Appendix to V. Mathai and J. Rosenberg’s paper
“A noncommutative sigma-model”

Hanfeng Li

Mathematics Subject Classification (2010). Primary 58B34; Secondary 46L87.

Keywords. Noncommutative tori, energy.

This short note is an appendix to [6].

Let $\theta \in \mathbb{R}$. Denote by A_θ the rotation C*-algebra generated by unitaries U and V subject to $UV = e^{2\pi i \theta} VU$, and by A_θ^∞ its canonical smooth subalgebra. Denote by Tr the canonical faithful tracial state on A_θ determined by $\text{Tr}(U^m V^n) = \delta_{m,0} \delta_{n,0}$ for all $m, n \in \mathbb{Z}$. Denote by δ_1 and δ_2 the unbounded closed $*$-derivations of A_θ defined on some dense subalgebras of A_θ and determined by $\delta_1(U) = 2\pi i U$, $\delta_1(V) = 0$, and $\delta_2(U) = 0$, $\delta_2(V) = 2\pi i V$. The energy [9], $E(u)$, of a unitary u in A_θ is defined as

$$E(u) = \frac{1}{2} \text{Tr}(\delta_1(u)^* \delta_1(u) + \delta_2(u)^* \delta_2(u))$$

(1)

when u belongs to the domains of δ_1 and δ_2, and ∞ otherwise.

Rosenberg has the following conjecture [9], Conjecture 5.4, p. 108.

Conjecture 1. For any $m, n \in \mathbb{Z}$, in the connected component of $U^m V^n$ in the unitary group of A_θ^∞, the functional E takes its minimal value exactly at the scalar multiples of $U^m V^n$.

For a $*$-endomorphism φ of A_θ^∞, its energy [6], $\mathcal{L}(\varphi)$, is defined as $2E(\varphi(U)) + 2E(\varphi(V))$. Mathai and Rosenberg’s Conjecture 3.1 in [6] about the minimal value of $\mathcal{L}(\varphi)$ follows directly from Conjecture 1.

Denote by H the Hilbert space associated to the GNS representation of A_θ for Tr, and denote by $\| \cdot \|_2$ its norm. We shall identify A_θ as a subspace of H as usual. Then (1) can be rewritten as

$$E(u) = \frac{1}{2} (\|\delta_1(u)\|_2^2 + \|\delta_2(u)\|_2^2).$$

*Partially supported by NSF Grant DMS-0701414.
Now we prove Conjecture 1, and hence also prove Conjecture 3.1 of [6].

Theorem 2. Let \(\theta \in \mathbb{R} \) and \(m, n \in \mathbb{Z} \). Let \(u \in A_\theta \) be a unitary whose class in \(K_1(A_\theta) \) is the same as that of \(U^mV^n \). Then \(E(u) \geq E(U^mV^n) \), and “=” holds if and only if \(u \) is a scalar multiple of \(U^mV^n \).

Proof. We may assume that \(u \) belongs to the domains of \(\delta_1 \) and \(\delta_2 \). Set \(a_j = u^* \delta_j(u) \) for \(j = 1, 2 \). For any closed \(*\)-derivation \(\delta \) defined on a dense subset of a unital \(C^* \)-algebra \(A \) and any tracial state \(\tau \) of \(A \) vanishing on the range of \(\delta \), if unitaries \(v_1 \) and \(v_2 \) in the domain of \(\delta \) have the same class in \(K_1(A) \), then \(\tau(v_1^* \delta(v_1)) = \tau(v_2^* \delta(v_2)) \) [7], p. 281. Thus

\[
\text{Tr}(a_j) = \text{Tr}((U^mV^n)^* \delta_j(U^mV^n)) = \begin{cases} 2\pi im & \text{if } j = 1, \\ 2\pi in & \text{if } j = 2. \end{cases}
\]

We have

\[
\|\delta_j(u)\|_2^2 = \|a_j\|_2^2 = \|\text{Tr}(a_j)\|_2^2 + \|a_j - \text{Tr}(a_j)\|_2^2 \geq \|\text{Tr}(a_j)\|_2^2 = \begin{cases} 4\pi^2m^2 & \text{if } j = 1, \\ 4\pi^2n^2 & \text{if } j = 2, \end{cases}
\]

and “=” holds if and only if \(a_j = \text{Tr}(a_j) \). It follows that \(E(u) \geq 2\pi^2(m^2 + n^2) \), and “=” holds if and only if \(\delta_1(u) = 2\pi imu \) and \(\delta_2(u) = 2\pi inu \). Now the theorem follows from the fact that the elements \(a \) in \(A_\theta \) satisfying \(\delta_1(a) = 2\pi ima \) and \(\delta_2(a) = 2\pi ina \) are exactly the scalar multiples of \(U^mV^n \).

When \(\theta \in \mathbb{R} \) is irrational, the \(C^* \)-algebra \(A_\theta \) is simple [10], Theorem 3.7, has real rank zero [1], Theorem 1.5, and is an \(A\mathbb{T} \)-algebra [5], Theorem 4. It is a result of Elliott that for any pair of \(A\mathbb{T} \)-algebras with real rank zero, every homomorphism between their graded \(K \)-groups preserving the graded dimension range is induced by a \(*\)-homomorphism between them [4], Theorem 7.3. The graded dimension range of a unital simple \(A\mathbb{T} \)-algebra \(A \) is the subset \(\{(g_0, g_1) \in K_0(A) \oplus K_1(A) : 0 \preceq g_0 \leq [1_A]_0 \} \cup \{(0, 0)\} \) of the graded \(K \)-group \(K_0(A) \oplus K_1(A) \) [8], p. 51. It follows that, when \(\theta \) is irrational, for any group endomorphism \(\psi \) of \(K_1(A_\theta) \), there is a unital \(*\)-endomorphism \(\varphi \) of \(A_\theta \) inducing \(\psi \) on \(K_1(A_\theta) \). It is an open question when one can choose \(\varphi \) to be smooth in the sense of preserving \(A_\theta^\infty \), though it was shown in [2], [3] that if \(\theta \) is irrational and \(\varphi \) restricts to a \(*\)-automorphism of \(A_\theta^\infty \), then \(\psi \) must be an automorphism of the rank-two free abelian group \(\mathbb{Q} \) with determinant 1. When \(\psi \) is the zero endomorphism, from Theorem 2 one might guess that \(\mathcal{L}(\varphi) \) could be arbitrarily small. It is somehow surprising, as we show now, that in fact there is a
common positive lower bound for $\mathcal{L}(\varphi)$ for all $0 < \theta < 1$. This answers a question Rosenberg raised at the Noncommutative Geometry workshop at Oberwolfach in September 2009.

Theorem 3. Suppose that $0 < \theta < 1$. For any unital \ast-endomorphism φ of A_θ, one has $\mathcal{L}(\varphi) \geq 4(3 - \sqrt{5})\pi^2$.

Theorem 3 is a direct consequence of the following lemma.

Lemma 4. Let $\theta \in \mathbb{R}$ and let u, v be unitaries in A_θ with $uv = \lambda vu$ for some $\lambda \in \mathbb{C} \setminus \{1\}$. Then $E(u) + E(v) \geq 2(3 - \sqrt{5})\pi^2$.

Proof. We have

$$\text{Tr}(uv) = \text{Tr}(\lambda vu) = \lambda \text{Tr}(uv),$$

and hence $\text{Tr}(uv) = 0$. Thus

$$-\text{Tr}(u) \text{Tr}(v) = \text{Tr}(uv - \text{Tr}(u) \text{Tr}(v)) = \text{Tr}((u - \text{Tr}(u))v + \text{Tr}(u)(v - \text{Tr}(v))) = \text{Tr}((u - \text{Tr}(u))v).$$

We may assume that both u and v belong to the domains of δ_1 and δ_2. For any $m, n \in \mathbb{Z}$, denote by $a_{m,n}$ the Fourier coefficient $\langle u, U^m V^n \rangle$ of u. Then $a_{0,0} = \text{Tr}(u)$ and

$$(2\pi)^2 \|u - \text{Tr}(u)\|_2^2 = \sum_{m,n \in \mathbb{Z}, m^2 + n^2 > 0} |2\pi a_{m,n}|^2 \leq \sum_{m,n \in \mathbb{Z}, m^2 + n^2 > 0} |2\pi a_{m,n}|^2 (m^2 + n^2) = \|\delta_1(u)\|_2^2 + \|\delta_2(u)\|_2^2 = 2E(u).$$

Thus

$$|\text{Tr}(u)|^2 = \|\text{Tr}(u)\|_2^2 = \|u\|_2^2 - \|u - \text{Tr}(u)\|_2^2 \geq 1 - \frac{1}{2\pi^2} E(u)$$

and

$$|\text{Tr}((u - \text{Tr}(u))v)| \leq \|(u - \text{Tr}(u))v\|_2 = \|u - \text{Tr}(u)\|_2 \leq \left(\frac{1}{2\pi^2} E(u)\right)^{1/2}. $$

Similarly, $|\text{Tr}(v)|^2 \geq 1 - \frac{1}{2\pi^2} E(v)$.

Write $\frac{1}{2\pi^2} E(u)$ and $\frac{1}{2\pi^2} E(v)$ as t and s, respectively. We just need to show that $t + s \geq 3 - \sqrt{5}$. If $t \geq 1$ or $s \geq 1$, then this is trivial. Thus we may assume that $1 - t, 1 - s > 0$. Then

$$(1 - t)(1 - s) \leq |\text{Tr}(u) \text{Tr}(v)|^2 \leq t.$$
Equivalently, \(t(1 - s) \geq 1 - (t + s) \). Without loss of generality, we may assume \(s \geq t \). Write \(t + s \) as \(w \). Then

\[
t(1 - w/2) \geq t(1 - s) \geq 1 - (t + s) = 1 - w,
\]

and hence

\[
w = t + s \geq \frac{1 - w}{1 - w/2} + \frac{w}{2}.
\]

It follows that \(w^2 - 6w + 4 \leq 0 \). Thus \(w \geq 3 - \sqrt{5} \). \qed

References

Received October 5, 2009

H. Li, Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, U.S.A.
E-mail: hfli@math.buffalo.edu