Algebraic Geometry — Compactified Jacobians of Néron type, by Lucia Caporaso, communicated on 12 November 2010.

Abstract. — We characterize stable curves X whose compactified degree-d Jacobian is of Néron type. This means the following: for any one-parameter regular smoothing of X, the special fiber of the Néron model of the Jacobian is isomorphic to a dense open subset of the degree-d compactified Jacobian of X. It is well known that compactified Jacobians of Néron type have the best modular properties, and that they are endowed with a mapping property useful for applications.

Key words: Stable curve, Picard scheme, Néron model, compactification, balanced line bundle.

Mathematic Subject Classification (2000): 14K30, 14H10.

1. Introduction and preliminaries

Let X be a stable curve and $f : \mathcal{X} \to B$ a one-parameter smoothing of X with \mathcal{X} a nonsingular surface; X is thus identified with the special fiber of f and all other fibers are smooth curves. Let $N^d_f \to B$ be the Néron model of the degree-d Jacobian of the generic fiber of f; its existence was proved by A. Néron in [N], and its connection with the Picard functor was established by M. Raynaud in [R]. So, $N^d_f \to B$ is a smooth and separated morphism, whose generic fiber is the degree-d Jacobian of the generic fiber of f; the special fiber, denoted N^d_X, is isomorphic to a disjoint union of copies of the generalized Jacobian of X. $N^d_f \to B$ can be interpreted as the maximal separated quotient of the degree-d Picard scheme $\text{Pic}^d_f \to B$. In particular, if $\text{Pic}^d_f \to B$ is separated, which happens if and only if X is irreducible, then $N^d_f = \text{Pic}^d_f$ (we refer to [R], [BLR] or [Ar] for details).

The Néron model has a universal property, the Néron Mapping Property ([BLR, def. 1]), which determines it uniquely. Moreover, as d varies in \mathbb{Z}, the special fibers, N^d_X, of $N^d_f \to B$ are all isomorphic.

By contrast, the compactified degree-d Jacobian of a reducible curve X, denoted P^d_X, has a structure which varies with d. For example, the number of irreducible components, and the modular properties, depend on d; see Section 2 for details and references.

P^d_X will be called of Néron type if its smooth locus is isomorphic to N^d_X. Compactified Jacobians of Néron type have the best modular properties. Moreover they inherit a mapping property from the universal property of the Néron model which provides a very useful tool; see for example [CE] for applications to Abel maps.
The purpose of this paper is to classify, for every d, those stable curves $X \in \overline{M}_g$ such that P^d_X is on Néron type. The question is interesting if $g \geq 2$, for otherwise P^d_X is always irreducible, and hence of Néron type.

Before stating our main result, we need a few words about compactified Jacobians. P^d_X parametrizes certain line bundles on quasistable curves having X as stabilization. These are the so-called “balanced” line bundles; among balanced line bundles there are some distinguished ones, called “strictly balanced”, which have better modular properties. In fact, to every balanced line bundle there corresponds a unique point in P^d_X, but different balanced line bundles may determine the same point. On the other hand every point of P^d_X corresponds to a unique class of strictly balanced line bundles.

The curve X is called d-general if every balanced line bundle of degree d is strictly balanced. This is equivalent to the fact that P^d_X is a geometric GIT-quotient.

The property of being d-general depends only on the weighted dual graph of X, and the locus of d-general curves in \overline{M}_g has been precisely described by M. Melo in [M].

Now, the degree-d compactified Jacobian of a d-general curve is of Néron type, by [C2, Thm. 6.1]. But, as we will prove, the converse does not hold.

More precisely, a stable curve X is called weakly d-general if a curve obtained by smoothing every separating node of X, and maintaining all the non separating nodes, is d-general; see Definition 1.13.

Our main result, Theorem 2.9, states that P^d_X is of Néron type if and only if X is weakly d-general. The locus of weakly d-general curves in \overline{M}_g is precisely described in section 2.11; its complement turns out to have codimension at least 2.

I am grateful to M. Melo and F. Viviani for their precious comments.

1.1. Notations and conventions

(1) We work over an algebraically closed field k. The word “curve” means projective scheme of pure dimension one. The genus of a curve will be the arithmetic genus, unless otherwise specified.

(2) By X we will always denote a nodal curve of genus $g \geq 2$. For any subcurve $Z \subset X$ we denote by g_Z its arithmetic genus, by $Z^c := X \setminus \overline{Z}$ and by $\delta_Z := \#(Z \cap \overline{Z})$. We set $w_Z := \deg_Z \omega_X = 2g_Z - 2 + \delta_Z$.

(3) A node n of a connected curve X is called separating if $X \setminus \{n\}$ is not connected. The set of all separating nodes of X is denoted by X_{sep} and the set of all nodes of X by X_{sing}.

(4) A nodal curve X of genus $g \geq 2$ is called stable if it is connected and if every component $E \subset X$ such that $E \cong \mathbb{P}^1$ satisfies $\delta_E \geq 3$. X is called quasistable if it is connected, if every $E \subset X$ such that $E \cong \mathbb{P}^1$ satisfies $\delta_E \geq 2$, and if two exceptional components never intersect, where an exceptional component is defined as an $E \cong \mathbb{P}^1$ such that $\delta_E = 2$. We denote by X_{exc} the union of the exceptional components of X.
(5) Let $S \subset \mathcal{S}_{\text{sing}}$ we denote by $v_S : X^\vee_S \to X$ the normalization of X at S, and by \mathcal{X}_S the quasistable curve obtained by “blowing-up” all the nodes in S, so that there is a natural surjective map

$$\mathcal{X}_S = \bigcup_{i=1}^{#S} E_i \cup X^\vee_S \to X$$

restricting to v_S on X^\vee_S and contracting all the exceptional components E_i of \mathcal{X}_S. \mathcal{X}_S is also called a quasistable curve of X.

(6) Let C_1, \ldots, C_γ be the irreducible components of X. Every line bundle $L \in \text{Pic} X$ has a multidegree $\deg L = (\deg_{C_1} L, \ldots, \deg_{C_\gamma} L) \in \mathbb{Z}^\gamma$. Let $d = (d_1, \ldots, d_\gamma) \in \mathbb{Z}^\gamma$, we set $|d| = \sum |d_i|$; for any subcurve $Z \subset X$ we abuse notation slightly and denote

$$d_Z := \sum_{C_i \subset Z} d_i.$$

1.2. Compactified Jacobs of Néron type. Let X be any nodal connected curve and $f : \mathcal{X} \to B$ a one-parameter regular smoothing for X, i.e. B is a smooth connected one-dimensional scheme with a marked point $b_0 \in B$, \mathcal{X} is a regular surface, and f is a projective morphism whose fiber over b_0 is X and whose remaining fibers are smooth curves. We set $U := B\{b_0\}$ and let $f_U : \mathcal{X}_U \to U$ be the family of smooth curves obtained by restricting f to U. Consider the relative degree d Picard scheme over U, denoted $\text{Pic}^d_{f_U} \to U$. Its Néron model over B will be denoted by

$$(1.1) \quad N^d_f := N(\text{Pic}^d_{f_U}) \to B,$$

and its fiber over b_0 will be denoted by N^d_X; N^d_X is isomorphic to a finite number of copies of the generalized Jacobian of X. The number of copies is independent of d; to compute it we introduce the so-called “degree class group”.

Let γ be the number of irreducible components of X. For every component C_i of X set $k_{i,j} := \#(C_i \cap C_j)$ if $j \neq i$, and $k_{i,i} = -\#(C_i \cap C \setminus C_i)$ so that the matrix $(k_{i,j})$ is symmetric matrix. Notice that for every regular smoothing $f : \mathcal{X} \to B$ of X as above, we have $\deg_{C_j} \circ f(C_i) = k_{i,j}$. Hence this matrix is also related to f, although it does not depend on the choice of f (as long as \mathcal{X} is regular).

We have $\sum_{j=1}^\gamma k_{i,j} = 0$ for every i. Now, for every $i = 1, \ldots, \gamma$ set $c_i := (k_{1,i}, \ldots, k_{\gamma,i}) \in \mathbb{Z}^\gamma$ and $Z := \{d \in \mathbb{Z}^\gamma : |d| = 0\}$ so that $c_i \in Z$. We can now define the sublattice $\Lambda_X := \langle c_1, \ldots, c_\gamma \rangle \subset Z$.

The degree class group of X is the group $\Delta_X := Z/\Lambda_X$. It is not hard to prove that Δ_X is a finite group.

Let d and d' be in \mathbb{Z}^γ; we say that they are equivalent if $d - d' \in \Lambda_X$. We denote by Δ^d_X the set of equivalence classes of multidegrees of total degree d; for a multidegree d we write $[d]$ for its class. It is clear that $\Delta_X = \Delta_X^0$ and that

$$\#\Delta_X = \#\Delta^d_X.$$
Now back to N^d_X, the special fiber of (1.1); as we said it is a smooth, possibly non connected scheme of pure dimension g.

Fact 1.3. Under the above assumptions, the number of irreducible (i.e. connected) components of N^d_X is equal to $\#\Delta_X$.

This is well known; see [R, 8.1.2] (where Δ_X is the same as ker β/Im α) or [BLR, thm. 9.6.1]. Using the standard notation of Néron models theory we have $\Delta_X = \Phi_{N^d_X}$, i.e. Δ_X is the “component group” of N^d_f.

For every stable curve X and every d we denote by P^d_X the degree d compactified Jacobian (or degree-d compactified Picard scheme). P^d_X has been constructed in [OS] for a fixed curve, and independently for families in [S] and in [C1] (the constructions of [OS] and [S] are here considered with respect to the canonical polarization); these three constructions give the same scheme by [Al], see also [LM]. We mention that another compactified Jacobian is constructed in [E], whose connection with the others is under investigation; see [MV]. An explicit description of P^d_X will be recalled in 2.2. We here anticipate the fact that P^d_X is a connected, projective scheme of pure dimension g. As we said in the introduction, several geometric and modular properties of P^d_X depend on d.

Definition 1.4. Let X be a stable curve and P^d_X its degree-d compactified Jacobian. We say that P^d_X is of Néron type if the number of irreducible components of P^d_X is equal to the number of irreducible components of N^d_X.

Example 1.5. A curve X is called tree-like if every node of X lying in two different irreducible components is a separating node.

The compactified Jacobian of a tree-like curve X is easily seen to be always of Néron type. Indeed, P^d_X is irreducible for every d; on the other hand $\#\Delta_X = 1$ so that N^d_X is also irreducible.

Let now $\pi : \overline{P}^d_f \to B$ be the compactified degree-d Picard scheme of a regular smoothing $f : \mathcal{X} \to B$ of a stable curve X, as defined in 1.2. So the fiber of π over b_0 is P^d_X, and the restriction of π over $U = B \setminus \{b_0\} \subset B$ is Pic$^d_{f_U}$. We denote $P^d_f \to B$ the smooth locus of π. By the Néron Mapping Property there exists a canonical B-morphism, χ_f, from P^d_f to the Néron model of Pic$^d_{f_U}$:

$$\chi_f : P^d_f \to N^d_f$$

extending the identity map from the generic fiber of π to the generic fiber of $N^d_f \to B$.

Proposition 1.6. With the above set up, P^d_X is of Néron type if and only if the map $\chi_f : P^d_f \to N^d_f$ is an isomorphism for every $f : \mathcal{X} \to B$ as above.

The proof, requiring a description of \overline{P}^d_f, will be given in subsection 2.6.
1.7. **Smoothing separating nodes.** A stable weighted graph of genus \(g \geq 2 \) is a pair \((\Gamma, w)\), where \(\Gamma \) is a graph and \(w : V(\Gamma) \to \mathbb{Z}_{\geq 0} \) a weight function. The genus of \((\Gamma, w)\) is the number \(g(\Gamma, w) \) defined as follows:

\[
g(\Gamma, w) = \sum_{v \in V(\Gamma)} w(v) + b_1(\Gamma).
\]

A weighted graph will be called *stable* if every \(v \in V(\Gamma) \) such that \(w(v) = 0 \) has valency at least 3.

Let \(X \) be a nodal curve of genus \(g \), the weighted dual graph of \(X \) is the weighted graph \((\Gamma_X, w_X)\) such that \(\Gamma_X \) is the usual dual graph of \(X \) (the vertices of \(\Gamma_X \) are identified with the irreducible components of \(X \) and the edges are identified with the nodes of \(X \); an edge joins two, possibly equal, vertices if the corresponding node is in the intersection of the corresponding irreducible components), and \(w_X \) is the weight function on the set of irreducible components of \(X \), \(V(\Gamma_X) \), assigning to a vertex the geometric genus of the corresponding component. Hence

\[
g = \sum_{v \in V(\Gamma_X)} w_X(v) + b_1(\Gamma_X) = g(\Gamma_X, w_X).
\]

\(X \) is a stable curve if and only if \((\Gamma_X, w_X)\) is a stable weighted graph.

Now we ask: What happens to the weighted dual graph of \(X \) if we smooth all the separating nodes of \(X \)?

To answer this question, we introduce a new weighted graph, denoted by \((\Gamma^2, w^2)\), associated to a weighted graph \((\Gamma, w)\). \((\Gamma^2, w^2)\) is defined as follows. \(\Gamma^2 \) is the graph obtained by contracting every separating edge of \(\Gamma \) to a point. Therefore \(\Gamma^2 \) is 2-edge-connected, i.e. free from separating edges (this explains the notation). To define the weight function \(w^2 \), notice that there is a natural surjective map contracting the separating edges of \(\Gamma \)

\[
\sigma : \Gamma \to \Gamma^2,
\]

and an induced surjection on the set of vertices

\[
\phi : V(\Gamma) \to V(\Gamma^2); \quad v \mapsto \sigma(v).
\]

Now we define \(w^2 \) as follows. For every \(v^2 \in V(\Gamma^2) \)

\[
w^2(v^2) = \sum_{v \in \phi^{-1}(v^2)} w(v).
\]

As \(\sigma \) does not contract any cycle, \(b_1(\Gamma) = b_1(\Gamma^2) \) and \(g(\Gamma, w) = g(\Gamma^2, w^2) \).

Remark 1.8. If \((\Gamma, w)\) is the weighted dual graph of a curve \(X \), \((\Gamma^2, w^2)\) is the weighted dual graph of any curve obtained by smoothing every separating node.
of \(X \). We shall usually denote by \(X^2 \) such a curve. Of course \(X \) and \(X^2 \) have the same genus.

1.9. \textit{d-general and weakly d-general curves}. Let us recall the definitions of balanced and strictly balanced multidegrees.

Definition 1.10. Let \(X \) be a quasistable curve of genus \(g \geq 2 \) and \(L \in \text{Pic}^d X \). Let \(d \) be the multidegree of \(L \).

(1) We say that \(L \), or \(d \), is \textit{balanced} if for any subcurve (equivalently, for any connected subcurve) \(Z \subseteq Y \) we have (notation in 1.1(2))

\[
\deg_Z L \geq m_Z(d) := \frac{d w_Z}{2g - 2} - \delta_Z, \tag{1.2}
\]

and \(\deg_Z L = 1 \) if \(Z \) is an exceptional component.

(2) We say that \(L \), or \(d \), is \textit{strictly balanced} if it is balanced and if strict inequality holds in (1.2) for every \(Z \subseteq X \) such that \(Z \subsetneq X \) and \(Z \cap Z^c \neq X_{\text{exc}} \).

(3) We denote

\[
\overline{B}_d(X) = \{ d : |d| = d \text{ balanced on } X \} \supseteq B_d(X) = \{ d : \text{strictly balanced} \}.
\]

The following trivial observations are useful.

Remark 1.11. (A) Let \(Z = Z_1 \sqcup Z_2 \subset X \) be a disconnected subcurve. Then

\[
m_Z(d) = m_{Z_1}(d) + m_{Z_2}(d).
\]

(B) Suppose \(X \) stable and \(d \in B_d(X) \). Then \(d \) is not strictly balanced if and only if there exists a subcurve \(Z \subsetneq X \) such that \(d_Z = m_Z(d) \), or equivalently, \(d_{Z^c} = m_{Z^c}(d) + \delta_Z \).

Remark 1.12. Let \(X \) be stable. By [C2, Prop. 4.12], every multidegree class in \(\Delta^d_X \) has a balanced representative, which is unique if and only if it is strictly balanced. Therefore

\[
\#B_d(X) \leq \#\Delta_X \leq \#\overline{B}_d(X).
\]

The terminology “strictly balanced” is not to be confused with “stably balanced” (used elsewhere and unnecessary here). The two coincide for stable curves; in general, a stably balanced line bundle is strictly balanced, but the converse may fail. Let us explain the difference. The compactified Picard scheme of \(X \), \(\overline{\text{Pic}}^d X \), is a GIT-quotient of a certain scheme by a certain reductive group \(G \). Strictly balanced line bundles correspond to the GIT-semistable orbits that are closed in the GIT-semistable locus. Stably balanced line bundles correspond to GIT-stable points and balanced line bundles correspond to GIT-semistable points. As every point in \(\overline{\text{Pic}}^d X \) parametrizes a unique closed orbit, strictly balanced
line bundles of degree d on quasistable curves of X are bijectively parametrized by P^d_X. See Fact 2.2 below.

Definition 1.13. Let X be a stable curve. We will say that X, or its weighted dual graph (Γ_X, w_X), is d-general if $B_d(X) = B_d(\overline{X})$ (cf. [C2, 4.13]). (Equivalently, X is d-general if the inequalities in Remark 1.12 are both equalities.)

We will say that X is weakly d-general if (Γ^2_X, w^2_X) is d-general.

Remark 1.14. The following facts are well known (see loc.cit.).

1. The set of d-general stable curves is a nonempty open subset of \overline{M}_g.
2. $(d - g + 1, 2g - 1) = 1$ if and only if every stable curve of genus g is d-general.
3. The property of being d-general depends only on the weighted dual graph (obvious).

Example 1.15. If $X_{\text{sep}} = \emptyset$, then X is d-general if and only if it is weakly general.

If X is tree-like, then (Γ^2_X, w^2_X) has only one vertex, hence it is d-general for every d. Therefore tree-like curves are weakly d-general for every d.

2. Irreducible Components of Compactified Jacobians

2.1. Compactified degree-d Jacobians

Let us describe the compactified Jacobian P^d_X for any degree d. We use the set up of [C1] and [C2]; in these papers there is the assumption $g \geq 3$, but by [OS], [S] and [Al] we can extend our results to $g \geq 2$. A synthetic account of the modular properties of the compactified Jacobian for a curve or for a family can be found in [CE, 3.8 and 5.10].

Fact 2.2. Let X be a stable curve of genus $g \geq 2$. Then P^d_X is a connected, reduced, projective scheme of pure dimension g, admitting a canonical decomposition (notation in 1.1(5))

$$P^d_X = \bigsqcup_{S \subset X_{\text{sing}}} P^d_S$$

such that for every $S \subset X_{\text{sing}}$ and $d \in B_d(X_S)$ there is a natural isomorphism

$$P^d_S \cong \text{Pic}^{d^v}_S X^v_S$$

where d^v denotes the multidegree on $X^v_S \subset X_S$ defined by restricting d.

Let $i(P^d_X)$ be the number of irreducible components of P^d_X; then

$$B_d(X) \leq i(P^d_X) \leq \#\Delta_X.$$
Corollary 2.3. Let X be a stable curve.

(1) The decomposition of $\overline{P_X^d}$ in irreducible components is

$$\overline{P_X^d} = \bigcup_{(S,d) \in I_X^d} P_S^d, \quad \text{where } I_X^d := \{(S,d) : S \subset X_{\text{sep}}, d \in B_d(X_S)\}.$$

(2) Suppose that X is d-general; then P_X^d is of Néron type, and for every nonempty $S \subset X_{\text{sep}}$ we have $B_d(X_S) = \emptyset$.

Proof. From Fact 2.2 we have that the irreducible components of $\overline{P_X^d}$ are the closures of subsets $P_S^d \cong \text{Pic}^{d^*} X_S^v$ where S is such that $\dim \text{Pic}^{d^*} X_S^v = g$. Now, it is clear that

$$\dim \text{Pic}^{d^*} X_S^v = \dim J(X_S^v) = g \quad \text{if and only if } S \subset X_{\text{sep}}.$$

Therefore the irreducible components of $\overline{P_X^d}$ correspond bijectively to pairs (S,d) with $S \subset X_{\text{sep}}$ and $d \in B_d(X_S)$.

Now part (2). It is clear that the set I_X^d contains a subset identifiable with $B_d(X)$, namely the subset $\{(\emptyset,d) : d \in B_d(X)\}$. If X is d-general then $\#B_d(X) = \#\Delta_X$, hence by (2.1) we must have that I_X^d contains no pairs other than those of type (\emptyset,d). This concludes the proof. \qed

Lemma 2.4. Let X be a stable curve and let $\mu \in \Delta_X^d$ be a multidegree class. Then there exists a unique $S(\mu) \subset X_{\text{sing}}$ and a unique $d(\mu) \in B_d(X_{S(\mu)})$ such that for every $d \in B_d(X)$ with $|d| = \mu$ the following properties hold.

(1) There is a canonical surjection

$$\text{Pic}^d X \twoheadrightarrow P_S^{d(\mu)} = \text{Pic}^{d(\mu)^*} X_S^{v(\mu)},$$

(2) We have

$$S(\mu) = \bigcup_{Z \subset X^d \mu = m_Z(d)} Z \cap Z^e.$$

Proof. The proof is routine. Let us sketch it using the combinatorial results [C1, Lemma 5.1 and Lemma 6.1]. The terminology used in that paper differs from ours as follows: what we here call a “strictly balanced multidegree d on a quasistable curve X” is there called an “extremal pair (X,d)”; cf. subsection 5.2 p. 631.

So, the pair $(X_{S(\mu)}, d(\mu))$ is the “extremal pair” associated to μ. This means the following. For every balanced line bundle L on X such that $[\deg L] = \mu$ the point in $\overline{P_X^d}$ associated to L parametrizes a line bundle $\hat{L} \in \text{Pic}^d X_{S(\mu)}$, and the restriction of \hat{L} to X_S^v is uniquely determined by L. Conversely every line bundle in $\text{Pic}^{d(\mu)^*} X_S^{v(\mu)}$ is obtained in this way.
More precisely, as we said, \overline{P}_d^X is a GIT quotient; let us denote it by $\overline{P}_d^X = V_X/G$, so that V_X is made of GIT-semistable points. Let $O_G(L) \subset V_X$ be the orbit of L. Then the semistable closure of $O_G(L)$ contains a unique closed orbit $O_G(\overline{L})$ as above. Moreover for every $d' \in B_d(X)$ having class μ there exists $L' \in \text{Pic}^d X$ such that the above $O_G(\overline{L})$ lies in the closure of $O_G(L')$. Hence the maps $\text{Pic}^d X \to \overline{P}_d^X$ and $\text{Pic}^{d'} X \to \overline{P}_d^X$ have the same image.

Using the notation of Fact 2.2, we have that for every balanced d of class μ the canonical map $\text{Pic}^d X \to \overline{P}_d^X$ has image $\text{Pic}^{d(\mu)} S(\mu)$, so that the first part is proved.

Now (2). The previously mentioned Lemma 5.1 implies that for every $d \in \overline{B}_d(X)$ and every Z such that $d_Z = m_Z(d)$ we have $Z \cap Z^c \subset S(\mu)$. By the above Lemma 6.1 each $n \in S(\mu)$ is obtained in this way.

Proposition 2.5. Let X be a stable curve. \overline{P}_d^X is of Néron type if and only if for every $d \in \overline{B}_d(X)$ and every connected $Z \subset X$ such that $d_Z = m_Z(d)$ we have

$$Z \cap Z^c \subset X_{\text{sep}}. \tag{2.2}$$

Proof. We begin by observing that, with the notation of Corollary 2.3 and Lemma 2.4, we have

$$I_d^X = \{(d(\mu), S(\mu)), \forall \mu \in \Delta_d^X \text{ such that } \dim \text{Pic}^{d(\mu)} S(\mu) = g\}.$$

Indeed, by Fact 2.2 the set on the right is clearly included in I_d^X. On the other hand let $(S, d) \in I_d^X$. To show that there exists $\mu \in \Delta_d^X$ such that $d = d(\mu)$ we can assume that $S \neq \emptyset$ (otherwise it is obvious). So, d is a strictly balanced multidegree of total degree d on \dot{X}_S. Let $n \in S$; by Corollary 2.3 the node n is separating for X; let $X = Z \cup Z^c$ with $Z \cap Z^c = \{n\}$. Then Z and Z^c can be viewed as subcurves of \dot{X}_S, where they do not intersect since the node n is replaced by an exceptional component E. Now, $d_E = 1$, therefore $d_Z = m_Z(d)$ and $d_{Z^c} = m_{Z^c}(d)$. Let $C_S \subset Z \subset X$ be the irreducible component intersecting Z^c (so that $C_S \subset \dot{X}_S$ intersects E). Let d^X be the multidegree on X defined as follows: for every irreducible component $C \subset X$

$$d^X_C = \begin{cases} d_C + 1 & \text{if } C = C_Z, \\ d_C & \text{otherwise.} \end{cases}$$

As d is balanced on \dot{X}_S one easily checks that d^X is balanced on X. Note that d^X is not strictly balanced, since $d^X_{Z^c} = m_{Z^c}(d)$ (see Remark 1.11). By iterating the above procedure for every node in S we arrive at a balanced multidegree on X whose class we denote by $\mu \in \Delta_d^X$. By Lemma 2.4 we have that $d = d(\mu)$.

Suppose that \overline{P}_d^X is of Néron type. By the previous discussion there is a natural bijection between Δ_d^X and I_d^X, mapping $\mu \in \Delta_d^X$ to $(S(\mu), d(\mu))$. By Corollary 2.3 we have $S(\mu) \subset X_{\text{sep}}$. Hence for every multidegree $d \in \overline{B}_d(X)$ such that $[d] = \mu$ we have that condition (2) of that lemma holds. In particular every Z as in our statement is such that $Z \cap Z^c \subset S(\mu) \subset X_{\text{sep}}$.

Conversely, if P^d_X is not of Néron type there is a class $\mu \in \Delta^d_X$ such that

$$g > \dim P^d_{S(\mu)} = \dim J(X^v_{S(\mu)}).$$

But then $S(\mu)$ contains some non separating node of X. Hence, by Lemma 2.4(2), there exists a connected subcurve $Z \subset X$ such that $d_Z = m_Z(d)$ and such that $Z \cap Z^c$ contains some non separating node.

2.6. Proof of Proposition 1.6. We generalize the proof of [C2, Thm. 6.1]. Let $f : \mathcal{X} \to B$ be a regular smoothing of X as defined in subsection 1.2, and $\pi : \overline{P}^d_f \to B$ be the compactified degree-d Picard scheme. Its smooth locus $P^d_f \to B$ is such that its fiber over b_0, denoted P^d_X, satisfies

$$(2.3) \quad P^d_X = \coprod_{(S,d) \in I^d_X} P^d_{S}$$

(note in 2.3) where each P^d_{S} is irreducible of dimension g. If the morphism $\chi_f : P^d_f \to N^d_f$ is an isomorphism, then P^d_X has as many irreducible components as N^d_X, hence the same holds for P^d_X. So P^d_X is of Néron type.

Conversely, if P^d_X is of Néron type, then P^d_X has an irreducible component for every $\mu \in \Delta^d_X$ so that (2.3) takes the form

$$P^d_X = \coprod_{\mu \in \Delta^d_X} P^d_{S(\mu)}.$$

Let us construct the inverse of χ_f. We pick a balanced representative d^u_μ for every multidegree class $\mu \in \Delta^d_X$ (it exists by Remark 1.12). By [C2, Lemma 3.10] we have

$$N^d_f \cong \coprod_{\mu \in \Delta^d_X} \text{Pic}^d_f \sim_U$$

where \sim_U denotes the gluing of the Picard schemes Pic^d_f along their restrictions over U (as $\text{Pic}^d_{f_U} = \text{Pic}^d_{f_0}$ for every μ). Now, the Picard scheme Pic^d_f is endowed with a Poincaré bundle, which is a relatively balanced line bundle on $\mathcal{X} \times_B \text{Pic}^d_f$. By the modular property of \overline{P}^d_f the Poincaré bundle induces a canonical B-morphism

$$\psi^\mu_f : \text{Pic}^d_f \to P^d_{S(\mu)} \subseteq \overline{P}^d_f.$$

As μ varies, the restrictions of these morphisms over U all coincide with the identity map $\text{Pic}^d_{f_U} \to \text{Pic}^d_{f_U} \subseteq \overline{P}^d_f$. Therefore the ψ^μ_f can be glued together to a morphism

$$\psi_f : N^d_f \to P^d_f \subseteq \overline{P}^d_f.$$

It is clear that ψ_f is the inverse of χ_f. Proposition 1.6 is proved.

\[\square\]
2.7. The main result. From Proposition 2.5 we derive the following.

Corollary 2.8. Let \(X \) be a stable curve free from separating nodes. Then \(\overline{P^d_X} \) is of \(\text{Néron} \) type if and only if \(X \) is \(d \)-general.

Proof. By Corollary 2.3(2) there is only one implication to prove. Namely, suppose that \(X \) is not \(d \)-general. Then there exists \(d \in B_d(X) \setminus B_d(X) \), and hence a subcurve \(Z \subset X \) such that \(d_Z = m_Z(d) \) (see Remark 1.11). As \(X_{\text{sep}} = \emptyset \), condition (2.2) of Proposition 2.5 cannot be satisfied. Therefore \(\overline{P^d_X} \) is not of \(\text{Néron} \) type. \(\square \)

We are ready to prove our main result.

Theorem 2.9. Let \(X \) be a stable curve. Then \(\overline{P^d_X} \) is of \(\text{Néron} \) type if and only if \(X \) is weakly \(d \)-general.

Proof. Observe that if \(X \) is free from separating nodes we are done by Corollary 2.8. Let \((\Gamma, w) \) be the weighted graph of \(X \) and consider the weighted graph \((\Gamma^2, w^2) \) defined in subsection 1.7. We denote by \(X^2 \) a stable curve whose weighted graph is \((\Gamma^2, w^2) \). By Remark 1.8 the curve \(X^2 \) can be viewed as a smoothing of \(X \) at \(X_{\text{sep}} \).

Recall that we denote by \(\sigma : \Gamma \to \Gamma^2 \) the contraction map and by

\[
\phi : V(\Gamma) \to V(\Gamma^2); \quad v \mapsto \sigma(v)
\]

the induced map on the vertices, i.e. on the irreducible components. The subcurves of \(X \) naturally correspond to the so-called “induced” subgraphs of \(\Gamma \), i.e. those subgraphs \(\Gamma' \) such that if two vertices \(v, w \) of \(\Gamma \) are in \(\Gamma' \), then every edge of \(\Gamma \) joining \(v \) with \(w \) lies in \(\Gamma' \). Similarly, the induced subgraphs of \(\Gamma^2 \) correspond to subcurves of \(X^2 \). If \(Z^2 \) is a subcurve of \(X^2 \), and \(\Gamma_{Z^2} \subset \Gamma_{X^2} \) its corresponding subgraph, we denote by \(Z \subset X \) the subcurve associated to \(\sigma^{-1}(\Gamma_{Z^2}) \) (it is obvious that the subgraph \(\sigma^{-1}(\Gamma_{Z^2}) \) is induced if so is \(\Gamma_{Z^2} \)); we refer to \(Z \) as the “preimage” of \(Z^2 \). Of course \(\sigma(\Gamma_Z) = \Gamma_{Z^2} \).

For any \(Z \subset X \) which is the preimage of a subcurve \(Z^2 \subset X^2 \) we have

\[
Z \cap X_{\text{sep}} \subset Z_{\text{sep}}
\]

or, equivalently, \(Z \cap Z^c \cap X_{\text{sep}} = \emptyset \). Conversely, every \(Z \subset X \) satisfying (2.4) is the preimage of some \(Z^2 \subset X^2 \).

Hence \(Z^2 \) can be viewed as a smoothing of \(Z \) at its separating nodes that are also separating nodes of \(X \), i.e. at \(Z_{\text{sep}} \cap X_{\text{sep}} \). Thus, for every \(Z^2 \) with preimage \(Z \) we have \(g_Z = g_{Z^2} \) and \(\delta_Z = \delta_{Z^2} \); hence for every \(d \in \mathbb{Z} \)

\[
m_{Z^2}(d) = m_Z(d).
\]
We shall now view multidegrees as an integer valued functions on the vertices. We claim that we have a surjection

\[\alpha : B_d(X) \to B_d(X^2) \]

defined as follows: for every vertex \(v^2 \in V(\Gamma^2) \) we set

\[\alpha(d)(v^2) := \sum_{v \in \phi^{-1}(v^2)} d(v). \]

Let us first show that if \(d \) is balanced, so is \(\alpha(d) \). For every subcurve \(Z^2 \subset X^2 \) we have \(\alpha(d)|_{Z^2} = d_Z \) where \(Z \subset X \) is the preimage of \(Z^2 \); by (2.5) the inequality (1.2) is satisfied on \(Z^2 \) if (and only if) it is satisfied on \(Z \).

Let us now show that \(\alpha \) is surjective. Let \(d^2 \) be a balanced multidegree on \(X^2 \); we know that \(X^2 \) can be chosen to be a smoothing of \(X \) at \(X_{\text{sep}} \). In other words there exists a family of curves \(X_t \), all having \((\Gamma^2, w^2) \) as weighted graph, specializing to \(X \). But then there also exists a family of line bundles \(L_t \) on \(X_t \), having degree \(d^2 \), specializing to a balanced line bundle of some degree \(d \) on \(X \) (this follows from the construction of the universal compactified Picard scheme \(\overline{P}_{d, g} \to \overline{M}_g \), see [C2, subsection 5.2]). By the definition of \(\alpha \), it is clear that the multidegree \(d \) is such that \(\alpha(d) = d^2 \).

We are ready to prove the Theorem. Assume that \(\overline{P}_X^d \) is of Néron type. Our goal is to prove that \(X^2 \) is \(d \)-general. By contradiction, let \(Z^2 \subset X^2 \) be a connected subcurve such that for some \(d^2 \in B_d(X^2) \) we have \(d^2_{Z^2} = m_{Z^2}(d) \). Let \(Z \) be the preimage of \(Z^2 \), and let \(d \in B_d(X) \) be such that \(\alpha(d) = d^2 \). Then

\[d_Z = d^2_{Z^2} = m_{Z^2}(d) = m_{Z}(d). \]

By Proposition 2.5 we obtain that \(Z \cap Z^c \subset X_{\text{sep}} \). This is in contradiction with (2.4); so we are done.

Conversely, let \(X \) be weakly \(d \)-general; i.e. \(B_d(X^2) = B_d(X^2) \). To show that \(P_X^d \) is of Néron type we use again Proposition 2.5, according to which it suffices to show that for every \(d \in B_d(X) \) and for every \(Z \subset X \) such that \(Z \cap Z^c \neq X_{\text{sep}} \) we have \(d_Z > m_Z(d) \).

By contradiction. Let \(Z \) be a connected subcurve such that \(Z \cap Z^c \neq X_{\text{sep}} \), and \(d_Z = m_Z(d) \) for some balanced multidegree \(d \) on \(X \). We choose \(Z \) maximal with respect to this properties. This choice yields

\[Z \cap Z^c \cap X_{\text{sep}} = \emptyset. \]

Indeed, if \(Z \cap Z^c \) contains some \(n \in X_{\text{sep}} \), there exists a connected component \(Z' \) of \(Z^c \) such that \(Z \cap Z' = \{n\} \). Let \(W := Z \cup Z' \); then \(W \) is a connected curve containing \(Z \). Now, \(W \cap W^c = Z \cap Z^c \setminus \{n\} \), hence \(W \cap W^c \neq X_{\text{sep}} \); moreover, using Remark 1.11 one easily checks that \(d_W = m_W(d) \). This contradicts the maximality of \(Z \).
By (2.6) we have that $Z \cap X_{\text{sep}}$ is all contained in Z_{sep} therefore, as observed immediately after (2.4), the curve Z is the preimage of a subcurve $Z^2 \subset X^2$. Now let $d^2 = \alpha(d)$; so $d^2 \in B_d(X^2) = B_d(X^2)$ by hypothesis. We have
\[d^2_{Z^2} = d_Z = m_Z(d) = m_{Z^2}(d). \]
This contradicts the fact that d^2 is strictly balanced.

Corollary 2.10. Let X be a stable curve of genus g, and let $d = g - 1$. Then P^d_X is of Néron type if and only if X is a tree-like curve.

Proof. As $d = g - 1$, by [M, Remark 2.3] X is d-general if and only if X is irreducible. Hence X is weakly d-general if and only if X is tree-like.

2.11. The locus of weakly d-general curves in M_g. The locus of d-general curves in M_g has been studied in details in [M] (also in [CE] if $d = 1$ for applications to Abel maps). A stable curve X which is not d-general is called d-special. The locus of d-special curves is a closed subscheme denoted $\Sigma_d^g \subset M_g$. By [M, Lemma 2.10], Σ_d^g is the closure of the locus of d-special curves made of two smooth components. Curves made of two smooth components are called vine curves.

We are going to exhibit a precise description of D^d_g, the complement in M_g of the locus of weakly d-general curves:
\[D^d_g := \{ X \in M_g : P^d_X \text{ not of Néron type} \}. \]
In the following statement by codim D^d_g we mean the codimension of an irreducible component of maximal dimension.

Proposition 2.12. D^d_g is the closure of the locus of d-special vine curves with at least 2 nodes. Moreover
\[\text{codim } D^d_g = \begin{cases} + \infty & \text{(i.e. } D^d_g = \emptyset) \text{ if } (d - g + 1, 2g - 2) = 1, \\ 3 & \text{if } (d - g + 1, 2g - 2) = 2 \text{ and } g \text{ is even}, \\ 2 & \text{otherwise}. \end{cases} \]

Proof. By Theorem 2.9, we have that $X \in D^d_g$ if and only if X is not weakly d-general, if and only if X^2 is not d-general (where X^2 is as in 1.8). This is equivalent to the fact that there exists $d \in B_d(X^2)$ and a subcurve $Z \subseteq X^2$ such that $d_Z = m_Z(d)$; as X^2 has no separating nodes, for every subcurve $Z \subseteq X^2$ we have $\delta_Z \geq 2$. This observation added to the proof of [M, Lemma 2.10] gives that X^2 (and every curve with the same weighted graph) lies in the closure of the locus of d-special vine curves with at least two nodes. Therefore the same holds for X, since X is a specialization of curve with the same weighted graph as X^2.

Conversely, let X be in the closure of the locus of d-special vine curves with at least two nodes. Then X^2 is also in this closure, as such vine curves are obviously free from separating nodes. By [M, Lemma 2.10] the curve X^2 is d-special, hence X is not weakly d-general.
Let us turn to the codimension of D^d_g. The fact that if $(d - g + 1, 2g - 2) = 1$ then D^d_g is empty is well known ([C2]). Conversely, assume $D^d_g = \emptyset$. By the previous part, the locus of d-special vine curves with at least two nodes is also empty. Now the proof of the numerical Lemma 6.3 in [C1] shows that this implies that $(d - g + 1, 2g - 2) = 1$. In fact, the proof of that Lemma shows that if there are no d-special vine curves with two or three nodes then $(d - g + 1, 2g - 2) = 1$.

Next, recall that the locus, V_δ, of vine curves with δ nodes has pure codimension δ, and notice that the sublocus of d-special curves is a union of irreducible components of V_δ.

Now, again by the proof of the above Lemma 6.3, if $(d - g + 1, 2g - 2) \neq 1$ and if there are no d-special vine curves with two nodes, then $(d - g + 1, 2g - 2) = 2$, g is even and every vine curve with three nodes, having one component of genus $g/2 - 1$, is d-special. This completes the proof of the Proposition.

A precise description of the locus of d-special vine curves is given in [M, Prop. 2.13]. Her result combined with the previous proposition yields a more precise description of the locus of stable curves whose compactified degree-d Jacobian is of Néron type, for every fixed d.

References

Received 2 March 2010,
and in revised form 2 November 2010.
For editorial reason the publication has been postponed.

Dipartimento di Matematica
Università, Roma Tre
Largo San Leonardo Murialdo 1
00146 Roma, Italy
caporaso@mat.uniroma3.it