The Principle of Limiting Absorption for Second-order Differential Equations with Operator-valued Coefficients

By
Yoshimi Saitō

§0. Introduction

Let us consider differential operators of the form

\[(0.1) \quad L = -\frac{d^2}{dr^2} + B(r) + C(r) \quad (0 < r < \infty), \]

where for each \(r \in (0, \infty) \) \(B(r) \) and \(C(r) \) are operators in a Hilbert space \(X \). \(L \) acts on \(X \)-valued functions on \((0, \infty) \).

The purpose of the present paper is to justify the principle of limiting absorption for the equation

\[(0.2) \quad (L - (\lambda + i\mu))u = f. \]

The essence of the above principle consists in the following: Let \(u_{\lambda+i\mu} \) be the solution of (0.2), where \(f \) is a given \(X \)-valued function on \((0, \infty) \). Then a solution \(u_{\lambda} \) of the equation

\[(0.3) \quad (L - \lambda)u = f \]

is given by \(u_{\lambda} = \lim_{\mu \to 0} u_{\lambda+i\mu} \). The meaning of the limit is to be determined suitably. For the literature of the principle of limiting absorption see, for example, Eidus [1].

Jäger [5] considers the differential operator \(L \) and gives, among others, the following result: Let \(B(r) \) be a non-negative self-adjoint
operator in X and let $C(r)$ behave like $0(r^{-\frac{3}{2} - \varepsilon})$ ($\varepsilon > 0$) at infinity. Then with some other conditions imposed on $B(r)$ and $C(r)$ the principle of limiting absorption holds for equation (0.2) with boundary condition

\[(0.4) \quad u(0) = 0\]

and the "radiation condition"

\[(0.5) \quad \int_0^\infty |u'(r) - i\sqrt{z} u(r)|^2 dr < \infty \quad (z = \lambda + i\mu),\]

where $|\ |$ means the norm of X. He uses the above results to construct an eigenfunction expansion associated with L.

We shall extend J"ager's results to L with $C(r)$ which behaves like $0(r^{-1 - \varepsilon})$ ($\varepsilon > 0$) at infinity. In our case the radiation condition (0.5) will be replaced by

\[(0.6) \quad \int_0^\infty (1 + r)^{-1 + \varepsilon} |u'(r) - i\sqrt{z} u(r)|^2 dr < \infty,\]

which is weaker than (0.5).

As an application we shall prove the principle of limiting absorption for the Schr"odinger operator $-\Delta + q(y)$ in \mathbb{R}^n ($n \geq 3$) with $q(y) = 0(|y|^{-1 - \varepsilon})$ at infinity. In this case $X = L^2(S^{n-1})$ and

\[(0.7) \quad B(r) = \frac{1}{r^2} \left\{- A_n + \frac{(n-3)(n-1)}{4} \right\} \quad C(r) = q(r\omega) \times \omega = \frac{y}{r} \in S^{n-1},\]

where S^{n-1} is $(n-1)$-sphere, and A_n is the Laplace-Beltrami operator on S^{n-1}.

In §1 we state conditions imposed on $B(r)$ and $C(r)$ and prove some inequalities which will be used to obtain various a priori estimates for the solution of equation (0.2) in §3. §2 and §3 are devoted to showing the existence and uniqueness of the solution u of the equation

\[(0.8) \quad (L - k^2) u = f \quad (\text{Im } k \geq 0)\]
which satisfies the boundary condition (0.4) and the radiation condition (0.6). Moreover we show that the solution u continuously depends on k. Thus the principle of limiting absorption is justified. We discuss in § 4 the dependency on $C(r)$ of the solution of equation (0.8). In § 5 we apply these results to the Schrödinger operator in \mathbb{R}^n ($n \geq 3$).

Using the results obtained in this paper we can develop a spectral and scattering theory for the differential operator L with an application to Schrödinger operators $-\Delta + q(y)$ in \mathbb{R}^n, where $q(y) = 0(|y|^{-1-\varepsilon})$ at infinity. We shall discuss these elsewhere.\(^1\)

Recently we have been informed by Prof. T. Ikebe that the following very extensive results have been obtained by S. Agmon: Let

$$L = \sum_{|\alpha| \leq m} a_\alpha D^\alpha = L_0 + B$$

be an elliptic operator in \mathbb{R}^n which has a unique self-adjoint extension in $L^2(\mathbb{R}^n)$, where $L_0 = \sum_{|\alpha| \leq m} a_\alpha D^\alpha$ is an elliptic operator with constant coefficients, and $B = \sum_{|\alpha| \leq m} b_\alpha D^\alpha$ is a differential operator with $b(x) = 0(|x|^{-1-\varepsilon})$ as $|x| \to \infty$. Assume that $\lambda > 0$ does not belong to an exceptional set which is discrete in $(-\infty, \infty)$ and contains all the eigenvalues of L. Then the principle of limiting absorption holds good for λ, i.e., we have

$$v_{\lambda \pm i\mu} \to v_{\lambda \pm i0} \quad \text{as} \quad \mu \downarrow 0 \quad \text{in} \quad L_2(\mathbb{R}^n, (1 + |x|)^{-1-\epsilon} dx),$$

(0.10)

$$\int_{\mathbb{R}^n} (1 + |x|)^{-1-\varepsilon} |v_{\lambda \pm i\mu}(x)|^2 dx \leq C \int_{\mathbb{R}^n} (1 + |x|)^{1+\varepsilon} |f(x)|^2 dx,$$

where $v_{\lambda \pm i\mu} = (L - (\lambda \pm i\mu))^{-1} f$. In his method any radiation condition is unnecessary. These results are used to construct an eigenfunction expansion for L.

§ 1. Assumptions and Preliminary Lemmas

Let X be a Hilbert space with the norm $| \cdot |$ and inner product (\cdot, \cdot). For an open interval J in \mathbb{R}^2 and $\beta \in \mathbb{R}$ we denote by $H^{\beta}(J, X)$ the

1) See Y. Saito [7].

2) \mathbb{R} is the set of all real numbers.
Hilbert space of all (equivalence classes of) \(X\)-valued function on \(J\) with the norm and inner product

\[
\begin{cases}
\|f\|_{\beta, J} = \left[\int_{J} ((f, f))_{\beta, J} \right]^{\frac{1}{2}}, \\
((f, g))_{\beta, J} = \int_{J} (f(r), g(r))(1 + |r|)^{\beta} dr.
\end{cases}
\]

Let \(Y\) be a linear topological space, let \(m\) be a non-negative integer, and let \(J = (a_1, a_2)\) be an open interval in \(\mathbb{R}\). \(C^m(J, Y)\) denotes the set of all \(Y\)-valued functions on \(J\) having \(m\) strong continuous derivatives. We denote by \(\bar{C}^m(J, Y)\) the set of all \(Y\)-valued functions \(f(r)\) such that \(f \in C^m(J, Y)\) and \(\frac{d^j f}{dr^j}\) \((j = 0, 1, \ldots, m)\) can be extended to continuous functions on \(\bar{J}\). \(C^m_{\beta, a_i}(J, Y)\) \((i = 1, 2)\) denotes the set of all \(f \in \bar{C}^m(J, Y)\) satisfying \(f(r) = 0\) in some neighborhood of \(a_i\). We put \(C^m(J, Y) = C^m_{\beta, a_1}(J, Y) \cap C^m_{\beta, a_2}(J, Y)\). If \(Y = \mathbb{C}\), we omit \(\mathbb{C}\) as in \(C^m(J, \mathbb{C}) = C^m(J, \mathbb{R})\).

Let \(I = (0, \infty)\) and let \(B(r)\) and \(C(r)\) be operator-valued functions on \(I\). For local properties of \(B(r)\) and \(C(r)\) we make the following

Assumption 1.1. (a) For each \(r \in I\) \(B(r)\) is a non-negative, self-adjoint operator in \(X\) such that its domain \(\mathcal{D}(B(r)) = D^5\) does not depend on \(r\), and \(B(r)x \in C^0(I, X)\) for any \(x \in D^5\).

(b) Let \(x, y \in D\). Then \((B(r)x, y) \in C^2(I)\) and for any compact interval \(M \subset I\) there exists a constant \(c_1(M) > 0\) satisfying

\[
\left| \frac{d^j}{dr^j} (B(r)x, y) \right| \leq c_1(M) \left(|x| + |B^\frac{1}{2}(r)x| \left(|y| + |B^\frac{1}{2}(r)y| \right) \right),
\]

where \(r, s \in M\) and \(j = 1, 2\).

(c) For each \(r \in I\) \(C(r)\) is a symmetric operator in \(X\) with \(\mathcal{D}(C(r)) = D\) such that \(C(r)x \in C^1(I, X)\) for any \(x \in D\).

(d) Let \(M\) be a compact interval in \(I\). Then there exists a constant \(c_2(M) > 0\) such that

\[\text{3) } \bar{J}\text{ means the closure of } J.\]
\[\text{4) } \mathbb{C}\text{ is all complex numbers.}\]
\[\text{5) } \mathcal{D}(T)\text{ means the domain of } T.\]
(1.3) \[\left| \frac{d}{dr} C(r) x \right| \leq c_2(M) \left(|x| + |B^1 r (r) x| \right), \]

holds for any \(x \in D \) and any \(r \in M \).

We introduce the norm \(\| \cdot \|_{B_r} \) and inner product \(((\cdot, \cdot))_{B_r} \) by

\[
(1.4) \quad \|f\|_{B_r} = \sqrt{((f, f))_{B_r}}, \\
(1.5) \quad ((f, g))_{B_r} = ((f', g'), 0, r) + ((Bf, g))_{0, r} + ((f, g))_{0, r}. \]

We denote by \(C^2_{B_r} (J, X) (C^2_{a_1} (J, X), i = 1, 2) \) the linear space spanned by the set of all \(\varphi \in C^2 (J, X) \) having the form \(\varphi = \psi x \), where \(x \in D, \varphi \in C^2 (J) (\psi \in C^2_{a_1} (J), i = 1, 2) \) and \(\| \varphi \|_{B_r} < \infty \). We denote \(C^2_{a_1}^2 (J, X) \) \(\cap C^2_{a_2} (J, X) \) by \(C^2_{a_1} (J, X) \). We define Hilbert spaces \(H^1_{B_r} (J, X) \),

\(H^1_{a_1} (J, X) \) and \(H^1_{a_2} (J, X) \) \((i = 1, 2) \), respectively, by the completion of \(C^2_{B_r} (J, X), C^2_{a_1} (J, X) \) and \(C^2_{a_2} (J, X) \) \((i = 1, 2) \) in the norm \(\| \cdot \|_{B_r} \).

Let us denote by \(\text{loc} H^0 ((\hat{I}, X) \) the set of all \(X \)-valued functions \(f(r) \) on \(\hat{I} \) such that \(f \in H^0 ((0, b), X) \) for any \(b > 0 \). In a similar way \(\text{loc} H^1_{B_r} ((\hat{I}, X) \) and \(\text{loc} H^0_{a_1} ((\hat{I}, X) \) are also defined.

Assumption 1.2\(^{7)} (a) There exist constants \(\rho_1 > 0 \) and \(c_1 > 1 \) such that

\[
(1.6) \quad -\frac{d}{dr} (B(r) x, x) \geq \frac{c_1}{r} (B(r) x, x)
\]

holds for any \(x \in D \) and any \(r \geq \rho_1 \).

(b) For each finite \(b \in I \) the natural imbedding

\[
(1.7) \quad H^1_{a_1} ((0, b), X) \rightarrow H^0 ((0, b), X)
\]

is compact.

(c) There exists \(c_2 > 0 \) such that

6) Here and in the sequel \(u' \) and \(u'' \) mean \(\frac{du}{dr} \) and \(\frac{d^2 u}{dr^2} \), respectively.

7) The conditions imposed on \(B(r) \) and \(C(r) \) are the same as in Jäger [5] except (c) of Assumption 1.2. Jäger [5] assumes that

\[|C(r) x| \leq c_4 (1 + r)^{-\frac{3}{2} - l} (|x| + |B^i r (r) x|), \quad (r \in I, x \in D) \]

instead of (1.8).
\[(1.8) \quad |C(r) x| \leq c_2 (1+r)^{-1-\varepsilon} (|x| + |B^{\frac{1}{2}}(r) x|), \quad (r \in I, x \in D)\]

with some \(0 < \varepsilon < 1\).

For an open interval \(J \subset I\), \(\mathcal{U}(J)\) denotes the set of all linear, continuous functionals on \(H_0^1 B(J, X)\). \(\mathcal{U}(J)\) is a Banach space with the norm
\[(1.9) \quad \|\ell\|_J = \sup \{ |\langle \ell, \varphi \rangle| ; \varphi \in C_0^\infty B(J, X), \|\varphi\|_B = 1\}.

For example, for \(g \in H^0(J, X)\) we define \(l[g] \in \mathcal{U}(J)\) by
\[(1.10) \quad \langle l[g], \varphi \rangle = ((g, \varphi))_{0, J} \quad (\varphi \in H_0^1 B(J, X)).\]

Then we can easily see
\[(1.11) \quad \|l[g]\|_J \leq \|g\|_{0, J}.

Definition 1.3. Let \(\ell \in \mathcal{U}(I), u \in H^{1, B}(I, X)\) and \(k \in \mathbb{C}^+\) be given, where
\[(1.12) \quad \mathbb{C}^+ = \{k \mid k \in \mathbb{C}, \text{Im} k \geq 0 \text{ and } \text{Re} k \neq 0\}. \quad \text{8)}

Then \(v \in \text{loc} H^{1, B}(I, X)\) is called a radiative function for \(\{L, k, l, u\}\), if the following three conditions hold:

(a) \(v - u \in \text{loc} H_1^1 B(I, X)\).

(b) \(v' - ikv \in H^{-1+\varepsilon}(I, X)\) (the “radiation condition”\(^9\))

(c) For all \(\varphi \in C_0^\infty B(I, X)\) we have
\[(1.13) \quad ((v, (L - k^2) \varphi))_{0, I} = \langle l, \varphi \rangle.

We shall give a lemma which will be used to prove the existence theorem of the radiative function.

Lemma 1.4.\(^{10}\) Let \(I_0 = (b, \infty), b > 0\). For each \(r \in I_0\) \(B(r)\) is assumed

8) Im \(k\) and Re \(k\) mean the imaginary and real, respectively.

9) In Jäger [5] the radiation condition is defined by \(v' - ikv \in H^0(I, X)\).

to be a non-negative, self-adjoint operator in X with $\mathcal{D}(B(r)) = D$ constant in r. Suppose that $(B(r)x, x) \in C^1(I_0)$ for any $x \in D$ and that we have

$$\frac{d}{dr} (B(r)x, x) \geq \frac{e_0}{r} (B(r)x, x) \quad (x \in D, r \geq b_0)$$

with constants $b_0 > b$ and $e_0 > 1$. Let $C(r), r \in I_0$, be a symmetric operator with $\mathcal{D}(C(r)) = D$. Let $v(r)$ be an X-valued function on I_0 which satisfies the following (i) \sim (iii):

(i) \quad $v \in C^2(I_0, D)$, \quad $Bv, Cv \in C^0(I_0, X)$, and

(ii) \quad $v' - ikv \in H^{-1+\varepsilon}(I_0, X)$ and $v \in H^{-1-\varepsilon}(I_0, X)$.

(iii) \quad We have

$$|C(r)v(r)|^2 \leq e_1 r^{-2-2\varepsilon}(|v'(r)|^2 + |B(r)^{1/2}v(r)|^2) \quad (r \geq b)$$

with constants $e_1 > 0$, $0 < \varepsilon < 1$.

Then there exist constants $\delta_0 > 0$ and $r_0 \geq b_0 + 1$ which do not depend on $v(r)$ and $g(r)$ such that

$$\int_{r_0}^{\infty} r^{-1+\varepsilon} \{ |v'(r) - ikv(r)|^2 + (B(r)v(r), v(r)) \} dr$$

$$\leq \delta_0 \int_{r_0}^{\infty} (r^{-1-\varepsilon} |v(r)|^2 + r^{1+\varepsilon} |g(r)|^2) dr.$$

Moreover δ_0 and r_0, as functions of k, are bounded on any bounded set in C^+. For the proof of this lemma we need the following lemma due to Jäger [5] (Lemma 4.1).

Lemma 1.5. Let $-\infty \leq a_2 < a_1 < b_1 < b_2 \leq \infty$ and put $I_i = (a_i, b_i)$,
Let $B(r)$ be a non-negative, self-adjoint operator in X for each $r \in I_2$ with $\mathcal{D}(B(r)) = D$ constant in r. Let $C(r)$ be a symmetric operator in X with $\mathcal{D}(C(r)) = D$ for each $r \in I_2$. Suppose that $v \in H^{1, B}(I_2, X)$ satisfies for any $\varphi \in C_0^2(I_2, X)$

\begin{equation}
\left(v , \left(-\frac{d^2}{dr^2} + B(\cdot) + C(\cdot) - k^2\right) \varphi \right)_{0, I_2} = \langle l, \varphi \rangle ,
\end{equation}

where $k \in \mathbb{C}^+$ and $l \in \mathcal{D}(I_2)$. Suppose, further, that v satisfies

\begin{equation}
|C(r)v(r)| \leq c_2(|v'(r)| + |B^{\frac{1}{2}}(r)v(r)| + |v(r)|), \quad (r \in I_2)
\end{equation}

with a constant $c_2 = c_2(I_2) > 0$. Then there exists a constant $K = K(I_1, I_2, k) > 0$ such that

\begin{equation}
\|v\|_{B, I_2} \leq K(\|v\|_{0, I_2} + \|l\|_{I_2})
\end{equation}

holds. Further if we assume $v \in H^{1, B}_{0, a_1}(I_2, X)$ and $a_2 > -\infty$ then the conclusion is valid for $a_2 \leq a_1$.

Proof of Lemma 1.4. Take $r_0 \geq b_0 + 1$, where b_0 is given in (1.14). Let $\varphi \in C^1(I_0)$ such that $0 \leq \varphi \leq 1$, $\varphi'(r) \geq 0$, and

\begin{equation}
\varphi(r) = \begin{cases}
0 & \text{for } r \in (b, r_0] , \\
1 & \text{for } r \in [r_0 + 1, \infty) .
\end{cases}
\end{equation}

Then we have for $r \geq r_0$

\begin{equation}
\frac{d}{dr} \left(r^\varepsilon \varphi(r) |v'(r) - ikv(r)|^2 \right) \\
= \varepsilon r^{1+\varepsilon} \varphi(r) |v'(r) - ikv(r)|^2 + r^\varepsilon \varphi'(r) |v'(r) - ikv(r)|^2 \\
+ 2r^\varepsilon \varphi(r) \Re (v''(r) - ikv'(r), v'(r) - ikv(r)) \\
\geq \varepsilon r^{1+\varepsilon} \varphi(r) |v' - ikv|^2 + 2r^\varepsilon \varphi(r) \Re (v'' - ikv', v' - ikv),
\end{equation}

since we have assumed that $\varphi'(r) \geq 0$. Noting that $\Im k \geq 0$ we have

\begin{equation}
\Re (v''(r) - ikv'(r), v'(r) - ikv(r))
\end{equation}
PRINCIPLE OF LIMITING ABSORPTION 589

\[\text{Re}(v''(r) - B(r) v(r) + k^2 v(r), v'(r) - ikv(r)) \]
\[+ \text{Im}(k) \{ |v'(r) - ikv(r)|^2 + (B(r) v(r), v(r)) \} \]
\[+ \text{Re}(B(r) v(r), v'(r)) \]
\[\geq \text{Re}(v''(r) - B(r) v(r) + k^2 v(r), v'(r) - ikv(r)) \]
\[+ \text{Re}(B(r) v(r), v'(r)). \]

We estimate \(2\varepsilon \text{Re}(v'' - Bv + k^2 v, v' - ikv)\) as follows:

\[(1.24) \quad 2\varepsilon \text{Re}(v''(r) - B(r) v(r) + k^2 v(r), v'(r) - ikv(r)) \]
\[\geq -2\varepsilon |v''(r) - B(r) v(r) + k^2 v(r)| |v'(r) - ikv(r)| \]
\[\geq -\frac{\varepsilon^2 \alpha^2}{\alpha} |v''(r) - B(r) v(r) + k^2 v(r)|^2 - \alpha \varepsilon^2 |v'(r) - ikv(r)|^2 \]
\[(\alpha > 0, \beta + \eta = \varepsilon) \]
\[\geq -\frac{\delta_1}{\alpha} \left[r^{-2 - 2\varepsilon + 2\beta} \{ |v(r)|^2 + |v'(r) - ikv(r)|^2 + (B(r) v(r), v(r)) \} \right. \]
\[\left. + r^{2\beta} |g(r)|^2 \right] - \alpha \varepsilon^2 |v'(r) - ikv(r)|^2, \]

since we have by (1.15) and (1.16)

\[(1.25) \quad |v''(r) - B(r) v(r) + k^2 v(r)|^2 \leq \delta_1 \left[r^{-2 - 2\varepsilon} \{ |v(r)|^2 + |v'(r) - ikv(r)|^2 \right. \]
\[\left. + (B(r) v(r), v(r)) \right] + |g(r)|^2 \]

with a constant \(\delta_1 = \delta_1(k) > 0\). We obtain from (1.14)

\[(1.26) \quad 2\text{Re}(B(r) v(r), v'(r)) = \frac{d}{dr}(B(r) v(r), v(r)) - \frac{d}{dr}(B(r) \chi, \chi) \bigg|_{x=e(r)} \]
\[\geq \frac{d}{dr}(B(r) v(r), v(r)) + \frac{e\alpha}{r}(B(r) v(r), v(r)). \]

(1.22), (1.23), (1.24) and (1.26) are combined to give

\[(1.27) \quad \frac{d}{dr}(r^\varepsilon \psi(r) |v'(r) - ikv(r)|^2) \]
\[\geq \phi(r) \left(e r^{-1 - \varepsilon} - \frac{\delta_1}{\alpha} r^{-2 - 2\varepsilon + 2\beta} - \alpha \varepsilon^2 \right) |v'(r) - ikv(r)|^2 \]
Putting \(\eta = \frac{1}{2} (-1 + \varepsilon) \), \(\beta = \frac{1}{2} (1 + \varepsilon) \) and \(\gamma = \frac{1}{2} \varepsilon \), we integrate (1.27) from \(r_0 \) to \(R (R \geq r_0 + 2) \) to obtain

\[
R^\varepsilon |v'(R) - i\varepsilon v(R)|^2
\]

\[
\geq \int_{r_0}^{R} \psi(r) \left(\frac{\varepsilon}{2} r^{-1+\varepsilon} - \frac{2\delta_1}{\varepsilon} r^{-1-\varepsilon} \right) |v'(r) - i\varepsilon v(r)|^2 \, dr
\]

\[
+ \int_{r_0}^{R} \psi(r) \left((e_0 - \varepsilon) r^{-1+\varepsilon} - \frac{2\delta_1}{\varepsilon} r^{-1-\varepsilon} \right) (B(r) v(r), v(r)) \, dr
\]

\[
- \frac{2\delta_1}{\varepsilon} \int_{r_0}^{R} \psi(r) (r^{-1-\varepsilon} |v(r)|^2 + r^{1+\varepsilon} |g(r)|^2) \, dr
\]

\[- \int_{r_0}^{r_{0+1}} r^\varepsilon \psi'(r) (B(r) v(r), v(r)) \, dr,
\]

where we have made use of the estimate

\[
\int_{r_0}^{R} r^\varepsilon \psi(r) \frac{d}{dr} (B(r) v(r), v(r)) \, dr
\]

\[
= R^\varepsilon (B(R) v(R), v(R)) - \int_{r_0}^{R} \frac{d}{dr} (r^\varepsilon \psi(r)) \left(B(r) v(r), v(r) \right) \, dr
\]

\[
\geq - \int_{r_0}^{R} \varepsilon r^{-1+\varepsilon} \psi(r) (B(r) v(r), v(r)) \, dr
\]

\[- \int_{r_0}^{r_{0+1}} r^\varepsilon \psi'(r) (B(r) v(r), v(r)) \, dr.
\]

Now we take \(r_0 (\geq b_0 + 1) \) so large that we have with a constant \(\delta_2 > 0 \)

\[
\left\{ \begin{array}{l}
\frac{\varepsilon}{2} r^{-1+\varepsilon} - \frac{2\delta_1}{\varepsilon} r^{-1-\varepsilon} \geq \delta_2 r^{-1+\varepsilon} \\
(e_0 - \varepsilon) r^{-1+\varepsilon} - \frac{2\delta_1}{\varepsilon} r^{-1-\varepsilon} \geq \delta_2 r^{-1+\varepsilon}
\end{array} \right.
\]
for all \(r \geq r_0 \). On the other hand, using Lemma 1.5 with \(I_1 = (r_0, r_0 + 1) \) and \(I_2 = (r_0 - 1, r_0 + 2) \), we obtain the following estimate with constants \(K > 0 \) and \(\delta_3 > 0 \):

\[
(1.31) \quad \int_{r_0}^{r_0+1} r^\varepsilon \psi'(r) (B(r) v(r), v(r)) \, dr \\
\leq (r_0 + 1)^\varepsilon \left(\max_{r_0 \leq r \leq r_0 + 1} \psi'(r) \right) \int_{r_0}^{r_0+1} (B(r) v(r), v(r)) \, dr \\
\leq (r_0 + 1)^\varepsilon \left(\max_{r_0 \leq r \leq r_0 + 1} \psi'(r) \right) K \int_{r_0}^{r_0 + 2} (|v(r)|^2 + |g(r)|^2) \, dr \\
< \delta_3 \int_{r_0}^{r_0+1} (r^{-1+\varepsilon} |v(r)|^2 + r^{1+\varepsilon} |g(r)|^2) \, dr,
\]

where we used (1.11). It follows from (1.28), (1.30) and (1.31) that

\[
(1.32) \quad \delta_2 \int_{r_0+1}^R r^{-1+\varepsilon} \{|v'(r) - ikv(r)|^2 + (B(r) v(r), v(r))\} \, dr \\
\leq R^\varepsilon |v'(R) - ikv(R)|^2 \\
+ \left(\frac{2\delta_1}{\varepsilon} + \delta_3 \right) \int_{r_0+1}^R (r^{-1+\varepsilon} |v(r)|^2 + r^{1+\varepsilon} |g(r)|^2) \, dr.
\]

Since \(r^{-1+\varepsilon} |v'(r) - ikv(r)|^2 \) is integrable on \(I_0 \), we have

\[
(1.33) \quad R_j |v'(R_j) - ikv(R_j)|^2 \to 0, \quad j \to \infty
\]

for some sequence \(R_j \to \infty \). Thus we obtain (1.17) from (1.32). Q.E.D.

Lemma 1.6. Let us assume Assumption 1.1 and (a) and (c) of Assumption 1.2. Let \(k \in \mathbb{C}^+ \) and let \(v(r) \) be a radiative function for \(\{L, k, l^\varepsilon g\}, 0 \) with \(v \in \text{loc} H^{1+\varepsilon}(\bar{I}, X) \cap H^{-1-\varepsilon}(I, X) \) and \(g \in \text{loc} H^{1,B}(\bar{I}, X) \) \(\cap H^{1+\varepsilon}(I, X) \). Then there exists a constant \(\delta > 0 \) such that

\[
(1.34) \quad ||v' - ikv||_{-1+\varepsilon} + ||B^1 v||_{-1+\varepsilon} \leq \delta ||v||_{-1-\varepsilon} + ||g||_{1-\varepsilon},\quad \text{(12)}
\]

where \(\delta \) depends only on \(k \) and is bounded on any bounded set in \(\mathbb{C}^+ \).

12) Here and in the sequel we put \(\| \|_{s,t} = \| \|_s \) and \(\| \|_{s,t} = \| \|_B \) for the sake of simplicity.
Proof. It follows from Assumption 1.1 that we can apply the regularity theorem of Jäger [5] (Satz 3.1, p. 76) to see that \(v \in C^2(I, D) \), \(Bv \), \(Cv \in C^0(I, X) \), and \(v \) satisfies (1.15) for all \(r \in I \). From Lemma 1.4 we obtain

\[
(1.35) \quad \int_{r_0+1}^{r_1+1} (1+r)^{-1+\varepsilon} \left\{ |v'(r) - ikv(r)|^2 + (B(r)v(r), v(r)) \right\} dr
\leq K_1 \int_{r_0-1}^{r_1} (1+r)^{-1-\varepsilon} |v(r)|^2 + r^{1+\varepsilon} |g(r)|^2 dr
\]

with constants \(r_0 \geq \rho_1 + 1 \) and \(K_1 > 0 \). Since \(v \in \text{loc}\, H^{1, B}_0(\tilde{I}, X) \), we can use the last statement of Lemma 1.5 with \(I_1 = (0, r_0+1) \) and \(I_2 = (0, r_0+2) \) to obtain

\[
(1.36) \quad \int_{0}^{r_0+1} (1+r)^{-1+\varepsilon} \left\{ |v'(r) - ikv(r)|^2 + (B(r)v(r), v(r)) \right\} dr
\leq K_2 \int_{0}^{r_0+2} (1+r)^{-1-\varepsilon} |v(r)|^2 + (1+r)^{1+\varepsilon} |g(r)|^2 dr
\]

with a constant \(K_2 > 0 \). (1.34) follows from (1.35) and (1.36). Q.E.D.

§2. The Uniqueness Theorem

We shall show the uniqueness of the radiative function using arguments due to Jäger [5].

Lemma 2.1. Let \(B(r) \) satisfy (a) and (b) of Assumption 1.1. Let \(C(r) \) be a symmetric operator in \(X \) for each \(r \in I \) such that \(C(r) \) satisfies (c) and (d) of Assumption 1.1. and

\[
(2.1) \quad |C(r)x| \leq c(|x| + |B^{1, B}_{1/2}(r)x|), \quad (x \in D, r \in I)
\]

with a constant \(c > 0 \). Let \(v \in \text{loc}\, H^{1, B}_0(\tilde{I}, X) \) satisfy

\[
(2.2) \quad (v, (L - \tilde{k}^2)\varphi)_0 = (g, \varphi)_0 \quad (\varphi \in B^{0, B}_0(I, X))
\]

with \(g \in \text{loc}\, H^{1, B}_0(\tilde{I}, X) \) and \(k \in \mathbb{C}^+ \), where

\[
(2.3) \quad L = -\frac{d^2}{dr^2} + B(r) + C(r).
\]
Then we have for all \(r \in I, \)
\[
(2.4) \quad |v'(r) - ikv(r)|^2 = |v'(r) + (\text{Im} k) v(r)|^2 + (\text{Re} k)^2 |v(r)|^2 + 4(\text{Re} k)^2 (\text{Im} k) |v||_{0,(r)}^2 + 2(\text{Re} k) \text{Im}((g, v))_{0,(r)}.
\]

Proof. As we have seen in the proof of Lemma 1.6, it follows from the regularity theorem of Jäger [5] (p. 76) that

\[
(2.5) \quad \begin{cases}
\{v \in C^2(I, D) \text{ and } Bv, Cv \in C^0(I, X) \\
(L - k^2)v(r) = g(r) \quad (r \in I).
\end{cases}
\]

On the other hand we obtain from the fact that \(v \in \text{loc} H^{1, B}(I, X) \)
\[
(2.6) \quad \begin{cases}
v \in C^0(I, X) \\
v(0) = 0.
\end{cases}
\]

From (2.5) and (2.6) we see that
\[
(2.7) \quad \int_0^r (g(t), \varphi(t)) dt = \int_0^r ((L - k^2)v(t), \varphi(t)) dt = \int_0^r \{(v'(t), \varphi'(t)) + ((B(t) + C(t) - k^2)v(t), \varphi(t))\} dt - (v'(r), \varphi(r))
\]
holds for any \(\varphi \in C^2_{0, B}(I, X). \) Since \(v \in \text{loc} H^{1, B}(I, X), \) for any \(r > 0 \) there is a sequence \(\{\varphi_n\} \) in \(C^2_{0, B}(I, X) \) such that
\[
(2.8) \quad \begin{cases}
||\varphi_n - v||_{B,(0, r+1)} \rightarrow 0, \\
\varphi_n(t) \rightarrow v(t) \quad \text{in } X \quad (t \in [0, r+1])
\end{cases}
\]
as \(n \rightarrow \infty. \) Replacing \(\varphi \) by \(\varphi_n \) in (2.7) and letting \(n \rightarrow \infty, \) we have

13) Note that \(H^{1, B}(I, X) \) is continuously imbedded in \(C^0(I, X). \) See Jäger [5], p. 69.
Hence we obtain

\begin{equation}
\text{Im}(v'(r), v(r)) = -\text{Im}((g, v))_{0,0,r} - 2(\text{Re} k)(\text{Im} k\|v\|_0^2, 0, r).
\end{equation}

Using (2.10), we calculate $|v'(r) - ikv(r)|^2$ as follows:

\begin{equation}
|v'(r) - ikv(r)|^2 = |v'(r) + (\text{Im} k)v(r)|^2 + (\text{Re} k)^2|v(r)|^2 - 2(\text{Re} k)\text{Im}(v'(r), v(r))
\end{equation}

\begin{equation}
= |v'(r) + (\text{Im} k)v(r)|^2 + (\text{Re} k)^2|v(r)|^2 + 4(\text{Re} k)^2(\text{Im} k\|v\|_0^2, 0, r) + 2(\text{Re} k)\text{Im}((g, v))_{0,0,r}.
\end{equation}

Q.E.D.

Theorem 2.2. Let us assume Assumption 1.1 and (a) and (c) of Assumption 1.2. Let $l \in \mathcal{B}(I)$, $k \in \mathbb{C}^+$ and $u \in H^{1, b}(I, X)$ be given. Then the radiative function for $\{L, k, l, u\}$ is unique.

Proof. Let v be a radiative function for $\{L, k, 0, 0\}$, where $k \in \mathbb{C}^+$. What we want to show is that v is identically zero.

We start with the relation

\begin{equation}
|v'(r) - ikv(r)|^2 = |v'(r) + (\text{Im} k)v(r)|^2 + (\text{Re} k)^2|v(r)|^2 + 4(\text{Re} k)^2(\text{Im} k\|v\|_0^2, 0, r),
\end{equation}

which follows from Lemma 2.1.

If $\text{Im} k > 0$, then we obtain from (2.12) and the fact that $v' - ikv \\
\in H^{-1+\epsilon}(I, X)$

\begin{equation}
0 \leq \|v\|_{0,0,r}^2 \leq \frac{1}{4(\text{Re} k)^2(\text{Im} k)} |v'(r_j) - ikv(r_j)|^2 \to 0, \quad j \to \infty,
\end{equation}

\begin{equation}
\int_0^r (g(t), v(t)) dt = \int_0^r \{ |v'(t)|^2 + ((B(t) + C(t) - k^2)v(t), v(t)) \} dt - (v'(r), v(r)).
\end{equation}
for some sequence \(r_j \to \infty \). Hence we have \(\|v\|_0^2 = 0 \), i.e., \(v \equiv 0 \).

Next let us assume that \(\text{Im} k = 0 \). Then we have from (2.12) and the radiation condition \(v' - ikv \in H^{-1+\epsilon}(I, X) \)

\[
\lim_{r \to \infty} (|v'(r)|^2 + k^2 |v(r)|^2) = \lim_{r \to \infty} |v'(r) - ikv(r)|^2 = 0.
\]

By the regularity theorem of Jäger [5] (p. 76) and (1.8) we have

\[
\left\{ \begin{array}{l}
v \in C^2(I, D) \\
|v''(r) - B(r)v(r) + k^2 v(r)|^2 = |C(r)v(r)|^2 \\
\leq 2c_2^2 (1+r)^{-2-2\epsilon} \{ |v(r)|^2 + (B(r)v(r), v(r)) \}
\end{array} \right. \quad (r \in I),
\]

where \(c_2 > 0 \) is given in (1.8). (2.14) and (2.15) enable us to apply Hilfssatz 1 of Jäger [3] (p. 66) on the growth property of solutions of the equation \((L - k^2)v = 0 \) to show that the carrier of \(v \) is compact in \(I \). Hence, using Satz 3 of Jäger [4] (p. 32), a unique continuation theorem for solutions of the equation \((L - k^2)v = 0 \), we see that \(v \equiv 0 \) on \(I \).

Q.E.D.

§ 3. The Existence Theorems

This section is devoted to showing the existence of the radiative function \(v \) for \(\{L, k, I, u\} \), where \(k \in \mathcal{C}, \ u \in H^{1,B}(I, X) \), and \(l \) belongs to a subspace \(\mathcal{U}_{1+\epsilon}(I) \) of \(\mathcal{U}(I) \). We shall first prove a priori estimates for radiative functions \(v \) for \(\{L, k, l, 0\}, \ k \in \mathcal{C}^+ \) and \(l \in \mathcal{U}_{1+\epsilon}(I) \) (Lemma 3.1 and Lemma 3.4). This corresponds to Satz 5.3 of Jäger [5]. But it seems that we have to modify its proof in order to obtain the a priori estimates needed in our case. Lemma 3.2 is necessary for this modification. Next we shall prove the existence theorems using our a priori estimates (Theorem 3.7 and Theorem 3.8). At the same time we shall see that the radiative function \(v \) for \(\{L, k, l, u\} \) depends continuously on \(k, l \) and \(u \).
Lemma 3.1. Let us assume Assumptions 1.1 and 1.2. Let K be a compact set in C^+. Let $k \in K$ and $g \in H^{1+\epsilon}(I, X) \cap \text{loc} H^{1, B}(I, X)$. Let v be a radiative function for $\{L, k, l \in g, 0\}$ such that

\begin{equation}
\tag{3.1}
v \in \text{loc} H^{1, B}(I, X) \cap H^{-1-\epsilon}(I, X).
\end{equation}

Then we have

\begin{equation}
\tag{3.2}
\|v\|_{1-\epsilon} + \|v' - ikv\|_{1+\epsilon} + \|B^2 v\|_{1+\epsilon} \leq \delta_1 \|g\|_{1+\epsilon}
\end{equation}

with a constant $\delta_1 > 0$, where δ_1 depends only on K and L.

To prove this lemma we prepare

Lemma 3.2. Let K, g, k and v be as in Lemma 3.1. Then there exists a positive number α_0 such that

\begin{equation}
\tag{3.3}
\int_{\rho}^{\infty} (1+r)^{-1-\epsilon} |v(r)|^2 dr \leq \alpha_0 (\|v\|_{1-\epsilon}^2 + \|g\|_{1+\epsilon}^2) \rho^{-\epsilon}, \quad (\rho \geq 1),
\end{equation}

where α_0 depends only on K and L.

Proof. From Lemma 2.1 we obtain

\begin{equation}
\tag{3.4}
(\text{Re} k)^2 |v(r)|^2 + 2(\text{Re} k) \text{Im} ((g, v))_0,0,r) \leq |v'(r) - ikv(r)|^2,
\end{equation}

whence we have

\begin{equation}
\tag{3.5}
|v(r)|^2 \leq \frac{1}{(\text{Re} k)^2} |v'(r) - ikv(r)|^2 + \frac{2}{|\text{Re} k|} \int_0^r |g(t)| |v(t)| dt
\end{equation}

\begin{align*}
\leq & \frac{1}{(\text{Re} k)^2} |v'(r) - ikv(r)|^2 \\
& + \frac{2}{|\text{Re} k|} \left\{ \int_0^r (1+t)^{1+\epsilon} |g(t)|^2 dt \right\}^{1/2} \left\{ \int_0^r (1+t)^{-1-\epsilon} |v(t)|^2 dt \right\}^{1/2} \\
\leq & \frac{1}{(\text{Re} k)^2} |v'(r) - ikv(r)|^2 + \frac{2}{|\text{Re} k|} \|g\|_{1+\epsilon} \|v\|_{1-\epsilon}.
\end{align*}

Multiplying both sides of (3.5) by $r^{-1-\epsilon}$ and integrating from ρ to ∞, we have
(3.6) \[
\int_\rho r^{-1-\varepsilon} |v(r)|^2 dr \leq \frac{1}{(\text{Re} \, k)^2} \int_\rho r^{-1-\varepsilon} |v'(r) - ikv(r)|^2 dr
\]
\[
+ \frac{2}{\varepsilon |\text{Re} \, k|} \|g\|_{1+\varepsilon}\|v\|_{-1-\varepsilon} \rho^{-\varepsilon}
\]
\[
\leq \frac{1}{(\text{Re} \, k)^2} \rho^{-2\varepsilon} \int_\rho r^{-1+\varepsilon} |v'(r) - ikv(r)|^2 dr
\]
\[
+ \frac{2}{\varepsilon |\text{Re} \, k|} \|g\|_{1+\varepsilon}\|v\|_{-1-\varepsilon} \rho^{-\varepsilon}.
\]

(3.3) follows from (3.6) and Lemma 1.6. Q.E.D.

Proof of Lemma 3.1. It follows from Lemma 1.6 that it is enough to show

(3.7) \[\|v\|_{-1-\varepsilon} \leq \alpha \|g\|_{1+\varepsilon}\]

with a constant \(\alpha > 0\) depending only on \(K\) and \(L\). Let us assume that (3.7) is false. Then for each positive integer \(n\) we can find \(k_n \in K\), \(h_n \in \text{loc} \, H^{1,2}(\tilde{I}, X)\), and radiative functions \(u_n\) for \(\{L; k_n, l[\bar{h}_n], 0\}\) such that

(3.8) \[\|u_n\|_{-1-\varepsilon} > n \|h_n\|_{1+\varepsilon}\]

Since we see \(\|u_n\|_{-1-\varepsilon} > 0\) from (3.8), we obtain radiative functions \(v_n = \frac{u_n}{\|u_n\|_{-1-\varepsilon}}\) for \(\{L; k_n, l[\bar{g}_n], 0\}\), \(g_n = \frac{h_n}{\|u_n\|_{-1-\varepsilon}}\), with

(3.9) \[
\begin{cases}
\|v_n\|_{-1-\varepsilon} = 1, \\
\|g_n\|_{1+\varepsilon} < \frac{1}{n}.
\end{cases}
\]

Let \(\{k_{nm}\}\) be a subsequence of \(\{k_n\}\) satisfying

(3.10) \[k_{nm} \to k_0, \quad m \to \infty\]

with \(k_0 \in K\). Without loss of generality we can assume

(3.11) \[k_n \to k_0, \quad n \to \infty.\]

In view of (3.9) we have for any \(R \in I\)
Therefore it follows from Lemma 1.5 that

\[
\sup_n \|v_n\|_{0,(0,R+1)} < \infty, \\
\sup_n \|g_n\|_{0,(0,R+1)} < \infty.
\] (3.12)

Therefore it follows from Lemma 1.5 that

\[
\sup_n \|v_n\|_{B,(0,R)} < \infty
\] (3.13)

for all \(R > 0 \). Since for all \(0 < R < \infty \) the imbedding \(H^{1,B}_0((0, R), X) \to H^0((0, R), X) \) is compact by (b) of Assumption 1.2, we obtain a subsequence of \(\{v_n\} \) which is a Cauchy sequence in \(H^0((0, R), X) \) for all \(R \in I \). Without loss of generality we can assume that \(\{v_n\} \) itself is a Cauchy sequence in \(H^0((0, R), X) \) for all \(R \in I \). The sequence \(\{v_n\} \) is a Cauchy sequence in \(H^{1,B}_0((0, R), X) \) for all \(R \in I \), too. In fact for each pair \((n, m)\) \(v_n - v_m \) is the radiative function for \(\{I, k, l[g_{nm}], 0\} \), where

\[
g_{nm} = g_n - g_m - (k_0^2 - k_n^2)v_n + (k_0^2 - k_m^2)v_m
\] (3.14)

and \(k_0 \) is given as in (3.11). From (3.9) and (3.11) we obtain \(g_{nm} \to 0, n, m \to \infty \) in \(H^0((0, R+1), X) \) for any \(R > 0 \). Hence, noting that \(\{v_n\} \) is a Cauchy sequence in \(H^0((0, R+1), X) \), we can apply Lemma 1.5 to show

\[
\|v_n - v_m\|_{B,(0,R)} \lesssim \beta(\|v_n - v_m\|_{0,(0,R+1)} + \|g_{nm}\|_{0,(0,R+1)})
\] (3.15)

\[
\to 0, \quad n, m \to \infty,
\]

where \(\beta > 0 \) depends only on \(R, k \) and \(L \). Therefore there exists \(v \in \text{loc} \, H^{1,B}_0(I, X) \) satisfying

\[
v_n \to v, \quad n \to \infty
\] (3.16)

both in \(H^{1,B}_0((0, R), X) \) and in \(H^0((0, R), X) \) for any \(R \in I \).

Letting \(n \to \infty \) in the relation

\[
((v_n, (L - \bar{k}_n^2)\varphi))_0 = ((g_n, \varphi))_0, \quad (\varphi \in C^{1,B}_0(I, X))
\] (3.17)

we obtain from (3.16), (3.9) and (3.11)
(3.18) \((v, (L-\kappa_0^2)\varphi))_0=0\).

Using (3.9), (3.16) and Lemma 1.6 we estimate \(\|v' - ik_0 v\|_{-1-\varepsilon, (0,R)}\) as follows:

\[
(3.19) \quad \|v' - ik_0 v\|_{-1-\varepsilon, (0,R)} = \lim_{n \to \infty} \|v'_n - ik_0 v_n\|_{-1-\varepsilon, (0,R)}
\]

\[
\leq \sup_n \|v'_n - ik_0 v_n\|_{-1-\varepsilon}
\]

\[
\leq \delta \sup_n \{\|v_n\|_{-1-\varepsilon} + \|g_n\|_{1+\varepsilon}\}
\]

\[
\leq \delta \sup_n \left(1 + \frac{1}{n}\right) \leq 2\delta,
\]

where \(\delta > 0\) is as in Lemma 1.6. Since the last member of (3.19) does not depend on \(n\) and \(R\), we have \(v' - ik_0 v \in H^{-1+\varepsilon}(I, X)\), i.e., \(v\) satisfies the radiation condition. Thus \(v\) is a radiative function for \(\{L, k_0, 0, 0, R\}\), and hence \(v = 0\) by Theorem 2.2.

From Lemma 3.2 we obtain for \(\rho \geq 1\)

\[
(3.20) \quad \lim_{n \to \infty} \|v_n\|_{-1-\varepsilon}^2 \leq \lim_{n \to \infty} \|v_n\|_{-1-\varepsilon, (0,\rho)}^2 + \sup_n \|v_n\|_{-1-\varepsilon, (\rho, \infty)}^2
\]

\[
\leq \|v\|_{-1-\varepsilon, (0,\rho)}^2 + \alpha_0 \rho^{-\varepsilon} \sup_n \{\|v_n\|_{-1-\varepsilon} + \|g_n\|_{1+\varepsilon}\}
\]

\[
= 0(\rho^{-\varepsilon}),
\]

where we have noted (3.9) and the fact \(v = 0\). Since \(\rho \geq 1\) is arbitrary, we obtain \(\lim_{n \to \infty} \|v_n\|_{-1-\varepsilon} = 0\), which contradicts the assumption that \(\|v_n\|_{-1-\varepsilon} = 1\).

Q.E.D.

Now we introduce a subspace of \(\mathcal{V}(I)\).

Definition 3.3. Let \(\mathcal{V}_{1+\varepsilon}(I)\) be the set of all \(l \in \mathcal{V}(I)\) such that

\[
(3.21) \quad \|l\|_{1+\varepsilon} = \sup \{|< l, (1+r)^{1+\varepsilon}\varphi>|, \varphi \in C_0^{\infty}(I, X), \|\varphi\|_B = 1\} < \infty.
\]

\(\mathcal{V}_{1+\varepsilon}(I)\) is a Banach space with the norm \(\|\|_{1+\varepsilon}\).

It is easy to see that we have

\[
(3.22) \quad \|l\| \leq \alpha_0 \|l\|_{1+\varepsilon} \quad (l \in \mathcal{V}_{1+\varepsilon}(I))
\]
with a constant $a_0 > 0$.

We shall show that the inequality (3.2) also holds for the radiative function for $\{L, k, l, 0\}$, where $l \in \mathcal{U}_{1+\delta}(I)$.

Lemma 3.4. Let us assume Assumptions 1.1 and 1.2. Let K be as in Lemma 3.1. Let $k \in K$ and $l \in \mathcal{U}_{1+\delta}(I)$. Let v be a radiative function for $\{I, k, l, 0\}$ such that $v \in H^{-1-\delta}(I, X) \cap \text{loc} H^{1-\delta}_{0}B(I, X)$.

Then there exists a constant $\delta_2 > 0$ such that

$$
||v||_{1-\delta} + ||v' - ikv||_{1-\delta} + ||B^{1/2}v||_{1+\delta} \leq \delta_2 ||l||_{1+\delta},
$$

where δ_2 depends only on K and L.

To prove this lemma we need

Lemma 3.5. Let $B(r)$ satisfy (a) of Assumption 1.1 and let $C(r)$ $(r \in I)$ be a symmetric operator in X with the domain $\mathcal{D}(C(r)) = D$ such that

$$
|C(r)x| \leq c(|x| + |B^{1/2}(r)x|) \quad (r \in I, x \in D)
$$

with a constant $c > 0$. Let $k_0 \in C^+$ and $\text{Im} k_0 > 0$. Let $l \in \mathcal{U}(I)$. Then the equation

$$
(u, (L - k_0^2)\varphi)_0 = <l, \varphi> \quad (\varphi \in C_0^{1/2}B(I, X))
$$

has a unique solution u in $H^{1/2}_{0}B(I, X)$ with the estimate

$$
||u||_{B} \leq \beta_1 ||l||,
$$

where $\beta_1 = \beta_1(k_0) > 0$ is a constant. Further, if $l \in \mathcal{U}_{1-\delta}(I)$, then we have $u \in H^{1+\delta}(I, X)$ and

$$
||u||_{1+\delta} \leq \beta_2 ||l||_{1+\delta}
$$

with a constant $\beta_2 = \beta_2(k_0) > 0$.

Proof. Let us define a bilinear form $\mathcal{A}_{L-k_0^2}[-,\cdot]$ on $H^{1/2}_{0}B(I, X)$

14) Cf. Jäger [5], Lemma 2.3 (p. 75) and the proof of Satz 5.3 (p. 86).
Then we shall show

\begin{equation}
(3.29) \quad d_j \| w \|_B^2 \geq |A_{L-k_0^2}[w, w]| \geq d_2 \| w \|_B^2 \quad (w \in H_0^{1,B}(I, X)),
\end{equation}

where \(d_j = d_j(k_0) > 0 \) (\(j = 1, 2 \)) are constants. Since \(C_0^{2,B}(I, X) \) is dense in \(H_0^{1,B}(I, X) \), and we have by integration by parts

\begin{equation}
(3.30) \quad A_{L-k_0^2}[\varphi_1, \varphi_2] = \langle (\varphi_1, (L-k_0^2)\varphi_2) \rangle_0 \quad (\varphi_1, \varphi_2 \in C_0^{2}(I, X)),
\end{equation}

it is sufficient to show (3.29) that we show

\begin{equation}
(3.31) \quad \begin{cases}
 d_1 \| \varphi \|_B^2 \geq |\langle (\varphi, (L-k_0^2)\varphi) \rangle_0|,
 \\
 d_2 \| \varphi \|_B^2 \leq |\langle (\varphi, (L-k_0^2)\varphi) \rangle_0|,
\end{cases} \quad (\varphi \in C_0^{2,B}(I, X)).
\end{equation}

Let us prove (3.31). From (3.24) we see that

\begin{equation}
(3.32) \quad \| C\varphi \|_B^2 \leq \int_I c^2 |\varphi(r) - B^2(r)\varphi(r(r))|^2 dr \leq 2c \| \varphi \|^2_B,
\end{equation}

whence follows for all \(\varphi \in C_0^{2,B}(I, X) \)

\begin{equation}
(3.33) \quad |\langle (\varphi, (L-k_0^2)\varphi) \rangle_0| \leq \| \varphi \|_B^2 + \sqrt{2c} \| \varphi \|_B \| \varphi \|_0 + |k_0|^2 \| \varphi \|_B^2 \leq (1 + \sqrt{2c} + |k_0|^2) \| \varphi \|_B^2.
\end{equation}

Thus we have shown the first inequality of (3.31) with \(d_1 = 1 + \sqrt{2c} + |k_0|^2 \). On the other hand we have

\begin{equation}
(3.34) \quad |\langle (\varphi, (L-k_0^2)\varphi) \rangle_0|^2 = \| \varphi \|_B^4 + \langle ((C-\lambda-1)\varphi, \varphi) \rangle_0^2 + \mu^2 \| \varphi \|_6^4,
\end{equation}

where \(\lambda = \text{Re}k_0^2 \) and \(\mu = \text{Im}k_0^2 \neq 0 \). Hence, using (3.32) again, we have

\begin{equation}
(3.35) \quad |\langle (\varphi, (L-k_0^2)\varphi) \rangle_0|^2 \geq \| \varphi \|_B^2 - 2\| \varphi \|_B^2 \langle ((C-\lambda-1)\varphi, \varphi) \rangle_0 | + \langle ((C-\lambda-1)\varphi, \varphi) \rangle_0^2 + \mu^2 \| \varphi \|_6^4 \\
\geq (1 - \alpha) \| \varphi \|_B^2 - \left(\frac{1}{\alpha} - 1 \right) \langle ((C-\lambda-1)\varphi, \varphi) \rangle_0^2 + \mu^2 \| \varphi \|_6^4
\end{equation}
with $\alpha > 0$. Take $0 < \alpha < 1$ in (3.35). Then, noting that we obtain from (3.32)

\begin{align*}
((C - \lambda - 1) \varphi, \varphi)_0 & \leq \| (C - \lambda - 1) \varphi \|_B \| \varphi \|_B \\
& \leq 2 \{ 2 \gamma_0^2 + (| \lambda | + 1)^2 \} \| \varphi \|_B \| \varphi \|_B \\
& \leq \{ 2 \gamma_0^2 + (| \lambda | + 1)^2 \} \left(\beta \| \varphi \|_B^2 + \frac{1}{\beta} \| \varphi \|_B \right) \quad (\beta > 0),
\end{align*}

we arrive at

\begin{align*}
|((\varphi, (L - \overline{k}^2) \varphi))_0|^2 & \geq \left\{ 1 - \alpha - \frac{1 - \alpha}{\alpha} \beta c_1 \right\} \| \varphi \|_B^2 \\
& + \left\{ \mu^2 - \frac{1 - \alpha}{\alpha \beta} c_1 \right\} \| \varphi \|_B^2 \quad (0 < \alpha < 1, \beta > 0),
\end{align*}

where we put $c_1 = 2 \gamma_0^2 + (| \lambda | + 1)^2$. Putting $\beta = \frac{\alpha}{2c_1}$ and taking $1 - \alpha > 0$ small enough, we obtain from (3.37)

\begin{align*}
|((\varphi, (L - \overline{k}^2) \varphi))_0|^2 & \geq \frac{1}{2} (1 - \alpha) \| \varphi \|_B^2,
\end{align*}

whence follows the second inequality of (3.31) with $d_2 = \sqrt{\frac{1 - \alpha}{2}}$.

Since (3.29) has been justified, we can make use of the Lax-Milgram theorem\(^{15}\) to show that there exists a unique solution of u in $H_0^{1, B}(I, X)$ of the equation

\begin{align*}
B_{L - \overline{k}^2} [u, w] = < l, w > \quad (w \in H_0^{1, B}(I, X))
\end{align*}

for $l \in \mathcal{U}(I)$. Since $B_{L - \overline{k}^2} [u, \varphi] = ((u, (L - \overline{k}^2) \varphi))_0$ for $\varphi \in C_0^{1, B}(I, X)$, it follows from (3.38) that u is a unique solution of (3.25). (3.29) and (3.39) are combined to give

\begin{align*}
\| u \|_B^2 & \leq \frac{1}{d_2} \| B_{L - \overline{k}^2} [u, u] \| = \frac{1}{d_2} \| < l, u > \| \leq \frac{1}{d_2} \| l \| \| u \|_B,
\end{align*}

which implies (3.26) with $\beta_1 = \frac{1}{\sqrt{d_2}}$.

\(^{15}\) See, for example, Yosida [6], p. 92.
Next let us show (3.27). Let \(\phi \in C^1(\mathbb{R}) \) such that \(0 \leq \phi(r) \leq 1 \), \(0 \leq |\phi'(r)| \leq 1 \) and

\[
\psi(r) = \begin{cases}
0 & \text{for } r \geq 2, \\
1 & \text{for } r \leq \frac{1}{2}.
\end{cases}
\]

(3.41)

For each \(m = 1, 2, \ldots \) we define

\[
\phi_m(r) = (1 + r)^{\frac{1+\varepsilon}{2}} \phi\left(\frac{r}{m}\right),
\]

(3.42)

\[u_m = \psi_m u, \]

where \(u \) is the solution of the equation (3.38). Then we obtain from (3.39) and (3.28)

(3.43)

\[
\mathcal{B}_{L-k_1^2}[u_m, u_m] = ||u_m||_B^2 + ((C(r) - k_0^2) u_m, u_m)_0
\]

\[
= ((\phi_m u', u_m')_0 + (B^2 u, B^2 \phi_m u_m)_0
\]

\[
+ ((C(r) - k_0^2) u, \psi_m u_m)_0
\]

\[
= \mathcal{B}_{L-k_0^2}[u, \psi_m u_m] + ((\phi_m' u, u_m')_0 - ((\phi_m' u', u_m))_0
\]

\[
= \langle L, \phi_m u_m \rangle + ((\phi_m' u, u_m')_0 - ((\phi_m' u', u_m))_0.
\]

It follows from (3.43) and (3.29)

(3.44)

\[
||u_m||_B^2 \leq \frac{1}{d_2} ||\mathcal{B}_{L-k_1^2}[u_m, u_m]| |
\]

\[
\leq \frac{1}{d_2} \left\{ \langle L, (1 + r)^{\frac{1+\varepsilon}{2}} \phi\left(\frac{r}{m}\right) u_m \rangle
\right\}
\]

\[
+ ||\phi_m' u||_0 ||u_m||_0 + ||\phi_m' u'||_0 ||u_m||_0
\]

\[
\leq \frac{1}{d_2} \left\{ ||L||_1 + \varepsilon ||\phi\left(\frac{r}{m}\right) u_m ||_B + (||\phi_m' u||_0 + ||\phi_m' u'||_0 ||u_m||_0
\right\}
\]

\[
\leq \frac{2}{d_2} \left\{ \frac{1+\varepsilon}{2} ||u||_B \right\} ||u_m||_B,
\]

where we note \(|\phi\left(\frac{r}{m}\right)| \leq 1 \), \(\left| \frac{1}{m} \phi'\left(\frac{r}{m}\right) \right| \leq 1 \) and
for any \(r \in I \) and for any \(m = 1, 2, \ldots \). Taking account of (3.26) and (3.22), we obtain from (3.44)

\[
\|u_m\|_B \leq \frac{2}{d_2} \left\{ \|l\|_{1+\varepsilon} + \left(\frac{1+\varepsilon}{2} + 3 \right) \beta_1 \|l\| \right\}
\]

\[
\leq \frac{2}{d_2} \left\{ 1 + \left(\frac{1+\varepsilon}{2} + 3 \right) \beta_1 a_0 \right\} \|l\|_{1+\varepsilon},
\]

which implies with \(\frac{2}{d_2} \left(1 + \left(\frac{1+\varepsilon}{2} + 3 \right) \beta_1 a_0 \right) = \beta_2 \)

\[
\|\psi_m \|_{1+\varepsilon} = \|l\|_{1+\varepsilon} = \|u_m\|_0 = \|u_m\|_B \leq \beta_2 \|l\|_{1+\varepsilon}.
\]

Thus, letting \(m \to \infty \) in (3.47), we obtain (3.27). Q.E.D.

Proof of Lemma 3.4. Since \(l \in \mathcal{U}_{1+\varepsilon}(I) \), it follows from Lemma 3.5 that the equation

\[
((g, (L+i) \varphi))_0 = \langle l, \varphi \rangle \quad (\varphi \in C^{0,\beta}_{0:B}(I, X))
\]

has a solution \(g \in H^{1,\beta}_{0:B}(I, X) \cap H^{1+\varepsilon}(I, X) \). Put \(w = g - v \), where \(v \) is a radiative function for \(\{L, k, l, 0\} \), i.e., \(v \) satisfies

\[
((v, (L-k^2) \varphi))_0 = \langle l, \varphi \rangle \quad (\varphi \in C^{0,\beta}_{0:B}(I, X))
\]

and

\[
\|v' - ikv\|_{-1+\varepsilon} < \infty.
\]

From (3.48) and (3.49) we see that

\[
((w, (L-k^2) \varphi))_0 = (k^2 - i)((g, \varphi))_0.
\]

Noting \(g \in H^{1,\beta}_{0:B}(I, X) \) and (3.50), we have

\[
\|w' - ikw\|_{-1+\varepsilon} \leq \|v' - ikv\|_{-1+\varepsilon} + \|g' - ikg\|_{-1+\varepsilon}
\]

\[
\leq \|v' - ikv\|_{-1+\varepsilon} + \|g'\|_0 + |k| \|g\|_0 < \infty.
\]
Hence w is a radiative function for $\{L, k, (k^2-i)l[g]\}$. We make use of Lemma 3.1 to obtain

$$\|w\|_{-1-\varepsilon} + \|w' - ikw\|_{-1+\varepsilon} + \|B^{1/2}w\|_{-1+\varepsilon} \lesssim \delta_1(1 + \|k\|)\|g\|_{1-\varepsilon},$$

where $\delta_1 = \delta_1(K)$ is given in (3.2). It is implied by (3.26) and (3.22) that

$$\|g\|_{-1-\varepsilon} + \|g' - ikg\|_{-1+\varepsilon} + \|B^{1/2}g\|_{-1+\varepsilon}$$

$$\lesssim (1 + |k|)\|g\|_0 + \|g''\|_0 + \|B^{1/2}g\|_0$$

$$\lesssim (3 + |k|)\|g\|_B \lesssim (3 + |k|)\|l\| \lesssim (3 + |k|)a_0\|l\|_{1-\varepsilon}.$$

Since $v = g + w$, (3.23) follows from (3.53), (3.54) and (3.27). Q.E.D.

Lemma 3.6. Let us assume Assumptions 1.1 and 1.2. Let $k_m \in \mathbb{C}^+$, $l_m \in \mathcal{U}_{1+\varepsilon}(I)$ for each $m = 1, 2, \ldots$. Let $v_m, m = 1, 2, \ldots$ be radiative functions for $\{L, k_m, l_m, 0\}$ such that

$$v_m \in H^{-1-\varepsilon}(I, X) \quad (m = 1, 2, \ldots).$$

Let us assume

$$\lim_{m \to \infty} k_m = k,$$

$$\lim_{m \to \infty} \|l - l_m\|_{1+\varepsilon} = 0$$

with $k \in \mathbb{C}^+$ and $l \in \mathcal{U}_{1+\varepsilon}(I)$. Then there exists the radiative function v for $\{L, k, l, 0\}$ satisfying

$$v_m \to v$$

both in $H^{-1-\varepsilon}(I, X)$ and in $\text{loc}H^{1}_{1+\varepsilon}(I, X)$ as $m \to \infty$.

Proof. As in the proof of Lemma 3.4 we put $v_m = g_m + w_m$, where $g_m \in H^{1/2}_0(B(I, X) \cap H^{1+\varepsilon}(I, X)$ is the solution of the equation

$$((g_m, (l + i)\varphi))_0 = \langle l_m, \varphi \rangle \quad (\varphi \in C^{2,0}_0(B(I, X),$$

and w_m is the radiative function for $\{L, k_m, (k^2-m-i)l[g_m], 0\}$ for each $m = 1, 2, \ldots$. For each pair (m, n) we have
and hence we obtain, using Lemma 3.5,

\[
\begin{align*}
|g_m - g_n|_B &\leq \beta_1(\sqrt{L}) \|l_m - l_n\| \\
|g_m - g_n|_{1+\varepsilon} &\leq \beta_2(\sqrt{L}) \|l_m - l_n\|_{1+\varepsilon}
\end{align*}
\] (3.60)

as \(m, n \to \infty\). We put \(g = \lim_{m \to \infty} g_m\). Then \(g \in H^1_{0;B}(I, X) \cap H^{1+\varepsilon}(I, X)\), and \(g\) is the solution of equation (3.48).

Now we turn to the sequence \(\{w_m\}\). Since the sequence \(\{l_m\}\) is uniformly bounded in \(\mathfrak{U}_{1+\varepsilon}(I)\), it follows from Lemma 3.4 and Lemma 3.5 that the sequence \(\{v_m\}_{1-\varepsilon} + \|v_m - ik v_m\|_{1+\varepsilon} + \|B^2 v_m\|_{1+\varepsilon}\), \(\{\|g_m\|B\}\) and \(\{\|g_m\|_{1+\varepsilon}\}\) are also uniformly bounded. Therefore, noting that \(w_m = v_m - g_m\), we obtain the uniform estimate

\[
\|w_m\|_{1-\varepsilon} + \|w_m' - ik w_m\|_{1+\varepsilon} + \|B^2 w_m\|_{1+\varepsilon} \leq \alpha \quad (m = 1, 2, \ldots)
\] (3.61)

with a constant \(\alpha > 0\). From (3.61) we have

\[
\sup_{m=1,2,\ldots} \|w_m\|_{B, (0, R)} < \infty
\] (3.62)

for any \(R \in I\). Hence, proceeding as in the proof of Lemma 3.1, we obtain a subsequence \(\{w_{m_j}\}\) of \(\{w_m\}\) which converges to \(w\) in \(\text{loc} H^1_{0;B}(I, X)\).

On the other hand, using Lemma 3.2 and the uniform boundedness of \(\{\|g\|_{1+\varepsilon}\}\), we have uniformly with respect to \(m\)

\[
\int_0^\infty (1+r)^{-1-\varepsilon} |w_m(r)|^2 dr \leq \alpha_0(\|w_m\|_{1-\varepsilon}^2 + |k_m^2 - i|^2 \|g_m\|_{1+\varepsilon}) \rho^{-\varepsilon}
\]

\[
= 0 (\rho^{-\varepsilon}) \quad (\rho \to \infty),
\]

where we have noted that \(\{k_m\}\) is uniformly bounded and \(w_m\) is a radiative function for \(\{L, k, (k_m^2 - i)l[g_m], 0\}\). It is implied by (3.63) and the convergence of \(\{w_m\}\) in \(\text{loc} H^1_{0;B}(I, X)\) that \(w_{m_j}\) converges to \(w\) in \(H^{1-\varepsilon}(I, X)\). Therefore, taking note of (3.61) and \(k_m \to k, m \to \infty\), we see that \(w\) is a radiative function for \(\{L, k, (k^2 - i)l[g], 0\}\) and we have

\[
w_{m_j} \to w \quad (j \to \infty)
\] (3.64)
both in $\text{loc} H^1_0(B(I, X))$ and $H^{-1-\varepsilon}(I, X)$.

Finally put $v_{m_j} = g_{m_j} + w_{m_j}$. Then we obtain from (3.60) and (3.64)

\begin{equation}
(3.65) \quad v_{m_j} \to v \quad (j \to \infty)
\end{equation}

both in $\text{loc} H^1_0(B(I, X))$ and $H^{-1-\varepsilon}(I, X)$, where $v = g + w$ is a radiative function for $\{L, k, l, 0\}$. Since v is unique by the uniqueness of the radiative function (Theorem 2.2), it follows from (3.65) that the original sequence $\{v_m\}$ itself converges to v both in $H^{-1-\varepsilon}(I, X)$ and $\text{loc} H^1_0(B(I, X))$.

Q.E.D.

We can now prove the existence theorem of the radiative function for $\{L, k, l, 0\}$, where $k \in \mathbb{C}^+$, $l \in \mathscr{U}_{1+\varepsilon}(I)$.

Theorem 3.7. Let us assume Assumptions 1.1 and 1.2. Let $k \in \mathbb{C}^+$ and $l \in \mathscr{U}_{1+\varepsilon}(I)$. Then there exists a unique radiative function $v = v(\cdot, k, l)$ for $\{L, k, l, 0\}$ in $H^{-1-\varepsilon}(I, X)$. If k belongs to a compact set K in \mathbb{C}^+ then we have

\begin{equation}
(3.66) \quad \|v\|_{-1-\varepsilon} + \|v' - ikv\|_{-1+\varepsilon} + \|B^2 v\|_{-1+\varepsilon} \leq \delta_2 \|l\|_{1+\varepsilon}
\end{equation}

with a constant $\delta_2 > 0$, depending only on K. Denote by Σ_0 the mapping

\begin{equation}
(3.67) \quad \Sigma_0: \mathbb{C}^+ \times \mathscr{U}_{1+\varepsilon}(I) \ni (k, l) \\
\quad \quad \rightarrow v(\cdot, k, l) \in H^{-1-\varepsilon}(I, X) \cap \text{loc} H^1_0(B(I, X)).
\end{equation}

Then Σ_0 is continuous as a mapping from $\mathbb{C}^+ \times \mathscr{U}_{1+\varepsilon}(I)$ into $H^{-1-\varepsilon}(I, X)$ and is also continuous as a mapping from $\mathbb{C}^+ \times \mathscr{U}_{1+\varepsilon}(I)$ into $\text{loc} H^1_0(B(I, X))$.

Proof. First assume that $\text{Im} k > 0$. Then from Lemma 3.5 we obtain a unique radiative function $v(\cdot, k, l)$ for $\{L, k, l, 0\}$ such that $v \in H^{1+\varepsilon}(I, X) \cap H^1_0(B(I, X))$. Next assume that $\text{Im} k = 0$. Then, putting for $m = 1, 2, \ldots$

\begin{equation}
(3.68) \quad \begin{cases}
k_m = k + \frac{i}{m} \\
v_m = v_m(\cdot, k_m, l),
\end{cases}
\end{equation}
we see from Lemma 3.6 that the radiative function \(v = v(\cdot, k, l) \) for \(\{L, k, l, 0\} \) is obtained as \(v = \lim_{m \to \infty} v_m \). The other statements follow from Lemma 3.4 and Lemma 3.6. Q.E.D.

Finally we prove the existence of the radiative function for \(\{L, k, l, u\} \).

Let \(v = v(\cdot, k, l, u) \) be a radiative function for \(\{L, k, l, u\} \), where \(k \in \mathbb{C}^+, l \in \mathcal{U}_{1+\varepsilon}(I) \) and \(u \in H^{1,B}(I, X) \). We define \(l_1 \in \mathcal{U}_{1+\varepsilon}(I) \) by

\[
< l_1, \varphi > = < l, \varphi > - ((\psi u, (L - k^2) \varphi))_0 \quad (\varphi \in C_0^{1,B}(I, X)),
\]

where \(\psi \in C^1(I), 0 \leq \psi \leq 1 \) and

\[
\psi(r) = \begin{cases}
1 & (0 < r \leq 1), \\
0 & (r \geq 2).
\end{cases}
\]

Then it is easy to see that \(v_0 = v - \psi u \) is a radiative function for \(\{L, k, l, 0\} \). Thus we can reduce the equation with the boundary value \(v(0) = u(0) \) to the equation with the boundary value \(v_0(0) = 0 \). Therefore, noting that \(l_1 = l_1(u) \) is a \(\mathcal{U}_{1+\varepsilon}(I) \)-valued continuous function on \(H^{1,B}(I, X) \), we obtain from Theorem 3.7 the following

Theorem 3.8. Let us assume Assumptions 1.1 and 1.2. Let \(k \in \mathbb{C}^+, l \in \mathcal{U}_{1+\varepsilon}(I) \) and \(u \in H^{1,B}(I, X) \). Then there exists a unique radiative function \(v = v(\cdot, k, l, u) \) for \(\{L, k, l, u\} \) in \(H^{-1-\varepsilon}(I, X) \). Denote by \(\Sigma \) the mapping

\[
\Sigma: \mathbb{C}^+ \times \mathcal{U}_{1+\varepsilon}(I) \times H^{1,B}(I, X) \ni (k, l, u) \\
\rightarrow v(\cdot, k, l, u) \in H^{-1-\varepsilon}(I, X) \cap \text{loc} H^{1,B}(\bar{I}, X).
\]

Then \(\Sigma \) is continuous as a mapping from \(\mathbb{C}^+ \times \mathcal{U}_{1+\varepsilon}(I) \times H^{1,B}(I, X) \) into \(H^{-1-\varepsilon}(I, X) \) and is also continuous as a mapping from \(\mathbb{C}^+ \times \mathcal{U}_{1+\varepsilon}(I) \times H^{1,B}(I, X) \) into \(\text{loc} H^{1,B}(\bar{I}, X) \).

§ 4. The Dependency of Radiative Functions on \(C(\tau) \)

Let \(C_m(\tau), m = 1, 2, \ldots \), be a sequence of operator-valued functions on
Let $C(r)$ be as above. In this section we study the relations between radiative functions for L and radiative functions for $L_m = -\frac{d^2}{dr^2} + B(r) + C_m(r)$ when $C_m(r) \to C(r)$ as $m \to \infty$.

Assumption 4.1. (a) For each $r \in I$ $C_m(r)$ is a symmetric operator in X with $\mathcal{D}(C_m(r)) = D$ such that $C_m(r) x \in C^1(I, X)$ for any $x \in D$. Moreover for any compact interval M in I there exists a constant $c(m)(M) > 0$ such that

\begin{equation}
\frac{d}{dr} C_m(r) x \leq c(m)(M) \left(|x| + |B^2(r) x| \right)
\end{equation}

holds for any $x \in D$ and any $r \in M$.

(b) There exists a constant $c_0 > 0$ such that

\begin{equation}
|C_m(r) x| \leq c_0 (1 + r)^{-1-\varepsilon} \left(|x| + |B^2(r) x| \right) \quad (x \in D, r \in I)
\end{equation}

for any $m=1, 2, \ldots$, where c_0 does not depend on m, and $0 < \varepsilon < 1$ is as given in (1.8).

(c) We have

\begin{equation}
\lim_{m \to \infty} |C(r) x - C_m(r) x| = 0
\end{equation}

for any $x \in D$ and any $r \in I$.

Since C_m is assumed to satisfy (a) and (b) of Assumption 4.1 for each $m=1, 2, \ldots, C_m(r)$ is so smooth and tends to zero at $r=\infty$ so rapidly that the results of §2 and §3 can be applied to the operator

\begin{equation}
L_m = -\frac{d^2}{dr^2} + B(r) + C_m(r),
\end{equation}

i.e., there exists a unique radiative function $v_m(r, k, l, u)$ for $\{L_m, k, l, u\}$, where $(k, l, u) \in C^+ \times \mathcal{U}_{1+\varepsilon}(I) \times H^{1,1}(I, X)$.

Theorem 4.2. Let $B(r)$ and $C(r)$ satisfy Assumptions 1.1 and 1.2. Let $C_m(r), m=1, 2, \ldots, $ satisfy Assumption 4.1. Let K be a compact set such that $K \subset C^+$ and let $v_m = v_m(r, k_m, l_m), m=1, 2, \ldots,$ be the radiative
function for \(\{L_m, k_m, l_m, 0\} \), where \(k_m \in K \) and \(l_m \in \mathcal{U}_{1+\delta}(I) \). Then there exists a constant \(\delta_0 > 0 \) such that

\[
(4.5) \quad \|v_m\|_{-1-\delta} + \|v'_m - ik_m v_m\|_{-1+\delta} + \|B^2 v_m\|_{-1+\delta} \leq \delta_0 \|l_m\|_{1+\delta}.
\]

\(\delta_0 \) depends only on \(K \).

Proof. Denote by \(g_m \) the radiative function for \(\{L_m, \sqrt{i}, l_m, 0\} \). We see from Lemma 3.5 that \(g_m \in H^{1+\delta}(I, X) \) for each \(m=1, 2, \ldots \). We denote by \(w_m \) the radiative function for \(\{L_m, k_m, (k_m^2 - i)l[-g_m, 0]\} \). Obviously we have \(v_m = g_m + w_m \). Proceeding as in the proof of Lemma 3.5, from \((4.2) \) we obtain uniformly for \(m=1, 2, \ldots \),

\[
(4.6) \quad \alpha \|\phi\|_B^2 \geq |(\phi, (L_m + i) \phi)_0| \geq \beta \|\phi\|_B^2 \quad (\phi \in C_0^0 B(I, X)),
\]

with constants \(\alpha, \beta > 0 \), whence follows that we obtain uniformly for \(m=1, 2, \ldots \)

\[
(4.7) \quad \begin{cases} \\
\|g_m\|_B \leq \gamma_0 \|l_m\|,
\\
\|g_m\|_{1+\epsilon} \leq \gamma_0 \|l_m\|_{1+\epsilon}
\end{cases}
\]

with a constant \(\gamma_0 > 0 \). Re-examining the proof of Lemma 1.6, we can see from \((4.2) \) that we obtain uniformly for \(m=1, 2, \ldots \)

\[
(4.8) \quad \|w'_m - ikw_m\|_{-1+\delta} + \|B^2 w_m\|_{-1+\delta} \leq \gamma_1 (\|w_m\|_{-1-\delta} + \|g_m\|_{1+\delta}),
\]

with a constant \(\gamma_1 = \gamma_1(K) > 0 \). Finally, proceeding as in the proof of Lemma 3.1, we can show by reduction to absurdity that we have uniformly for \(m=1, 2, \ldots \)

\[
(4.9) \quad \|w_m\|_{-1-\delta} \leq \gamma_2 \|g_m\|_{1+\delta}
\]

with a positive constant \(\gamma_2 = \gamma_2(K) \). Thus we have \((4.5) \) from \((4.7), (4.8), (4.9) \) and \((3.22) \) as follows:

\[
(4.10) \quad \begin{align*}
\|v_m\|_{-1-\delta} + \|v'_m - ik_m v_m\|_{-1+\delta} + \|B^2 v_m\|_{-1+\delta} \\
\leq \|w_m\|_{-1-\delta} + \|w'_m - ik_m w_m\|_{-1+\delta} + \|B^2 w_m\|_{-1+\delta} \\
+ \|g_m\|_0 + \|g'_m\|_0 + |k_m| \|g_m\|_0 + \|B^2 g_m\|_0
\end{align*}
\]
where we put $T = \sup_{m=1,2,...} |k_m|$, and a_0 is given as in (3.22). Q.E.D.

Theorem 4.3. Let $B(r)$ and $C(r)$ satisfy Assumptions 1.1 and 1.2. Let $C_m(r)$, $m=1, 2, ..., s$ satisfy Assumption 4.1.

(i) Let $k_m \in C^+$ and $l_m \in \mathcal{A}_{1+\epsilon}(I)$ such that

\[
\lim_{m \to \infty} k_m = k
\]

\[
\lim_{m \to \infty} \|l - l_m\|_{1+\epsilon} = 0
\]

with $k \in C^+$ and $l \in \mathcal{A}_{1+\epsilon}(I)$. Denote by $v_m(\cdot, k_m, l_m)$ the radiative function for $\{L_m, k_m, l_m, 0\}$ for each $m=1, 2, ...$. Then we have

\[
v_m(\cdot, k_m, l_m) \to v(\cdot, k, l)
\]

both in $H^{-1-\epsilon}(I, X)$ and in $\text{loc} H^{1, B}(I, X)$, where $v(\cdot, k, l)$ is the radiative function for $\{L, k, l, 0\}$.

(ii) Let K be a compact set in C^+ and let M be a compact metric space. For each $m=1, 2, ..., l_m(k, s)$ is assumed to be a $\mathcal{A}_{1+\epsilon}(I)$-valued, continuous function on $K \times M$ such that

\[
\lim_{m \to \infty} \|l(k, s) - l_m(k, s)\|_{1+\epsilon} = 0
\]

uniformly on $K \times M$ with a $\mathcal{A}_{1+\epsilon}(I)$-valued, continuous function $l(k, s)$ on $K \times M$. Denote by $v_m(\cdot, k, s)$ the radiative function for $\{L_m, k, l_m(k, s), 0\}$. Then we have

\[
\lim_{m \to \infty} v_m(\cdot, k, s) = v(\cdot, k, s)
\]

both in $H^{-1-\epsilon}(I, X)$ and in $\text{loc} H^{1, B}(I, X)$ uniformly on $K \times M$, where $v(\cdot, k, s)$ is the radiative function for $\{L, k, l(k, s), 0\}$.

Proof. First let us prove (i). Let g_m be the radiative function for
\(\{L, \sqrt{t}, l_m, 0\} \) and let \(w_m \) be the radiative function for \(\{L, k, (k_m^2 - i) l \lfloor g_m \rfloor, 0\} \). Then we have \(v_m = g_m + w_m \). Similarly we have \(v = g + w \), where \(g \) is the radiative function for \(\{L, \sqrt{t}, l, 0\} \) and \(w \) is the radiative function for \(\{L, k, (k^2 - i) l \lfloor g \rfloor, 0\} \). It follows from Lemma 3.5 and the regularity theorem of Jäger [5] that \(g, g_m \in H^{1+\varepsilon}(I, X) \cap H_0^1(I, X) \cap C^2(I, D) \). We can show that

\[
\lim_{m \to \infty} \|(C - C_m) g\|_{1+\varepsilon} = 0.
\]

In fact we obtain from (4.3) and the fact that \(g(r) \in D \)

\[
\lim_{m \to \infty} |(C(r) - C_m(r)) g(r)| = 0 \quad (r \in I),
\]

and also obtain from (1.8) and (4.2)

\[
|\langle (C(r) - C_m(r)) g(r) \rangle|^2 \leq [(c_2 + c_0)(1 + r)^{-1-\varepsilon}(| g(r) | + | B_1^0 r g(r) |)]^2
\]

\[
\leq 2(c_2 + c_0)^2(1 + r)^{-2-2\varepsilon}(| g(r) |^2 + | B_1^0 r g(r) |^2)
\]

\[
\in L^1(I, (1 + r)^{1+\varepsilon} dr).
\]

(4.15) directly follows from (4.16) and (4.17). Noting that \(g - g_m \) satisfies the equation

\[
((g - g_m, (L + i) \varphi))_0 = \langle l - l_m, \varphi \rangle + (((C - C_m) g, \varphi))_0
\]

\[
(\varphi \in C_0^1 B(I, X)),
\]

We see from (4.7) and (4.15) that

\[
\| g - g_m \|_B \leq \eta_0 \{ |l - l_m| + \| (C - C_m) g \|_{1+\varepsilon} \} \to 0,
\]

\[
\| g - g_m \|_{1+\varepsilon} \leq \eta_0 \{ |l - l_m|_{1+\varepsilon} + \| (C - C_m) g \|_{1+\varepsilon} \} \to 0
\]

as \(m \to \infty \). Using (4.19) and Theorem 4.2, we can proceed as in the proof of Lemma 3.6 to show that the sequence \(w_m \) converges to \(w \) both in \(H^{-1-\varepsilon}(I, X) \) and in \(\text{loc} \, H_0^1(B(I, X)) \). Thus we have shown that \(v_m = g_m + w_m \) converges to \(v = g + w \) both in \(H^{-1-\varepsilon}(I, X) \) and in \(\text{loc} \, H_0^1(B(I, X)) \) which completes the proof of (i).
Next let us prove (ii). It follows from (i) that for each pair \((k, s)\in K\times M\) \(v_m(\cdot, k, s)\) converges to \(v(\cdot, k, s)\) both in \(H^{-1-\varepsilon}(I, X)\) and in \(\text{loc} H_0^{1-B}(I, X)\). Assume that the convergence of \(v_m\) in \(H^{-1-\varepsilon}(I, X)\) is not uniform on \(K\times M\). Then there exists \(\varepsilon_0>0\) and the set of positive integers \(\{m_j\}_{j=1}^\infty\) and \((k_j, s_j)\in K\times M\) such that \(m_j\to\infty\) as \(j\to\infty\) and
\[
\|v(\cdot, k_j, s_j) - v_m(\cdot, k_j, s_j)\|_{-1-\varepsilon} \geq \varepsilon_0. \tag{4.20}
\]
Since the set \(\{(k_j, s_j) | j=1, 2, \ldots\}\) has at least an accumulating point \((k_0, s_0)\in K\times M\), we can assume \(k_j\to k_0\) and \(s_j\to s_0\) without loss of generality. Then, using the continuity of \(l(k, s)\) and the uniform convergence of \(l_m(k, s)\), we obtain
\[
\|l(k_0, s_0) - l_m(k_j, s_j)\|_{1+\varepsilon} \leq \|l(k_0, s_0) - l(k_j, s_j)\|_{1+\varepsilon} + \|l(k_j, s_j) - l_m(k_j, s_j)\|_{1+\varepsilon} \to 0, \tag{4.21}
\]
\(j\to\infty\).

Therefore it follows from (i) that
\[
\|v(\cdot, k_0, s_0) - v_m(\cdot, k_j, s_j)\|_{-1-\varepsilon} \to 0, \quad j\to\infty. \tag{4.22}
\]
On the other hand we obtain from Lemma 3.6
\[
\|v(\cdot, k_0, s_0) - v(\cdot, k_j, s_j)\|_{-1-\varepsilon} \to 0, \quad j\to\infty. \tag{4.23}
\]
(4.22) and (4.23) are combined to give \(\|v(\cdot, k_j, s_j) - v_m(\cdot, k_j, s_j)\|_{-1-\varepsilon} \to 0, j\to\infty\), which contradicts (4.20). Hence \(v_m(\cdot, k, s)\) converges to \(v(\cdot, k, s)\) in \(H^{-1-\varepsilon}(I, X)\) uniformly for \((k, s)\in K\times M\). Similarly we can show that \(v_m(\cdot, k, s)\) converges to \(v(\cdot, k, s)\) in \(\text{loc} H_0^{1-B}(I, X)\) uniformly for \((k, s)\in K\times M\).

By an argument similar to the one used in obtaining Theorem 3.8 from Theorem 3.7, we can show the following

Theorem 4.4. Let \(B(r), C(r)\) and \(C_m(r)\), \(m=1, 2, \ldots\), be as in Theorem 4.3. Let \(u\in H^{1-B}(I, X)\).

(i) Let \(k_m\in C^+\) and \(l_m\in \mathcal{U}_{1+\varepsilon}(I)\) satisfy (4.11). Denote by \(v_m(\cdot, k_m, l_m, u)\) the radiative function for \(\{L_m, k_m, l_m, u\}\) for each \(m=1, 2, \ldots\).
Then we have $v_m(\cdot, k_m, l_m, u) \to v(\cdot, k, l, u)$, $m \to \infty$, both in $H^{-1-\varepsilon}(I, X)$ and in $\text{loc} \, H^{1,B}(\tilde{I}, X)$, where $v(\cdot, k, l, u)$ is the radiative function for \{L, k, l, u\}.

(ii) Let $k, M, l_m(k, s)$ and $l(k, s)$ be as in (ii) of Theorem 4.3. Let (4.13) be satisfied. Then we have

\begin{equation}
\lim_{m \to \infty} v_m(\cdot, k_m, s_m, u) = v(\cdot, k, s, u)
\end{equation}

both in $H^{-1-\varepsilon}(I, X)$ and in $\text{loc} \, H^{1,B}(\tilde{I}, X)$ uniformly on $K \times M$, where $v_m(\cdot, k_m, s_m, u)$ and $v(\cdot, k, s, u)$ are the radiative functions for \{L_m, k_m, l_m(k, s), u\} and \{L, k, l(k, s), u\}, respectively.

§5. The Schrödinger Operator in \mathbb{R}^n ($n \geq 3$)

In this section we apply the results obtained in the preceding sections to the Schrödinger operator in \mathbb{R}^n ($n \geq 3$).

Let $X = L^2(S^{n-1})$, S^{n-1} being $(n-1)$-sphere. We define a unitary operator U from $L^2(\mathbb{R}^n)$ onto $H^0(I, X)$ by

\begin{equation}
(UF)(r) = r^{n-1} F(r \omega) \quad (F(\gamma) \in L^2(\mathbb{R}^n)),
\end{equation}

where $r = |\gamma|$ and $\omega = \frac{\gamma}{r} \in S^{n-1}$.

Let us consider the Laplacian on \mathbb{R}^n

\begin{equation}
-\Delta F(\gamma) = - \sum_{i=1}^{n} \frac{\partial^2 F}{\partial y_i^2}.
\end{equation}

We denote by H_0 the restriction of $-\Delta$ to $C^\infty_0(\mathbb{R}^n)$, i.e.,

\begin{align}
\mathcal{D}(H_0) &= C^\infty_0(\mathbb{R}^n), \\
H_0 \Phi &= -\Delta \Phi.
\end{align}

As is well known, we have for $\Phi \in C^\infty_0(\mathbb{R}^n)$

\begin{equation}
UH_0 \Phi = L_0 U \Phi,
\end{equation}

16) $C^\infty_0(\mathbb{R}^n)$ is the set of all infinitely continuously differentiable functions on \mathbb{R}^n with compact carrier.
where

\[
\begin{aligned}
L_0 &= -\frac{d^2}{dr^2} + B(r) \\
\mathcal{D}(B(r)) &= D = \mathcal{D}(\mathcal{A}_n), \\
B(r) &= \frac{1}{r^2} \left(-\mathcal{A}_n + \frac{(n-1)(n-3)}{4}\right),
\end{aligned}
\]

(5.5)

and \(\mathcal{A}_n\) is the Laplace-Beltrami operator on \(S^{n-1}\). As is well-known, \(-\mathcal{A}_n\) is a non-negative, self-adjoint operator in \(L^2(S^{n-1})\), and hence we can easily see that \(B(r)\) satisfies (a) and (b) of Assumptions 1.1 and 1.2.

We obtain from (5.4)

\[
\begin{aligned}
U\mathcal{D}_L^1(\mathbb{R}^n) &= H^1_0(I, X) \quad (F \in \mathcal{D}^1(\mathbb{R}^n)).
\end{aligned}
\]

(5.6)

Let \(\mathcal{V}(\mathbb{R}^n)\) be the set of all linear continuous functionals \(\alpha\) on \(\mathcal{D}_L^1(\mathbb{R}^n)\). \(\mathcal{V}(\mathbb{R}^n)\) is a Banach space with the norm

\[
|\alpha| = \sup \{ |\langle \alpha, F \rangle| ; F \in \mathcal{D}_L^1(\mathbb{R}), \|F\|_1 = 1\}.
\]

(5.7)

Then a linear mapping \(\bar{U}\) from \(\mathcal{V}(\mathbb{R}^n)\) into \(\mathcal{D}(I)\) is defined by

\[
\langle \bar{U}\alpha, \varphi \rangle = \langle \alpha, U^{-1}\varphi \rangle \quad (\varphi \in H^1_0(I, X)).
\]

(5.8)

We have

\[
\begin{cases}
\bar{U}\mathcal{V}(\mathbb{R}^n) = \mathcal{V}(I), \\
|\alpha| = \|\bar{U}\alpha\|.
\end{cases}
\]

(5.9)

Denote by \(q(y)\) a real-valued function on \(\mathbb{R}^n\). \(q(y)\) is assumed to satisfy the following conditions:

\(\text{Q) } q(y) \text{ is continuously differentiable on } \mathbb{R}^n \text{ and behaves like }\)

\(O(|y|^{-1-\epsilon}) \quad (\epsilon > 0) \text{ at infinity, i.e., there exist constants } c > 0, \rho > 0 \text{ such that }\)

\(17) \quad \text{The Hilbert space } \mathcal{D}_L^1(\mathbb{R}^n) \text{ is defined as the completion of } C^\infty_0(\mathbb{R}^n) \text{ in the norm }\)

\[
|F|_{H^1} = \left\{ \int_{\mathbb{R}^n} \left\{ \sum_{i=1}^n \left| \frac{\partial F}{\partial y_i} \right|^2 + |F(y)|^2 \right\} dx \right\}^{1/2}
\]
\(|q(y)| \leq c |y|^{-1-\varepsilon} \quad (|y| \geq \rho) \)

with \(0 < \varepsilon < 1 \).

Let us define \(C(r) \) by
\[
\begin{cases}
C(r) = q(r\omega) \times \\
\mathcal{D}(C(r)) = D.
\end{cases}
\]

It is easy to see that \(C(r) \) satisfies Assumptions 1.1 and 1.2.

Define a differential operator \(H \) by
\[
\begin{cases}
\mathcal{D}(H) = C^\omega_\omega(\mathbb{R}^n) \\
H\Phi = -\Delta \Phi + q(y) \Phi.
\end{cases}
\]

Then we have
\[
UH\Phi = LU\Phi \quad (\Phi \in C^\omega_\omega(\mathbb{R}^n)),
\]
where
\[
L = -\frac{d^2}{dt^2} + B(r) + C(r).
\]

Denote by \(\mathcal{V}_{1+\varepsilon}(\mathbb{R}^n) \) the set of all \(\alpha \in \mathcal{V}(\mathbb{R}^n) \) such that
\[
|\alpha|_{1+\varepsilon} = \sup \{ |<\alpha, (1+r)^{1+\varepsilon} F>|; F \in \mathcal{D}_{1+\varepsilon}(\mathbb{R}^n), \|F\|_{(1)} = 1 \} < \infty.
\]

We have \(\tilde{\mathcal{V}}_{1+\varepsilon}(\mathbb{R}^n) = \mathcal{V}_{1+\varepsilon}(I) \) and \(|\alpha|_{1+\varepsilon} = \|\tilde{\mathcal{V}}\alpha\|_{1+\varepsilon} \) for \(\alpha \in U_{1+\varepsilon}(\mathbb{R}^n) \).

We now give the definition of the radiative function for \(H \) as follows:

Let \(k \in \mathbb{C}^+ \) and \(\alpha \in \mathcal{V}(\mathbb{R}^n) \). Then \(F \in \text{loc} \mathcal{D}_{1+\varepsilon}(\mathbb{R}^n) \)

is called the radiative function for \(\{H, k, \alpha\} \), if \(F \) satisfies the following conditions:

1. For any \(\Phi \in C^\omega_\omega(\mathbb{R}^n) \) we have
\[
(F, (H-k^2)\Phi)_{L^2(\mathbb{R}^n)} = <\alpha, \Phi>.
\]

18) \(\text{loc} \mathcal{D}_{1+\varepsilon}(\mathbb{R}^n) \) is the set of all \(F(y) \) on \(\mathbb{R}^n \) such that \(\phi_n F \in \mathcal{D}_{1+\varepsilon}(\mathbb{R}^n) \) for any \(n = 1, 2, \ldots \), where \(\phi_n \in C^\omega_\omega(\mathbb{R}^n) \), \(0 \leq \phi_n \leq 1 \) and
\[
\phi_n(x) = \begin{cases}
1 & \text{for } |x| \leq n, \\
0 & \text{for } |x| \geq n+1.
\end{cases}
\]
(2) The "radiation condition"

\[
(5.17) \quad \int_{|y| = 1} (1 + |y|)^{-1+\varepsilon} \left| \frac{\partial F}{\partial y} - ikF(y) \right|^2 dy < \infty
\]

holds.

Let F be the radiative function for $\{H, k, 0\}$, $k \in \mathbb{C}^+$. Then, putting $v = UF \in \text{loc} \, H^1_B(\bar{I}, X)$, we have

\[
(5.18) \quad ((v, (L - k^2) \varphi))_0 = 0 \quad (\varphi \in C_0^2(I, X)),
\]

and

\[
(5.19) \quad \left\| v - \frac{n - 1}{2r} v - ikv \right\|_{-1+\varepsilon, (1, \infty)} < \infty.
\]

Modifying slightly the proof of Lemma 2.1, we obtain

\[
(5.20) \quad \left\| v'(r) - \frac{n - 1}{2r} v(r) - ikv(r) \right\|^2
\]

\[
= \left| v' + \left(\text{Im} k - \frac{n - 1}{2r} \right) v(r) \right|^2 + (\text{Re} k)^2 |v(r)|^2
\]

\[
- 2(\text{Re} k) \text{Im} (v'(r), v(r))
\]

\[
= \left| v'(r) + \left(\text{Im} k - \frac{n - 1}{2r} \right) v(r) \right|^2 + (\text{Re} k)^2 |v(r)|^2
\]

\[
+ 4(\text{Re} k)^2 (\text{Im} k) \|v\|_{0, (0, r)}^2.
\]

If $\text{Im} k \neq 0$, then we see from (5.20)

\[
(5.21) \quad \lim_{r_j \to \infty} \|v\|_{0, (0, r_j)}^2
\]

\[
\leq \frac{1}{4(\text{Re} k)^2 (\text{Im} k)} \lim_{r_j \to \infty} \left| v'(r_j) - \frac{n - 1}{2r} v(r_j) - ikv(r_j) \right|^2 = 0
\]

along some sequence $\{r_j\}_{j=1}^\infty$, and hence $\|v\|_0 = 0$, i.e., $v \equiv 0$. If $\text{Im} k = 0$, then we obtain from (5.20)

\[
(5.22) \quad \left| v'(r) - \frac{n - 1}{2r} v(r) - ikv(r) \right|^2
\]

\[
\geq \left| v'(r) - \frac{n - 1}{2r} v(r) \right|^2 + (\text{Re} k)^2 |v(r)|^2
\]
\[\frac{1}{2} |v'(r)|^2 + \left(k^2 - \frac{(n-1)^2}{4r^2} \right) |v(r)|^2 \]
\[\geq \frac{1}{2} \left\{ |v'(r)|^2 + k^2 |v(r)|^2 \right\}, \quad \left(r \geq \frac{n-1}{\sqrt{2k}} \right), \]
whence follows \(\lim_{r \to \infty} (|v'(r)|^2 + k^2 |v(r)|^2) = 0 \). Therefore, proceeding as in the proof of Theorem 2.2, we have \(v \equiv 0 \). Thus the uniqueness of the radiative function for \(H \) has been proved.

Next let \(\alpha \in \mathcal{V}_{1,\varepsilon}(\mathbb{R}^n) \) and \(k \in \mathbb{C}^+ \). Since we have \(\tilde{U}\alpha \in \mathcal{V}_{1,\varepsilon}(I) \), it follows from Theorem 3.7 that there exists the radiative function \(v = v(\cdot, k, \tilde{U}\alpha) \) for \(\{L, k, \tilde{U}\alpha, 0\} \). Put

\[(5.23) \quad F = U^{-1} v(\cdot, k, \tilde{U}\alpha). \]

Then \(F \in \text{loc} \mathcal{L}_2(\mathbb{R}^n) \) and it follows from (5.23) that

\[(5.24) \quad \langle F, (H - \overline{k}^2) \Phi \rangle_{\mathcal{L}_2(\mathbb{R}^n)} = \langle (v, (L - \overline{k}^2) U\Phi) \rangle_0 = \langle \tilde{U}\alpha, U\Phi \rangle = \langle \alpha, \Phi \rangle \]
holds for any \(\Phi \in C_0^\infty(\mathbb{R}^n) \). Since \(v \in H^{-1-\varepsilon}(I, X) \) and \(0 < \varepsilon < 1 \), we have \(\frac{n-1}{2r} \in H^{-1+\varepsilon}(1, \infty), X) \). This together with \(v' - ikv \in H^{-1+\varepsilon}(I, X) \) implies that \(v' - ikv - \frac{n-1}{2r} v \in H^{-1+\varepsilon}(1, \infty), X) \). Hence we obtain

\[(5.25) \quad \int_{|y| \geq 1} \left(1 + |y| \right)^{-1-\varepsilon} \left| \frac{\partial F}{\partial |y|} - ikF(y) \right|^2 dy < \infty. \]

Therefore it has been shown that \(F = U^{-1} v \) is the radiative function for \(\{H, k, \alpha\} \). It follows from \(v \in H^{-1-\varepsilon}(I, X) \) that \(F \in L^2(\mathbb{R}^n, (1 + |y|)^{-1-\varepsilon}) \). Thus we obtain

Theorem 5.1. Let \(n \) be an integer such that \(n \geq 3 \). Let \(q(y) \) satisfy the condition (Q). Then for given \(k \in \mathbb{C}^+ \) and \(\alpha \in \mathcal{V}(\mathbb{R}^n) \) the radiative function \(F(\cdot, k, \alpha) \) for \(\{H, k, \alpha\} \) is unique. For given \(k \in \mathbb{C}^+ \) and \(\alpha \in \mathcal{V}_{1,\varepsilon}(\mathbb{R}^n) \) there exists the radiative function \(F(\cdot, k, \alpha) \) for \(\{H, k, \alpha\} \) such that \(F(\cdot, k, \alpha) \in L^2(\mathbb{R}^n, (1 + |y|)^{-1-\varepsilon}) \). Denote by \(\sigma \) the mapping
(5.26) \[\sigma : C^+ \times \nu_{1+\varepsilon}(\mathbb{R}^n) \ni (k, \alpha) \rightarrow F(\cdot, k, \alpha) \in L^2(\mathbb{R}^n, (1 + |y|)^{-1-\varepsilon} dy) \cap \text{loc } \mathcal{D}'(\mathbb{R}^n). \]

Then \(\sigma \) is continuous as a mapping from \(C^+ \times \nu_{1+\varepsilon}(\mathbb{R}^n) \) into \(L^2(\mathbb{R}^n, (1 + |y|)^{-1-\varepsilon} dy) \) and is also continuous as a mapping from \(C^+ \times \nu_{1+\varepsilon}(\mathbb{R}^n) \) into \(\text{loc } \mathcal{D}'(\mathbb{R}^n) \).

References

