A short proof of Morley’s theorem

Yoshitake Hashimoto

Yoshitake Hashimoto received his D.Sc. from University of Tokyo in 1990. He then had a postdoctoral position at University of Tokyo. Since 1994 he has a position at Osaka City University, where he is now associate professor in the Department of Mathematics. His main fields of research are topology and differential geometry.

We present a proof of the following:

Morley’s theorem (1899) In any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle.

Proof. Let \(\alpha, \beta, \gamma \) be arbitrary positive angles with \(\alpha + \beta + \gamma = 60^\circ \). For any angle \(\eta \) we put \(\eta' := \eta + 60^\circ \).

Let \(\triangle DEF \) be an equilateral triangle, and \(A \) [resp. \(B, C \)] be the point lying opposite to \(D \) [resp. \(E, F \)] with respect to \(EF \) [resp. \(FD, DE \)] and satisfying \(\angle AFE = \beta', \angle AEF = \gamma' \) [resp. \(\angle BDF = \gamma', \angle BFD = \alpha'; \angle CED = \alpha', \angle CDE = \beta' \)]. Then \(\angle EAF = 180^\circ - (\beta' + \gamma') = \alpha \), and similarly \(\angle FBD = \beta \), \(\angle DCE = \gamma \). By symmetry it is enough to show that \(\angle BAF = \alpha \) and \(\angle ABF = \beta \) as well.

The perpendiculars from \(F \) to \(AE \) and \(BD \) have the same length \(s \). If the perpendicular from \(F \) to \(AB \) has length \(h < s \), then \(\angle BAF < \alpha \) and \(\angle ABF < \beta \). If, on the other hand, \(h > s \), then \(\angle BAF > \alpha \) and \(\angle ABF > \beta \). Since

\[
\angle BAF + \angle ABF = \alpha' + \beta' + 60^\circ - 180^\circ = \alpha + \beta,
\]

we see that necessarily \(h = s \) and \(\angle BAF = \alpha, \angle ABF = \beta \). \(\square \)

Yoshitake Hashimoto
Department of Mathematics
Graduate School of Science
Osaka City University
3-3-138, Sugimoto
Sumiyoshi-ku
Osaka, 558-8585 Japan
e-mail hashimot@sci.osaka-cu.ac.jp