of $C = C_G(E(G))$, that is the nilpotent-constrained radical of G. As $F(X) F(G), F(Y_1) F(G)$ are nilpotent subgroups of C and $F(Y_1) \leq N_G(F(X))$ it follows from ([1]) that $F(Y_1) F(N_G(F(X)))$ is nilpotent.

On the other hand, as $X = F(X) E(X)$ and $E(X) \leq E(X F^*(G)) = E(G)$ it follows that $N_C(F(X)) = N_C(X)$. Moreover, $N_C(X) = C \cap N_G(X) \leq N_G(X)$, thus $F(N_C(X)) \leq F(N_G(X)) \leq C$, hence $F(N_C(X)) = F(N_G(X))$ and $F(Y_1) F(N_G(X))$ is nilpotent. As $Y_1 F^*(G) / E(G)$ is nilpotent, it follows that $E(Y_1) \leq E(G)$. Therefore $Y F^*(N_G(X)) = Y_1 F^*(N_G(X)) = F(Y_1) F(N_G(X)) E(G)$ is quasinilpotent.

Corollary 7 Let $X \trianglelefteq X F^*(G)$, where $X F^*(G)$ is a quasinilpotent subgroup of G and let Y be a quasinilpotent injector of $N_G(X)$. Then there exists a quasinilpotent injector K of G satisfying $K \cap N_G(X) = Y$.

Proof. By Theorem 6, $Y F^*(G)$ is quasinilpotent. Let K be a maximal quasinilpotent subgroup of G containing $Y F^*(G)$, then K is a quasinilpotent injector of G. Thus $K = E(G) I$, where I is a nilpotent injector of $C_G(E(G))$; hence $Y \leq K \cap N_G(X) = E(G) (I \cap N_G(X))$, that is quasinilpotent. Therefore $Y = K \cap N_G(X)$.

Recall that, if $H \leq G$, it is said that H controls its own G-fusion (briefly H is c-closed in G), if any two elements of H, that are G-conjugate, are
already H-conjugate. It is well known the Frobenius theorem, that states that in a finite group G, a Sylow p-subgroup of G is c-closed in G if and only if G has a normal p-complement. Also, C. Sah proved, in π-separable groups, an analogous result for Hall π-subgroups. We will prove corresponding results for nilpotent injectors in nilpotent-constrained groups and for quasinilpotent injectors in finite groups.

Lemma 8 Let H be c-closed in G. Then:

(i) $H \leq K \leq G$ implies that H is c-closed in K.

(ii) If $K \leq H \leq G$ and K is c-closed in H then K is c-closed in G.

(iii) If $K \leq H$ and $K \leq G$ then H/K is c-closed in G/K.

(iv) If $N \leq G$ and $(|N|, |H|) = 1$ then HN/N c-closed G/N.

Proof. See ([13], 2.2)

Theorem 9 Let G be a nilpotent-constrained group and let I be a nilpotent injector of G. The following conditions are equivalent:

(i) G is nilpotent.

(ii) I is c-closed in G.

(iii) $F(G)$ is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) \Rightarrow (iii) Let $p \in \pi(|I|)$. As I is c-closed in G it follows that I_p is c-closed in G. Since $I_p \in \text{Syl}_p(C_G(O_p'(F(G))))$ by ([11], 1), then I_p is c-closed in $C_p = C_G(O_p'(F(G)))$, thus C_p is p-nilpotent $C_p = I_pO_p'(C_p) = I_pZ(O_p'(F(G)))$, therefore $I_p \leq C_p$ and then $I_p = O_p(C_p) = O_p(G)$.

Hence $F(G) = I$ and $F(G)$ is c-closed in G.

(iii) \Rightarrow (i) Suppose that there exists $p \in \pi(|G|) \setminus \pi(|F(G)|)$. Let $P \in \text{Syl}_p(G)$, then $F(G)$ is a Hall p'-subgroup of $F(G)P$ and $F(G)$ is c-closed in $F(G)P$. Then, by ([13], 1), we obtain that $P \leq F(G)P$ so $P \leq C_G(F(G)) \leq F(G)$, that is a contradiction. Consequently, $\pi(|F(G)|) = \pi(|G|)$.

As $F(G)$ is c-closed in G, it follows that $O_p'(F(G))$ is c-closed in G, for every $p \in \pi(|G|)$. Take $P \in \text{Syl}_p(G)$, then $O_p'(F(G))$ is c-closed in $PO_p'(F(G))$, thus $P \leq PO_p'(F(G))$ by ([13], 1). Then $P \leq C_G(O_p'(F(G)))$ and by ([11], 1), we conclude that G is nilpotent. ■
Theorem 10 Let I be a quasinilpotent injector of G. The following conditions are equivalent:

(i) G is quasinilpotent.

(ii) I is c-closed in G.

(iii) $F^*(G)$ is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) \Rightarrow (iii) We know that $I = E(G) V$ where V is a nilpotent injector of $C_G(E(G))$. Since V is c-closed in $C_G(E(G))$, by Theorem 9, it follows that $C_G(E(G))$ is nilpotent. Therefore $C_G(E(G)) = F(G)$, and $I = E(G) F(G) = F^*(G)$.

(iii) \Rightarrow (i) By induction on order of G. Suppose that $Z = Z(G) \neq 1$. Then, by Lemma 8 (iii) and the inductive hypothesis, we obtain that $G/Z = F^*(G)/Z = F^*(G)/Z$ so $G = F^*(G)$. Therefore, we can suppose that $Z = 1$. Since $G = F^*(G) C_G(x)$, for every $x \in F^*(G)$, we can conclude that $Z(F(G)) \leq Z(G) = 1$, thus $F(G) = 1$ and $F^*(G) = E(G)$.

Suppose that $E(G) \leq L$, where L is a maximal subgroup of G. By Lemma 1 (1) it follows that $E(G) = E(L)$, and as $F(L) \leq C_G(E(G)) = Z(E(G)) = 1$ we conclude, by induction, that $E(G) = L$. Then $E(G)$ is a maximal subgroup of G, so there exists a prime p such that $|G/E(G)| = p$.

Let Q be a component of G. Since $G = E(G) C_G(x)$ for all $x \in E(G)$, it follows that $Z(Q) = 1$. Therefore $E(G) = Q_1 \times \ldots \times Q_r$, where Q_1, \ldots, Q_r are the components of G which are nonabelian simple groups. Also they are c-closed in G.

Let $i \in \{1, \ldots, r\}$ $g \in G$ and let α_g be the inner automorphism of G determined by g. Since $Q_i \trianglelefteq G$, one has that the restriction $\alpha_g|_{Q_i}$ is an automorphism of Q_i. Note that $\alpha_g(C) = C$ for any conjugacy class C of Q_i; hence, by ([4], Theorem C), there exists $z_i \in Q_i$ such that $\alpha_g(x) = x^{z_i}$ for every $x \in Q_i$. If $x \in E(G)$, then $x = x_1 \ldots x_r$, $x_i \in Q_i$, $1 \leq i \leq r$. Thus, $x^g = x_1^g \ldots x_r^g = x_1^{z_1} \ldots x_r^{z_r} = x_1^z \ldots x_r^z = x^z$, where $z = z_1 \ldots z_r \in E(G)$. Therefore $\alpha_g|_{E(G)}$ is the inner automorphism of $E(G)$ of G determined by $z = z_1 \ldots z_r$. It follows from ([7], X 13.1) that G is quasinilpotent. ■

Corollary 11 If G is a group then

$$F^*(G) = \bigcap_{\theta \in \text{Irr}(F^*(G))} I_G(\theta).$$
Proof. Work by induction on $|G|$. We know that

$$F^*(G) \leq \bigcap_{\theta \in \text{Irr}(F^*(G))} I_G(\theta) = N \leq G.$$

Suppose that $N < G$; since $F^*(G) = F^*(N)$, by induction, it follows that

$$F^*(G) = F^*(N) = \bigcap_{\theta \in \text{Irr}(F^*(N))} I_G(\theta) = N.$$

Therefore, we can suppose that $N = G$. Then $I_G(\theta) = G$, for all $\theta \in \text{Irr}(F^*(G))$. Let $\text{Irr}(F^*(G)) = \{\theta_1, \theta_2, ..., \theta_m\}$. Suppose that $x, y \in F^*(G)$ with $x^g = y$, for some $g \in G$, then

$$\theta_i(x) = \theta_i(x^g) = \theta_i(y), \quad 1 \leq i \leq m.$$

Thus $\sum \theta_i(x)\theta_i(y^{-1}) = \sum \theta_i(x)\theta_i(y^{-1}) \neq 0$. Then x and y are conjugate in $F^*(G)$ and, in consequence, $F^*(G)$ is c-closed in G. Then, using Theorem 10, it follows that $G = F^*(G)$ as desired.

\[\square\]

Corollary 12 If G is a nilpotent-constrained group then

$$F(G) = \bigcap_{\theta \in \text{Irr}(F(G))} I_G(\theta).$$

Proof. Since G is a nilpotent-constrained group, we have $F^*(G) = F(G)$. Now apply the above result.

\[\square\]

Corollary 13 Let \mathfrak{F} be a Fitting class such that $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{N}^*$ and let G be an \mathfrak{F}-constrained group (i.e. $C_G(G_{\mathfrak{F}}) \leq G_{\mathfrak{F}}$). If $I \in \text{Inj}_{\mathfrak{F}}(G)$, the following statements are equivalent:

(i) $G \in \mathfrak{F}$.

(ii) I is c-closed in G.

(iii) $G_{\mathfrak{F}}$ is c-closed in G.

Proof. Note that, as G is an \mathfrak{F}-constrained group, by ([9], 2), we have $F^*(G) = G_{\mathfrak{F}}$ and, by ([9], 8), $\text{Inj}_{\mathfrak{F}}(G) = \text{Inj}_{\mathfrak{F}^*}(G)$. Now the result follows from Theorem 10.

\[\square\]
Remarks.

1. The last results suggest that, perhaps, one can obtain a general result for any Fitting class, but there exist Fitting classes of full characteristic and finite groups, do not belong to the corresponding Fitting class, but whose injectors are c-closed:

Consider $G = A_5$ and $\mathfrak{F} = \mathfrak{S}$. If $S \in \text{Syl}_5(G)$ then $N_G(S) \cong D_{10}$ is an \mathfrak{F}-injector of G. Moreover $N_G(S)$ is c-closed in A_5. Indeed, let $x \in N_G(S) \setminus \{1\}$ and $g \in G$ such that $x^g \in N_G(S)$.

If $\text{o}(x) = 5$, then $\langle x \rangle = S$ and we obtain that $g \in N_G(S)$.

If $\text{o}(x) = 2$, then $\langle x \rangle, \langle x^g \rangle$ are Sylow 2-subgroups of $N_G(S)$, thus there exists $h \in N_G(S)$ such that $\{1, x^g\} = \langle x^g \rangle = \langle x^h \rangle = \{1, x^h \}$ and so $x^g = x^h$.

2. Even more, there exist Fitting classes of soluble groups with full characteristic and soluble groups, do not belong to the corresponding Fitting class, but whose injectors are c-closed:

If G is a soluble group, we define an homomorphism $d_G : G \rightarrow GF(5)^*$ as follows: let M_1, M_2, \ldots, M_r the 5-chief factors of a prefixed chief series of G. If $g \in G$ and $d_i(g)$ denotes the determinant of the linear map which g induces on M_i, then

$$d_G(g) = \prod_{i=1}^{r} d_i(g)$$

The class $\mathfrak{F} = \{G \in \mathfrak{S} | d_G(G) = 1\}$ is a normal Fitting class ([3], IX 2.14).

Let

$$A = \langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \rangle \leq GL(2, 5).$$

Consider A acting in the natural way on $C_5 \times C_5$. Let G be the semidirect product of $C_5 \times C_5$ by A:

$$G = [C_5 \times C_5] \langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \rangle$$

and let

$$S = [C_5 \times C_5] \langle \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \rangle.$$

Observe that $|G| = 2^4 \cdot 5^2 = 400$ and $|S| = 2^3 \cdot 5^2$.

We will see that S is c-closed in G.

We have that $G = S \langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \rangle$ and if $S_2 = \langle \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \rangle \in \text{Syl}_2(S)$ then $\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \rangle \leq C_G(S_2)$.

Hence, if \(x \in S_2 \) and \(g \in G \), we have \(g = cs \), where \(c \in \langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \rangle \), so \(x^g = x^{cs} = x^s \). Therefore \(G = C_G(x)S \).

Let \(x \in S \). Since \(S \) does not have composed order elements, \(x \) is a 2-element or a 5-element.

If \(x \) is a 2-element then \(x = y^s \) where \(y \in S \) and \(s \in S \). Hence \(C_G(x)S = C_G(y^s)S = (C_G(y))^sS = (C_G(y))^sS = G \). Thus, if \(g \in G \), it follows that \(g = ls \), where \(l \in C_G(x) \), \(s \in S \). Then \(x^g = x^{ls} = x^s \).

If \(x \) is a 5-element, then \(x \in C_5 \times C_5 \). We will see that \(G = C_G(x)S \). It is enough to prove that there exists \(g \in G \setminus S \) such that \(g \in C_G(x) \).

If \(H \leq G \) write \(H^* = H \setminus \{1\} \). Then

\[
(C_5 \times C_5)^* = \langle h_1 \rangle^* \cup \langle h_2 \rangle^* \cup \langle h_3 \rangle^* \cup \langle h_4 \rangle^* \cup \langle h_5 \rangle^* \cup \langle h_6 \rangle^*
\]

where \(h_1 = (1,0), \ h_2 = (0,1), \ h_3 = (1,1), \ h_4 = (2,1), \ h_5 = (1,2), \ h_6 = (4,1) \).

Notice that if \(h \in \langle h_i \rangle \), then \(C_G(h) = C_G(h_i) \) for \(1 \leq i \leq 6 \) and it is enough to show that \(G = C_G(h_i)S \), \(1 \leq i \leq 6 \).

We have,

\[
\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \in C_G(h_1) \setminus S, \quad \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \in C_G(h_2) \setminus S, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in C_G(h_3) \setminus S, \\
\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \in C_G(h_4) \setminus S, \quad \begin{pmatrix} 0 & 3 \\ 0 & 2 \end{pmatrix} \in C_G(h_5) \setminus S, \quad \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} \in C_G(h_6) \setminus S,
\]

Hence \(G = C_G(x)S \). Therefore, if \(g \in G, \ g = cs \), where \(c \in C_G(x) \) and \(s \in S \). Then \(x^g = x^{cs} = x^s \). Thus, \(S \) is c-closed in \(G \).

Now consider the chief series of \(G \):

\[
1 \trianglelefteq C_5 \times C_5 \trianglelefteq [C_5 \times C_5](\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}) \trianglelefteq [C_5 \times C_5](\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}) \trianglelefteq S \trianglelefteq G.
\]

The only 5-chief factor of this series is \(C_5 \times C_5 \).

Notice that \(G \notin \mathfrak{F} \) since \(\det \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 4 \neq 1 \).

The part of the above series from 1 to \(S \) is a chief series of \(S \) and the only 5-chief factor of this series is \(C_5 \times C_5 \).
Since \(\det \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} = 1 \) and \(\det \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = 1 \), it follows that \(S \in \mathfrak{F} \), then \(S \in \text{Iny}_\mathfrak{F}(G) \) is c-closed in \(G \), but \(G \notin \mathfrak{F} \).

3. It is said that a subgroup \(H \) in a group \(G \) has property CR (Character Restriction) if every ordinary irreducible character \(\theta \in \text{Irr}(H) \) is the restriction \(\chi_H \) of some \(\chi \in \text{Irr}(G) \). It is well known that if \(H \) satisfies CR property in \(G \) then \(H \) is c-closed in \(G \).

A number of authors have shown that property CR, together with suitable additional hypothesis on \(H \) and \(G \), does imply the existence of a normal complement for \(H \). For instance Hawkes and Humphreys ([5]) prove that CR yields a normal complement if \(G \) is solvable and \(H \) is an \(\mathfrak{F} \)-projector for \(G \), where \(\mathfrak{F} \) is any saturated formation. The last example shows that the corresponding result for Fitting classes and injectors satisfying property CR, does not work.

References

Recibido: 25 de mayo de 2001

M. J. Iranzo
Departamento de Álgebra
Universidad De Valencia
C/ Dr. Moliner, 50
46100 Burjasot, Valencia, Spain
M.Jesus.Iranzo@uv.es

J. Medina
Departamento de Matemática Aplicada
Universidad Politécnica de Cartagena
P. Alfonso XIII, 52
30203 Cartagena, Murcia, Spain
juan.medina@upct.es

F. Pérez-Monasor\(^1\)
Departamento de Álgebra
Universidad De Valencia
C/ Dr. Moliner, 50
46100 Burjasot, Valencia, Spain
F.Perez.Monasor@uv.es

\(^1\)Supported in part by DGICYT, PB97-0674-C02.