A weighted version of Journé's Lemma

Donald Krug and Alberto Torchinsky

In this paper we discuss a weighted version of Journé's covering lemma, a substitute for the Whitney decomposition of an arbitrary open set in \mathbb{R}^2 where squares are replaced by rectangles. We then apply this result to obtain a sharp version of the atomic decomposition of the weighted Hardy spaces $H^p_w(\mathbb{R}_+^2 \times \mathbb{R}_+^2)$ and a description of their duals when p is close to 1.

A nonnegative locally integrable function $w(x, y)$ on \mathbb{R}^2 is called a weight. A weight w is said to satisfy Muckenhoupt's $A_p(\mathbb{R} \times \mathbb{R})$ condition on rectangles, or plainly the A_p condition, $1 < p < \infty$, provided that

$$\sup_R \left(\frac{1}{|R|} \int_R w(x, y) \, dx \, dy \right) \left(\frac{1}{|R|} \int_R w(x, y)^{-1/(p-1)} \, dx \, dy \right)^{p-1} \leq c,$$

where R runs over all rectangles with sides parallel to the coordinate axes. When $p = 1$ this condition reduces to

$$\frac{1}{|R|} \int_R w(x, y) \, dx \, dy \leq c \inf_{(x, y) \in R} \, w(x, y), \quad \text{all } R.$$

We say that w satisfies the $A_{\infty}(\mathbb{R} \times \mathbb{R})$ condition if it satisfies the A_p condition for some $p < \infty$. The constant c that appears on the right-hand side in the inequalities above is called the A_p constant of w, and a property is said to be independent in A_p provided it depends on c, and
not on the particular weight \(w \) in \(A_p \) involved. By the Lebesgue differentiation theorem it readily follows that if \(w \) satisfies the \(A_p \) condition, then \(w(x, \cdot) \) satisfies Muckenhoupt's \(A_p(\mathbb{R}) \) condition, uniformly for a.e. \(x \), with constant \(\leq c \), the \(A_p \) constant for \(w \); similarly for \(w(\cdot, y) \).

The same holds for \(A_{\infty} \): an \(A_{\infty} \) weight \(w \) is uniformly in \(A_{\infty}(\mathbb{R}) \) for a.e. \(x \), or \(y \), fixed. By well-known properties of \(A_{\infty} \) weights, if \(w(x, \cdot) \) is an \(A_{\infty}(\mathbb{R}) \) weight uniformly in \(x \), then the following holds: given \(x \in \mathbb{R} \) and \(0 < \varepsilon < 1 \), there exists \(\eta > 0 \), such that if \(A \subseteq I \) and

\[
\frac{w(x, A)}{w(x, I)} > \eta, \quad \text{then} \quad \frac{w(x', A)}{w(x', I)} > \varepsilon \quad \text{for a.e. } x' \in \mathbb{R}.
\]

It is clear that we may always choose \(\eta \geq 1/2 \) above, and we do so.

Under the assumption that \(w \) is uniformly \(A_{\infty} \) for a variable fixed and uniformly doubling for the other variable fixed, the weighted strong maximal operator \(M_{S,w}f(x, y) \) given by

\[
M_{S,w}f(x, y) = \sup_{(x,y) \in \mathbb{R}} \frac{1}{w(R)} \int_R \int_R |f(u, v)| w(u, v) \, du \, dv,
\]

is known to be bounded in \(L^2_w(\mathbb{R}^2) \), say, cf. [JT] and [F1].

Given a bounded open set \(\Omega \subseteq \mathbb{R}^2 \), \(x \in \mathbb{R} \) and \(t > 0 \), following [J], let

\[E_{x, t} = \{ y \in \mathbb{R} : [x-t, x+t] \times \{y\} \subseteq \Omega \} \]

Each \(E_{x, t} \) is open, because \(\Omega \) is open, and, for each \(x \), \(E_{x, t} \) is decreasing in \(t \).

Let \(E_{x, t} = \bigcup_k J^k_{x, t} \) denote the decomposition of \(E_{x, t} \) into open interval components, and let \(t(k, x) \) be the infimum over those \(\tau \geq t \) such that

\[
 w(x, J^k_{x, t} \cap E_{x, \tau}) \leq \eta w(x, J^k_{x, t}) ,
\]

where \(1/2 \leq \eta < 1 \) corresponds to the value \(\varepsilon = 1/2 \) above.

Proposition 1. Given a bounded open set \(\Omega \), let

\[
\hat{\Omega} = \bigcup_{x,t,k} (x-t(k,x), x+t(k,x)) \times J^k_{x, t} ,
\]

and assume that the weight \(w(x, y) \) is uniformly \(A_{\infty}(\mathbb{R}) \) for a variable fixed, and uniformly doubling for the other variable fixed. Then \(w(\hat{\Omega}) \leq cw(\Omega) \), where \(c \) is independent of \(\Omega \).
A weighted version of Journé’s Lemma

\[\text{PROOF. As it is readily seen by the containment relation between the sets involved, we have} \]

\[(3) \, w\left(\{(x - s, x + s) \times J_{x,t}^k \cap \Omega\} \right) \geq w\left(\{(x - s, x + s) \times (J_{x,t}^k \cap E_{x,s})\} \right). \]

Now, if \(s < t(k, x) \), from (2) and (1) it follows that

\[(4) \, w(x', J_{x,t}^k \cap E_{x,s}) > \frac{1}{2} w(x', J_{x,t}^k), \quad \text{a.e.} \, \, x' \in \mathbb{R}. \]

Thus, integrating (4) over \((x - s, x + s) \), combining the resulting expression with (3), and setting \(R = (x - s, x + s) \times J_{x,t}^k \), we obtain

\[(5) \, \int \int_R \chi_{\Omega}(x, y) w(x, y) \, dx \, dy > \frac{1}{2} \int \int_R w(x, y) \, dx \, dy. \]

Now, if \((x', y') \in \hat{\Omega}\), there exist \(x, t, k \) such that \(x' \in (x - t(k, x), x + t(k, x)) \), and also \(s < t(k, x) \) so that \((x', y') \in (x - s, x + s) \times J_{x,t}^k = R\). Whence, by (5),

\[\hat{\Omega} \subseteq \{ M_{S,w}(\chi_{\Omega}) > \frac{1}{2} \}, \]

and by the continuity of \(M_{S,w} \) in \(L_w^2(\mathbb{R}^2) \),

\[w(\hat{\Omega}) \leq cw(\Omega), \]

with \(c \) independent of \(\Omega \).

Proposition 2. Suppose \(\Omega \) and \(w \) are as in Proposition 1, and that \(\phi \) is a nondecreasing function with \(\phi(0) = 0 \). Then

\[\int_0^{+\infty} \int_{\mathbb{R}} \sum_k \int_{J_{x,t}^k} \phi\left(\frac{t}{t(k, x)}\right) w(x, y) \, dy \, dx \, \frac{dt}{t} \leq c w(\Omega) \int_0^1 \phi(s) \, \frac{ds}{s}, \]

where \(c \) is a constant independent of \(\Omega \) and \(\phi \).

PROOF. From (2) it readily follows that

\[w(x, J_{x,t}^k) \leq \frac{1}{1 - \eta} w(x, J_{x,t}^k \cap E_{x,t(k,x)}). \]
Thus, save for the factor $1/(1 - \eta)$, the left-hand side of the above expression does not exceed
\[
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_0^{\infty} \sum_k \chi_{J_{x,t}^k \setminus E_{x,t}(k, x)} (y) \phi\left(\frac{t}{t(k, x)} \right) w(x, y) \frac{dt}{t} dy dx
\]
\[
= \int_{\mathbb{R}} \int_{\mathbb{R}} B(x, y) w(x, y) dx dy,
\]
say. We want to show that
\[
B(x, y) \leq c \chi_{\Omega}(x, y) \int_0^1 \phi(s) \frac{ds}{s}.
\]

Clearly if $(x, y) \notin \Omega$, then $B(x, y) = 0$. Also, if $(x, y) \in \Omega$, at most one summand in the above sum does not vanish, the one corresponding to the index k, say. Thus,
\[
B(x, y) = \chi_{\Omega}(x, y) \int_0^{\infty} \chi_{J_{x,t}^k \setminus E_{x,t}(k, x)} (y) \phi\left(\frac{t}{t(k, x)} \right) \frac{dt}{t}.
\]

Let $T(x, y) = \sup \{s : [x - s, x + s] \times \{y\} \subseteq \Omega\}$. Since $J_{x,t}^k$ is an interval component of $E_{x,t}$, from this definition it readily follows that $t \leq T(x, y)$. We may also assume that $T(x, y) \leq t(k, x)$, for if $t(k, x) < T(x, y)$, then it follows that $y \in E_{x,t(k,x)}$, and the integrand above vanishes. Whence
\[
B(x, y) \leq \chi_{\Omega}(x, y) \int_0^{T(x,y)} \chi_{J_{x,t}^k \setminus E_{x,t}(k, x)} (y) \phi\left(\frac{t}{t(k, x)} \right) \frac{dt}{t}
\]
\[
\leq \chi_{\Omega}(x, y) \int_0^{T(x,y)} \phi\left(\frac{t}{T(x,y)} \right) \frac{dt}{t}
\]
\[
= \chi_{\Omega}(x, y) \int_0^1 \phi(s) \frac{ds}{s}.
\]

Replacing this in the expression above gives the desired estimate.

Now we pass to discuss the discrete version of Journé’s covering lemma. For Ω as before, let $M_2(\Omega)$ denote the collection of those rectangles (dyadic) $R = I \times J$ so that I, J are dyadic and J is maximal with respect to the inclusion property in Ω.
Given arbitrary intervals \(I, J \), not necessarily dyadic, let

\[
J^{I'} = \{ y \in J : I \times \{ y \} \subseteq \Omega \}.
\]

If by \(rI \) we denote the interval concentric with \(I \) with sidelength \(r \) times that of \(I \), we define \(\tilde{I} \) as follows: it is the smallest interval \(I' \) concentric with \(I \) such that

\[
w(x, J^I) \leq \frac{1}{2} w(x, J) \quad \text{for a.e. } x \in \mathbb{R}.
\]

Proposition 3. Suppose the open set \(\Omega \), weight \(w \) and the function \(\phi \) are as in Proposition 2. Then

\[
\sum_{R \in M_2(\Omega)} w(R) \phi\left(\frac{|I|}{|I|}\right) \leq c \left(\int_0^1 \phi(8s) \frac{ds}{s} \right) w(\Omega).
\]

Proof. Let \(\mathcal{I}_n \) denote the collection of those dyadic intervals \(I \) such that \(R = I \times j \in M_2(\Omega) \) for some dyadic interval \(J \), and \(|I| = 2^n \), \(n = 0, \pm 1, \pm 2, \ldots \). Then, since \(J^I \supseteq J \) for \(R = I \times J \in M_2(\Omega) \), the sum we want to estimate does not exceed

\[
\sum_n \sum_{I \in \mathcal{I}_n} \int_I \sum_{J' \supseteq J} \int_{J'} \phi\left(\frac{|I|}{|J'|}\right) w(x, y) \, dx \, dy
\]

\[
\leq \sum_n \int_{2^{n-3}} \sum_{I \in \mathcal{I}_n} \int_I \sum_{J' \supseteq J} \int_{J'} w(x, y) \, dx \, dy \phi\left(\frac{|I|}{|J'|}\right) \frac{dt}{t}.
\]

Fix now \(n \), and \(I \in \mathcal{I}_n \). Let \(S = \{ x \in I : [x - t, x + t] \subseteq I \} \), and note that for \(t \in (2^{n-3}, 2^{n-2}) \), since \(|I| = 2^n \), \(2S \supseteq I \). Thus by the uniform doubling property of \(w(\cdot, y) \), the above expression does not exceed

\[
c \sum_n \int_{2^{n-3}} \sum_{I \in \mathcal{I}_n} \int_I \sum_{J' \supseteq J} \int_{J'} \phi\left(\frac{|I|}{|J'|}\right) w(x, y) \, dy \, dx \, \frac{dt}{t}.
\]

Furthermore, since \(t \geq 2^{n-3} = |(1/8)I| \), and since \(x \in S \), it readily follows that \(y \in J_{x,t}^k \), one of the components of \(E_{x,t} \), and the above expression is dominated by

\[
c \sum_n \int_{2^{n-3}} \sum_{I \in \mathcal{I}_n} \int_I \sum_{J_{x,t}^k} \phi\left(\frac{|I|}{|J_{x,t}^k|}\right) w(x, y) \, dy \, dx \, \frac{dt}{t}.
\]
Since in the above expression \(|I| \leq 8t\), and since \([x - t, x + t] \subseteq I\) and consequently \(J = J^I \subseteq J_{x,t}^k\), we see from the definitions of \(t(k, x)\) and \(|\tilde{I}|\) (recall that \(1/2 \leq \eta < 1\)) that these quantities are essentially the same. Moreover, since in the definition of \(t(k, x)\) the right-hand side is larger, so must be the left-hand side, and consequently \(t(k, x) \leq |\tilde{I}|\). Thus we may continue our estimation by

\[
c \sum_n \int_{2n+3}^{2n+2} \sum_{I \in \mathcal{I}_n} \int_S \sum_k \int_{J_{x,t}^k} \phi\left(\frac{8t}{t(k, x)}\right) w(x, y) \, dy \, dx \, \frac{dt}{t}
\leq c \sum_n \int_{2n+3}^{2n+2} \int_{\mathbb{R}} \sum_k \int_{J_{x,t}^k} \phi\left(\frac{8t}{t(k, x)}\right) w(x, y) \, dy \, dx \, \frac{dt}{t}
\leq c \int_0^{+\infty} \int_{\mathbb{R}} \sum_k \int_{J_{x,t}^k} \phi\left(\frac{8t}{t(k, x)}\right) w(x, y) \, dy \, dx \, \frac{dt}{t}.
\]

Then the proof proceeds exactly as that of Proposition 2.

Proposition 4. Under the conditions of Proposition 3, we have

\[
w\left(\bigcup_{R \in \mathcal{S}_3(\Omega)} \tilde{I} \times J \right) \leq c w(\Omega), \quad c \text{ independent of } \Omega.
\]

Because the proof is similar to that of Proposition 1 it is omitted.

As a first application of the weighted version of Journé's lemma we discuss the atomic decomposition of the weighted Hardy spaces \(H^p_w(\mathbb{R}_+^2 \times \mathbb{R}_+^2), 0 < p \leq 1\).

Given a smooth function \(\psi\) supported in \((-1, 1)\) with nonvanishing integral, put

\[
\psi_{s,t}(x, y) = \frac{1}{s} \psi\left(\frac{x}{s}\right) \frac{1}{t} \psi\left(\frac{y}{t}\right), \quad s, t > 0,
\]

and for a distribution \(f\) in \(\mathbb{R}^2\), let

\[
f^*(x, y) = \sup_{\varepsilon_1, \varepsilon_2 > 0} |f * \psi_{\varepsilon_1, \varepsilon_2}(x, y)|.
\]

Then \(H^p_w(\mathbb{R}_+^2 \times \mathbb{R}_+^2)\) consists of those distributions \(f\) such that \(f^* \in L^p_w(\mathbb{R}^2)\), and we set \(\|f\|_{H^p_w} = \|f^*\|_{L^p_w}\). We would like to discuss
the so-called atomic decomposition of elements of these spaces when \(w \in A_r(\mathbb{R} \times \mathbb{R}), 1 \leq r \leq 2 \).

A function \(a(x, y) \) is called a \((p, w)\)-atom, if

a) the set where \(a(x, y) \neq 0 \) is contained in a set \(\Omega \), with
\[
\|a\|_{L^p_\omega} \leq w(\Omega)^{1/2-1/p} < +\infty,
\]

b) \(a = \sum a_R \), where the subatoms \(a_R \) have the following properties:

i) if \(a_R(x, y) \neq 0 \), then \((x, y) \in \hat{R} = 3I \times 3J \), and \(\hat{R} \subseteq \Omega \),

ii) \(R = I \times J \) is a dyadic rectangle, and no rectangle is repeated,

iii) for all integers \(\alpha \leq [r/p - 1] \),
\[
\int_I x^{\alpha} a_R(x, y) \, dx = \int_J y^{\alpha} a_R(x, y) \, dy = 0,
\]

iv) \(\left(\sum \|a_R\|_{L^p_\omega}^2 \right)^{1/2} \leq w(\Omega)^{1/p - 1/2} \).

The atomic decomposition states that \(f \in H^p_\omega(\mathbb{R} \times \mathbb{R}) \) if and only if \(f = \sum \lambda_i a_i \), where the \(a_i \)'s are \((p, w)\)-atoms, the sum is taken in the sense of distributions and in the norm sense, and \(\sum \lambda_i^p \leq c \|f\|^p_{H^p_\omega} \).

That \(f \in H^p_\omega \) can be decomposed into such sum is very similar to the unweighted case considered by R. Fefferman in [F2], and the proof is not discussed here.

Thus, we propose to prove the following result

Proposition 5. Suppose that \(w \in A_r \) and that \(a \) is a \((p, w)\)-atom. Then \(\|a\|_{H^p_\omega} \leq c \), where \(c \) is independent of \(a \) and independent in \(A_r \).

Proof. Given \(R = I \times J \subseteq \Omega \), let \(\hat{I} \) now denote the interval which is the largest between \(\hat{I} \) from Journě's lemma and \(2I \); and similarly for \(J \). Let \(\hat{R} = (\hat{I} \times J) \cup (I \times \hat{J}) = \hat{I} \times \hat{J} \). If
\[
\hat{\Omega} = \bigcup_{R \subseteq \Omega} \hat{R},
\]
then by Proposition 4 above, \(w(\hat{\Omega}) \leq c w(\Omega) \), where \(c \) is independent of \(\Omega \) and \(w \).
In order to estimate \(\|a\|_{L^p_0} = \|a^*\|_{L^p_0} \), we break up the integral that gives the \(L^p_0 \) norm into \(\hat{\Omega} \) and \(\mathbb{R}^2 \setminus \hat{\Omega} \). The contribution over \(\hat{\Omega} \) is readily handled: indeed, if \(M_S \) denotes the strong maximal function, then since \(w \in A_\delta(\mathbb{R} \times \mathbb{R}) \), and \(a^*(x, y) \leq c M_S a(x, y) \), by Proposition 4 it follows that

\[
\int_{\hat{\Omega}} a^*(x, y)^p \, w(x, y) \, dx \, dy \\
\leq c \int_{\hat{\Omega}} M_S a(x, y)^p \, w(x, y)^{p/2} \, w(x, y)^{1-p/2} \, dx \, dy \\
\leq c \left(\int_{\hat{\Omega}} M_S a(x, y)^2 \, w(x, y) \, dx \, dy \right)^{p/2} w(\hat{\Omega})^{1-p/2} \\
\leq c \|a\|_{L^p_0}^p w(\hat{\Omega})^{1-p/2} \\
\leq c w(\Omega)^{p(1/2-1/p)} w(\Omega)^{1-p/2} \\
\leq c.
\]

Next, if \(a = \sum_n a_R \), we consider each subatom \(a_R \) separately; by translation if necessary we may assume that \(a_R \) is centered at the origin, and if \(R = I \times J \), we estimate the larger expression

\[
\int_{\mathbb{R} \setminus J} \int_{\mathbb{R} \setminus I} a_R^*(x, y)^p \, w(x, y) \, dx \, dy.
\]

For this purpose we show that the following two estimates hold:

\[
\int_{\mathbb{R} \setminus J} \int_{\mathbb{R} \setminus I} a_R^*(x, y)^p \, w(x, y) \, dx \, dy \leq c \left(\frac{|R|}{|I|} \right)^p,
\]

and

\[
\int_{\mathbb{R} \setminus I} \int_{\mathbb{R} \setminus J} a_R^*(x, y)^p \, w(x, y) \, dx \, dy \leq c \left(\frac{|J|}{|I|} \right)^p.
\]

We do (6) first. Let \(p_N(\psi, \cdot) \) denote the Taylor expansion of degree \(N \) of \(\psi \). By the moment condition on \(a_R \) it readily follows that

\[
|a_R * \psi_{\varepsilon_1, \varepsilon_2}(x, y)| \\
\leq \frac{1}{\varepsilon_1 \varepsilon_2} \int_R \left| \psi \left(\frac{x-u}{\varepsilon_1} \right) - p_N \left(\psi, \frac{u}{\varepsilon_1} \right) \right| \\
\cdot \left| \psi \left(\frac{y-v}{\varepsilon_2} \right) - p_N \left(\psi, \frac{v}{\varepsilon_2} \right) \right| \, |a_R(u, v)| \, du \, dv \\
\leq \frac{c}{\varepsilon_1 \varepsilon_2} \int_R \left(\frac{|u|}{\varepsilon_1} \right)^{N+1} \left(\frac{|v|}{\varepsilon_2} \right)^{N+1} \, |a_R(u, v)| \, du \, dv.
\]
Notice that if \(x \notin 2I \) and \(u \in I \), then \(|x|/2 \leq |x - u| \leq 2|x|\), so that if \(\varepsilon_1 \leq |x|/2 \), then \(\psi_{\varepsilon_1}(x - u) = 0 \). We may thus assume that \(\varepsilon_1 \geq |x|/2 \), and likewise that \(\varepsilon_2 \geq |x_2|/2 \). Therefore, since \(|u v| \leq |\hat{R}|\), the above expression does not exceed

\[
\frac{c|\hat{R}|^{N+1}}{(|x| |y|)^{N+2}} \int_R |a_R(u, v)| w(u, v)^{1/2} w(u, v)^{-1/2} du dv
\leq \frac{c|\hat{R}|^{N+1}}{(|x| |y|)^{N+2}} \|a_R\|_{L^2_w} \left(\int_R w(u, v)^{-1/2} du dv \right)^{1/2}.
\]

Now, by the bound on \(a_R \), and since \(w \in A_2(\mathbb{R} \times \mathbb{R}) \), this expression does not exceed

\[
c \frac{|R|^{N+1}}{(|x| |y|)^{N+2}} \frac{1}{w(\Omega)^{1/p-1/2}} \frac{|\hat{R}|}{w(\hat{R})^{1/2}}.
\]

Thus

\[
\int_{\mathbb{R}\setminus I} \int_{\mathbb{R}\setminus J} a_R^*(x, y)^p w(x, y) \, dx \, dy
\leq c \frac{|\hat{R}|^{(N+2)p}}{w(\Omega)^{1-p/2}} \frac{1}{w(\hat{R})^{p/2}} \int_{\mathbb{R}\setminus I} \int_{\mathbb{R}\setminus J} \frac{w(x, y)}{|x|^{(N+2)p}} \, dx \, dy.
\]

In order to estimate the integral in (8) note that if \(w \in A_r(\mathbb{R} \times \mathbb{R}) \), then by the choice of \(N, N(p + 2) \geq r \); the argument proceeds now using well-known estimates in the case of the line, cf. [T, Proposition IX, 4.5 (iv)], and the fact that the restrictions of \(w \) are uniformly in \(A_r(\mathbb{R}) \) for each variable fixed. Indeed, the expression in question does not exceed

\[
c \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{w(x, y)}{(|x| + |\hat{I}|)^{(N+2)p}} \, dx \, dy
\leq \frac{1}{\hat{I}^{(N+2)p}} \int_{\mathbb{R}} \frac{1}{(|y| + |\hat{J}|)^{(N+2)p}} \int_{\mathbb{R}} \frac{w(x, y)}{(|x| + |\hat{I}|)^{(N+2)p}} \, dx \, dy
\]

\[
\leq \frac{1}{\hat{I}^{(N+2)p}} \int_{\mathbb{R}} \frac{1}{(|y| + |\hat{J}|)^{(N+2)p}} \int_I w(x, y) \, dx \, dy
= c \frac{1}{\hat{I}^{(N+2)p}} \int_I \int_{\mathbb{R}} \frac{w(x, y)}{|J|^{(N+2)p}} \, dx \, dy
\]
$$\leq c \frac{1}{|I|^{(N+2)p}} \frac{1}{|J|^{(N+2)p}} \int_I \int_J w(x, y) \, dx \, dy$$

$$= c \frac{w(\hat{R})}{(|I| |J|)^{(N+2)p}}.$$

Thus, replacing this estimate in the right-hand side of (8), and by Proposition 4, we obtain that the left-hand side there does not exceed

$$c \frac{|R|^{(N+2)p}}{w(\Omega)^{1-p/2} w(R)^{p/2} (|I| |J|)^{(N+2)p}} \frac{w(\hat{R})}{w(\Omega)} \leq c \left(\frac{|R|}{|\hat{R}|} \right)^{(N+1)p} \left(\frac{|R|}{|I| |J|} \right)^p \left(\frac{w(R)}{w(\Omega)} \right)^{1-p/2} \leq c \left(\frac{|R|}{|\hat{R}|} \right)^p,$$

which, of course, gives (6).

We show now estimate (7). By the moment condition on \(a_R \) we get

$$|a_R \ast \psi_{\varepsilon_1, \varepsilon_2}(x, y)| \leq \frac{1}{\varepsilon_1 \varepsilon_2} \left| \int_I \int_J \left(\psi \left(\frac{x - u}{\varepsilon_1} \right) - \psi \left(\frac{y - v}{\varepsilon_2} \right) \right) a_R(u, v) \, du \, dv \right|$$

$$\leq \frac{c}{\varepsilon_1} \int_I \left(\frac{|u|}{\varepsilon_1} \right)^{N+1} \ |M^2 a_R(u, y)| \, du,$$

where \(M^2 \) denotes the Hardy maximal operator in the second variable only. Thus

$$a^*_R(x, y) \leq c \frac{I_{\mathbb{R}^N}^{N+1}}{|x|^{(N+2)p}} \int_I M^2 a_R(u, y) \, du,$$

and consequently,

$$\int_{\mathbb{R}^N} \int_J a^*_R(x, y) w(x, y) \, dx \, dy$$

$$\leq c |I|^{(N+1)p} \int_{\mathbb{R}^N} \frac{1}{|x|^{(N+2)p}} \left(\int_I M^2 a_R(u, y) \, du \right)^p \, w(x, y) \, dy \, dx$$

$$\leq c |I|^{(N+2)p} \int_I \left(\frac{1}{|I|} \int_J M^2 a_R(u, y) \, du \right)^p \int_{\mathbb{R}^N} \frac{w(x, y)}{|x|^{(N+2)p}} \, dx \, dy$$

$$\leq c |I|^{(N+2)p} \int_J M^1(M^2 a_R)(x, y)^p \int_{\mathbb{R}^N} \frac{w(x, y)}{|x|^{(N+2)p}} \, dx \, dy,$$
where M^1 denotes the Hardy maximal operator in the first variable only.

As before, by the usual $A_v(\mathbb{R})$ properties it follows that for y-a.e.

$$\int_{\mathbb{R} \setminus I} \frac{w(x, y)}{|x|^{(N+2)p}} \, dx \leq \frac{c}{|I|^{(N+2)p}} \int_I w(x, y) \, dx,$$

and consequently,

$$\int_{\mathbb{R} \setminus I} \int_I a^w_R(x, y)^p \, w(x, y) \, dx \, dy \leq c \left(\frac{|I|}{|I|} \right)^{(N+2)p} \int_I \int_J M^1(M^2 a_R)(x, y)^p \, w(x, y) \, dy \, dx.$$

Note that the above integral looks similar to the first expression we estimated, and, in fact, since $w \in A_2(\mathbb{R} \times \mathbb{R})$, it does not exceed

$$c \|a_R\|_{L^p_w}^p w(\tilde{R})^{1-p/2} \leq c \|w(\Omega)^{p/2-1}w(\tilde{R})^{1-p/2} \leq c,$$

which completes the proof of (7).

We would like now to improve on these estimates; following R. Fefferman, put

$$b_R(x, y) = \frac{w(R)^{1/2 - 1/p}}{\|a_R\|_{L^p_w}} a_R(x, y),$$

and observe that $b_R(x, y)$ is an atom supported on R, and that the above estimate applied to b_R gives

$$\int_{\mathbb{R} \setminus I} \int_{\mathbb{R}} b^*_R(x, y)^p w(x, y) \, dy \, dx \leq c \left(\frac{|I|}{|I|} \right)^p + c \left(\frac{|R|}{|I|} \right)^p \leq c \left(\frac{|I|}{|I|} \right)^p.$$

Thus, replacing b_R by its expression in terms of a_R, it readily follows that

$$\int_{\mathbb{R} \setminus I} \int_{\mathbb{R}} a^*_R(x, y)^p w(x, y) \, dx \, dy \leq c \|a_R\|_{L^p_w}^p w(R)^{1-p/2} \left(\frac{|I|}{|I|} \right)^p.$$
This is all we need, as we are now ready to sum over the collection of all the maximal dyadic rectangles R contained in Ω. In fact, by Hölder’s inequality and the properties of atoms, it follows that

$$
\sum_R \int_{\mathbb{R}} \int_{\mathbb{R}} a_R^*(x, y)^p \, w(x, y) \, dx \, dy
\leq c \sum_R \|a_R\|_{L^p_{\omega}}^p w(R)^{1-p/2} \left(\frac{|I|}{|\Omega|}\right)^p
\leq c \left(\sum_R \|a_R\|_{L^p_{\omega}}^p\right)^{p/2} \left(\sum_R w(R)^{(1-p/2)(2/p)'} \left(\frac{|I|}{|\Omega|}\right)^{p(2/p)' - 1/2}\right)^{1/p'}
\leq c w(\Omega)^{p/2 - 1} \left(\sum_R w(R) \left(\frac{|I|}{|\Omega|}\right)^{(2-p)/2}\right)^{1-p/2}
$$

We now invoke Journé’s lemma with $\phi(s) = s^{(2-p)/2}$, and note that the above expression is then dominated by

$$
c w(\Omega)^{p/2 - 1} w(\Omega)^{1-p/2} \leq c,
$$
and the proof is complete.

To complete the results discussed here we consider a description of the duals to the Hardy spaces $H^p_w(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$, $r/2 < p \leq 1$, when $w \in A_r(\mathbb{R} \times \mathbb{R})$; by known properties of weights the case $H^1_w(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ when $w \in A_2(\mathbb{R} \times \mathbb{R})$ is included.

Given a real-valued function b on \mathbb{R}^2, and a weight $v \in A_r(\mathbb{R} \times \mathbb{R})$, consider the following expression: if Ω is a bounded open set in \mathbb{R}^2, and R runs over the collection of the maximal dyadic rectangles contained in Ω, then set

$$
\|b\|_{y,v} = \sup_{b_R} \left(\frac{1}{w(\Omega)^v} \sum_R \|b - b_R\|^2_{L^2(v)}\right)^{1/2},
$$

where b_R runs over the family of functions of the form

$$
b_R(x, y) = c_1 b_1(y) + c_2 b_2(x),
\text{ supp } b_1 \subseteq J, \text{ supp } b_2 \subseteq I, \quad R = I \times J.
$$

We then have
Proposition 6. $H_w^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)^*$, the dual of the Hardy space $H_w^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$, $r/2 < p \leq 1$ can be identified with $B_{2/p-1,1/w}(\mathbb{R}\times\mathbb{R})$, the collection of those square integrable functions b such that $\|b\|_{2/p-1,1/w} < +\infty$.

Proof. We begin by showing that each $b \in B_{2/p-1,1/w}(\mathbb{R}\times\mathbb{R})$ induces a bounded linear functional on $H_w^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$, with norm less than or equal to $c \|b\|_{2/p-1,1/w}$.

Suppose, then, that $a = \sum_R a_R$ is a (p,w)-atom in $H_w^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$, and let $b \in B_{2/p-1,1/w}(\mathbb{R}\times\mathbb{R})$. Then, by the properties of atoms, a judicious choice of the b_R’s, and Cauchy’s inequality,

$$\left| \iint_{\mathbb{R}^2} a(x,y)b(x,y) \, dx \, dy \right| \leq \sum_R \left| \iint_{\mathbb{R}^2} a_R(x,y)b(x,y) \, dx \, dy \right| \leq \sum_R \iint_{\mathbb{R}^2} |a_R(x,y)| |b(x,y) - b_R(x,y)| w(x,y)^{1/2} w(x,y)^{-1/2} \, dx \, dy \leq \left(\sum_R \|a_R\|_{L^2_w}^2 \right)^{1/2} \left(\sum_R \|b - b_R\|_{L^2_{1/w}}^2 \right)^{1/2} \leq w(\Omega)^{(1-2/p)/2} \left(\sum_R \|b - b_R\|_{L^2_{1/w}}^2 \right)^{1/2} \leq \|b\|_{2/p-1,1/w}.$$

Next, if $f \in H_w^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$, then it admits an atomic decomposition $f = \sum_j \lambda_j a_j$, where the a_j’s are (p,w)-atoms and $\|f\|_{H_w^p} \sim (\sum_j |\lambda_j|^p)^{1/p}$. Thus,

$$\left| \iint_{\mathbb{R}^2} f(x,y)b(x,y) \, dx \, dy \right| \leq \sum_j |\lambda_j| \left| \iint_{\mathbb{R}^2} a_j(x,y)b(x,y) \, dx \, dy \right| \leq \left(\sum_j |\lambda_j|^p \right)^{1/p} \|b\|_{2/p-1,1/w},$$

and the assertion follows.

Conversely, suppose that $L \in H_w^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)^*$. Then on a dense subset there, consisting of smooth functions, L can be represented by
\(b(x, y) \) in the form

\[
L(f) = \int_{\mathbb{R}^2} f(x, y) b(x, y) \, dx \, dy .
\]

Let now \(\Omega \) be a bounded open set in \(\mathbb{R}^2 \), and suppose that \(\Omega = \bigcup_R R \), where the \(R \)'s are the maximal dyadic rectangles contained in \(\Omega \). Now, given a function \(g \in L^2_w(\mathbb{R}^2) \) and \(R = I \times J \), set

\[
g_R(x, y) = \frac{1}{|I|} \int_I g(u, y) \, du + \frac{1}{|J|} \int_J g(x, v) \, dv
\]

\[- \frac{1}{|R|} \int \int_R g(u, v) \, du \, dv .\]

Then

\[
\int_I (g(x, y) - g_R(x, y)) \, dx = \int_J (g(x, y) - g_R(x, y)) \, dy = 0 ,
\]

and

\[
\| g - g_R \|_{L^2_w(R)} \leq c \| g \|_{L^2_w(\Omega)} .
\]

The first assertion is readily verified, and to see the second we consider the first term in \(g_R \), the others being handled analogously. Note that since \(w(\cdot, y) \in A_2(\mathbb{R}) \) uniformly in \(y \),

\[
\int_J \int_I \left(\frac{1}{|I|} \int_I g(u, y) \, du \right)^2 w(x, y) \, dx \, dy
\]

\[
\leq \int_J \int_I \left(\frac{1}{|I|} \int_I g(u, y)^2 w(u, y) \, du \right) \left(\frac{1}{|I|} \int_I \frac{1}{w(u, y)} \, du \right) w(x, y) \, dx \, dy
\]

\[
= \int_J \int_I g(u, y)^2 w(u, y) \left(\frac{1}{|I|} \int_I \frac{1}{w(u, y)} \, du \right) \left(\frac{1}{|I|} \int_I w(x, y) \, dx \right) \, du \, dy .
\]

Now, since \(w(\cdot, y) \in A_2(\mathbb{R}) \), uniformly in \(y \), the above expression involving the inner integrals does not exceed the \(A_2 \) constant of \(w \), and the whole expression is less than or equal to \(c \| g \|_{L^2_w} \), as claimed. The other terms are dealt with in a similar fashion.

Suppose now that \(\Omega \) is a bounded open subset in \(\mathbb{R}^2 \), and that \(f \in L^2(\Omega) \) is such that

\[
\left(\sum_R \| f \|_{L^2_w(R)}^2 \right)^{1/2} = 1 .
\]
Then, by the above remark, there is a constant c such that
\begin{equation}
\alpha(x, y) = c \frac{1}{w(\Omega)^{1/p-1/2}} \sum_R (f(x, y) - f_R(x, y)) \chi_R(x, y),
\end{equation}
is a (p, w)-atom of norm 1, and consequently,
\begin{align*}
\|L\| &\geq \|L(a)\| \\
&= c \frac{1}{w(\Omega)^{1/p-1/2}} \sum_R \iint_R (f(x, y) - f_R(x, y)) b(x, y) \, dx \, dy \\
&= c \frac{1}{w(\Omega)^{1/p-1/2}} \iint_R f(x, y) (b(x, y) - b_R(x, y)) \, dx \, dy.
\end{align*}
Since this estimate holds for all such f's, by duality it readily follows that
\begin{equation}
c \left(\frac{1}{w(\Omega)^{2/p-1}} \sum_R \|b - b_R\|_{L^1_{w(R)}}^2 \right)^{1/2} \leq \|L\|,
\end{equation}
which is precisely what we wanted to show.

References.

Recibido: 4 de febrero de 1.993

Donald Krug
Department of Mathematics and Computer Science
Northern Kentucky University
Highland Heights KY 41009, U.S.A.

and

Alberto Torchinsky
Department of Mathematics
Indiana University
Bloomington IN 47405, U.S.A.