Approximation and symbolic calculus for Toeplitz algebras on the Bergman space

Daniel Suárez

Abstract

If \(f \in L^\infty(\mathbb{D}) \) let \(T_f \) be the Toeplitz operator on the Bergman space \(L^2_\mathbb{A} \) of the unit disk \(\mathbb{D} \). For a \(C^* \)-algebra \(A \subset L^\infty(\mathbb{D}) \) let \(\mathfrak{T}(A) \) denote the closed operator algebra generated by \(\{ T_f : f \in A \} \). We characterize its commutator ideal \(\mathfrak{C}(A) \) and the quotient \(\mathfrak{T}(A)/\mathfrak{C}(A) \) for a wide class of algebras \(A \). Also, for \(n \geq 0 \) integer, we define the \(n \)-Berezin transform \(B_nS \) of a bounded operator \(S \), and prove that if \(f \in L^\infty(\mathbb{D}) \) and \(f_n = B_nT_f \) then \(T_{f_n} \rightarrow T_f \).

1. Introduction and preliminaries

Suppose that \(A \) is a \(C^* \)-algebra with unit. The commutator ideal \(\mathfrak{C} \) is the closed bilateral ideal generated by the elements \([x, y] = xy - yx \), with \(x, y \in A \). The quotient \(A/\mathfrak{C} \) is a commutative \(C^* \)-algebra with unit, which by the Gelfand-Naimark Theorem is isometrically isomorphic to \(C(M) \), the algebra of continuous functions on some compact Hausdorff space \(M \). Following the arrows

\[A \twoheadrightarrow A/\mathfrak{C} \cong C(M) \]

we can associate to every \(x \in A \) a function \(f_x \in C(M) \), which is the ‘symbol’ referred to in the title of the paper. Since the algebra \(A \) is determined by \(\mathfrak{C} \) and \(C(M) \), the study of these two objects is an important tool for a better understanding of \(A \). The possible advantages of this point of view are that \(C(M) \) can be treated by topological methods, since it depends exclusively on the space \(M \), and that \(\mathfrak{C} \) is usually much smaller than \(A \). Of course, the first step of this journey is to determine \(\mathfrak{C} \) and \(C(M) \). The whole process is known as abelianization, and it can be carried out for a much wider class

\begin{flushleft}
\textit{2000 Mathematics Subject Classification:} Primary: 32A36; Secondary: 47B35.
\textit{Keywords:} Bergman space, Toeplitz operator, commutator ideal and abelianization.
\end{flushleft}
of algebras than \(C^* \)-algebras. In particular, these ideas have been widely studied in the context of Toeplitz algebras acting on the Hardy space \(H^2 \) (see [18, pp. 339-392]). The literature shows some partial attempts to develop a similar scheme for Toeplitz algebras acting on the Bergman space \(L^2_a = L^2_a(dA) \), where \(dA \) is the normalized area measure on \(D \) (see [14, Ch. 4] for a general discussion). We give below a brief summary of known results.

Let \(\mathcal{L}(L^2_a) \) be the algebra of bounded operators on \(L^2_a \). If \(B \subset L^\infty(D) \) is a closed subalgebra, let \(\mathfrak{T}(B) \) be the closed subalgebra of \(\mathcal{L}(L^2_a) \) generated by the Toeplitz operators \(\{ T_a : a \in B \} \) and \(\mathfrak{C}(B) \) be the commutator ideal of \(\mathfrak{T}(B) \).

In [11] Coburn proved that \(\mathfrak{C}(C(D)) \) is the ideal of compact operators and \(\mathfrak{T}(C(D))/\mathfrak{C}(C(D)) \) is isomorphic to \(C(\partial D) \). In [17] McDonald and Sundberg characterized the quotient \(\mathfrak{T}(\mathcal{U})/\mathfrak{C}(\mathcal{U}) \), where \(\mathcal{U} \) is the \(C^* \)-algebra in \(L^\infty(D) \) generated by \(H^\infty \). Later, the two papers by Axler and Zheng ([4], [5]) provided additional information on Coburn’s and McDonald-Sundberg’s theorems by giving characterizations of the respective commutator ideals in terms of the Berezin transform. We give precise statements of these results in Sections 6 and 7. In [20] the author showed that \(\mathfrak{C}(L^\infty(D)) = \mathfrak{T}(L^\infty(D)) \).

Despite these results, no systematic theory of abelianization has been given so far for Toeplitz algebras on the Bergman space. One of the purposes of this paper is to develop a general theory of abelianization for Toeplitz algebras \(\mathfrak{T}(B) \), where \(B \) belongs to a special class of \(C^* \)-algebras in \(L^\infty(D) \) that we call hyperbolic. Our main goal is to explain the underlying phenomenon that is apparently common to Coburn’s and McDonald-Sundberg’s theorems, and to apply it to other hyperbolic algebras.

Let \(\mathcal{A} \subset L^\infty(D) \) be the algebra of functions on \(D \) that are uniformly continuous with respect to the pseudohyperbolic metric. If \(n \) is a nonnegative integer, we define the \(n \)-Berezin transform \(B_n : \mathcal{L}(L^2_a) \to \mathcal{A} \). This is a linear operator, and we show that if \(a \in L^\infty(D) \) and \(a_n = B_n T_a \), then \(T_a \) tends to \(T_a \) in operator norm. In particular, the Toeplitz algebras associated to \(L^\infty(D) \) and \(\mathcal{A} \) coincide. This will allow us to reduce the study of \(\mathfrak{T}(\mathcal{B}) \) and \(\mathfrak{C}(\mathcal{B}) \) for some \(C^* \)-algebras \(\mathcal{B} \subset L^\infty(D) \) that are not hyperbolic, to the case of hyperbolic algebras. Once the reduction is made, we can use the maximal ideal space of \(\mathcal{A} \) as a powerful tool to describe \(\mathfrak{C}(\mathcal{B}) \) and \(\mathfrak{T}(\mathcal{B})/\mathfrak{C}(\mathcal{B}) \). We begin fixing some notation.

For \(z \in D \) denote
\[
\varphi_z(\omega) = \frac{z - \omega}{1 - \overline{z}\omega}.
\]
The pseudohyperbolic metric on \(D \) is defined as \(\rho(z, \omega) = |\varphi_z(\omega)| \). This metric is invariant under the action of Aut\((D) \). Sometimes, especially in
estimates involving the triangle inequality, it will be useful to use the hyperbolic metric
\[h(z, \omega) = \log \frac{1 + \rho(z, \omega)}{1 - \rho(z, \omega)}, \quad z, \omega \in \mathbb{D} \]
instead of \(\rho \). The passage from one metric to the other is justified because
\[f(x) = \log \frac{1 + x}{1 - x} \]
is a strictly increasing function of \(x \in (0, 1) \). For \(z \in \mathbb{D}, \ r \in (0, 1) \) and \(s \in (0, \infty) \) write
\[K(z, r) = \{ \omega \in \mathbb{D} : \rho(z, \omega) \leq r \} \quad \text{and} \quad K_h(z, r) = \{ \omega \in \mathbb{D} : h(z, \omega) \leq s \} \]
for the closed pseudohyperbolic (resp. hyperbolic) disk of center \(z \) and radius \(r \) (resp. \(s \)).

Let \(\mathcal{B} \subset L^\infty(\mathbb{D}) \) be a closed subalgebra, where by algebra we always mean a unitary algebra. The maximal ideal space of \(\mathcal{B} \) is
\[M(\mathcal{B}) = \{ \alpha : \mathcal{B} \to \mathbb{C} : \alpha \text{ is linear, multiplicative and } \alpha(1) = 1 \}, \]
provided with the weak * topology induced by the dual space of \(\mathcal{B} \). It is a compact Hausdorff space. We can look at a function \(f \in \mathcal{B} \) as a continuous function on \(M(\mathcal{A}) \) via the Gelfand transform
\[\hat{f}(\alpha) = \alpha(f) \quad (\alpha \in M(\mathcal{B})). \]
If \(\mathcal{B} \subset C(\mathbb{D}) \cap L^\infty(\mathbb{D}) \) separates points of \(\mathbb{D} \) then evaluations at points of \(\mathbb{D} \) are members of \(M(\mathcal{B}) \). So, \(\mathbb{D} \) is naturally imbedded into \(M(\mathcal{B}) \), and \(\hat{f} \) is an extension to the whole maximal space of the function \(f \). Unless the contrary is stated we avoid writing the hat for the Gelfand transform and look at \(f \) as a function on \(M(\mathcal{B}) \). The algebra
\[\mathcal{A} = \{ f \in L^\infty(\mathbb{D}) : f \text{ is uniformly continuous with respect to } \rho \} \]
will be a major protagonist of this paper. It is \(C^* \)-algebra such that \(\mathbb{D} \) is dense in \(M(\mathcal{A}) \). Indeed, there cannot be \(\alpha \in M(\mathcal{A}) \setminus \overline{\mathbb{D}} \), because otherwise there is \(f \in \mathcal{A} \) with \(f(\alpha) = 0 \) while \(|f| \geq \delta > 0 \) on \(\mathbb{D} \) (since \(\mathcal{A} \) is a \(C^* \)-algebra). Since such \(f \) is invertible in \(\mathcal{A} \), it is not in the maximal ideal \(\text{Ker } \alpha \). Further information on \(M(\mathcal{A}) \) can be found in [8].

If \(a \in L^\infty(\mathbb{D}) \) let \(M_a \) be the multiplication operator on \(L^2(\mathbb{D}) \) and \(T_a \) be the Toeplitz operator on \(L^2_a \). That is, \(T_a = P_+ M_a \), where \(P_+ : L^2(\mathbb{D}) \to L^2_a \) is the Bergman projection. It is clear that \(\| M_a \| = \| a \|_\infty \) and \(\| T_a \| \leq \| a \|_\infty \).
A big difference with Toeplitz operators on the Hardy space \(H^2 \) is that the latter inequality is not always an equality, although we still have that \(T_a = 0 \).
only when $a = 0$. For $z \in \mathbb{D}$, the ‘change of variable operator’ is given by $U_z f = (f \circ \varphi_z) \varphi'_z$. That is,

$$(U_z f)(\omega) = f(\varphi_z(\omega)) \frac{|z|^2 - 1}{(1 - \overline{z} \omega)^2}.$$

It is easy to prove that $U_z T_a U_z = T_a \circ \varphi_z$ for every $a \in L_\infty(\mathbb{D})$, and since U_z is unitary and self-adjoint, then

$$(T_{a_1} \ldots T_{a_n})_z = (U_z T_{a_1} U_z) \ldots (U_z T_{a_n} U_z) = T_{a_1 \circ \varphi_z} \ldots T_{a_n \circ \varphi_z}$$

for $a_1, \ldots, a_n \in L_\infty(\mathbb{D})$. We will write

$$S_z = U_z T_a U_z \quad \text{for } S \in \mathfrak{L}(L_a^2).$$

The paper is organized as follows. The main results are Theorems 5.7, 6.4 and 6.5. In Section 2 we introduce the n-Berezin transform of a bounded operator and study its basic properties. If $a \in L_\infty(\mathbb{D})$, $B_n T_a$ coincides with $B_n(a)$, the more familiar n-Berezin transform of a function. In Section 3 we study the maximal ideal space of \mathcal{A} and use some of its features to define the notion of hyperbolic algebra. A characterization of these algebras is obtained in terms of interpolating sequences.

If $S \in \mathfrak{I}(\mathcal{B})$, where \mathcal{B} is a hyperbolic algebra, we construct in Section 4 a continuous map $\Psi^S_{\mathcal{B}}$ from the maximal ideal space of \mathcal{B} into $\mathfrak{I}(\mathcal{B})$, when provided with the strong operator topology, and study its interaction with the n-Berezin transform. We prove that $\Psi^S_{\mathcal{B}}$ is multiplicative as a function of S, which translates into a kind of asymptotic multiplicative behavior of B_n. This will be a fundamental tool for much of what follows.

Theorem 5.7 shows that $T_{B_n(a)}$ tends to T_a for $a \in L_\infty(\mathbb{D})$. As a consequence we obtain that if $B_n(a)$ belongs to a hyperbolic algebra \mathcal{B} for infinitely many values of n then $T_a \in \mathfrak{I}(\mathcal{B})$. This argument will reduce the study of $\mathfrak{I}(C)$ for some non-hyperbolic algebras $C \subset L_\infty(\mathbb{D})$ to the hyperbolic case.

Theorem 6.4 gives a characterization of $\mathfrak{C}(\mathcal{B})$ and $\mathfrak{I}(\mathcal{B})/\mathfrak{C}(\mathcal{B})$ when \mathcal{B} is hyperbolic. If S is a finite sum of finite products of Toeplitz operators with symbols in $L_\infty(\mathbb{D})$ and \mathcal{B} is a hyperbolic algebra, Theorem 6.5 provides a necessary and sufficient condition for $S \in \mathfrak{I}(\mathcal{B})$ and $S \in \mathfrak{C}(\mathcal{B})$.

Section 7 is devoted to applications of the previous results. It is shown that the theorem of McDonald-Sundberg and part of Coburn’s theorem are particular cases of Theorem 6.4. An example will be given to illustrate how Theorems 5.7 and 6.4 can be used to characterize $\mathfrak{C}(C)$ and $\mathfrak{I}(C)/\mathfrak{C}(C)$ for some C^*-algebras $C \subset L_\infty(\mathbb{D})$ that are not hyperbolic.

Finally, we give a partial result towards a possible characterization of the center of $\mathfrak{I}(L_\infty(\mathbb{D}))/\mathcal{K}$, where \mathcal{K} denotes the ideal of compact operators. We finish the paper posing some open problems.
2. The n-Berezin transform.

If n is a nonnegative integer and $z \in \mathbb{D}$, the function
\[
K_z^{(n)}(\omega) = \frac{1}{(1 - \overline{z}\omega)^{2+n}} \quad (\omega \in \mathbb{D})
\]
is the reproducing kernel of z in the weighted Bergman space $L^2_a(dA_n)$, where $dA_n(\omega) = (n+1)(1 - |\omega|^2)^n dA(\omega)$. The n-Berezin transform of an operator $S \in \mathcal{L}(L^2_a)$ is defined as

\[
(B_n S)(z) \overset{\text{def}}{=} (n+1)(1 - |z|^2)^{2+n} \sum_{j=0}^{n} \binom{n}{j} (-1)^j \langle S(\omega^j K_z^{(n)}), \omega^j K_z^{(n)} \rangle.
\]

It is clear that $B_n S \in C^\infty(\mathbb{D})$ for every $S \in \mathcal{L}(L^2_a)$. Using that
\[
\sum_{j=0}^{n} \binom{n}{j} (-1)^j |\omega|^{2j} = (1 - |\omega|^2)^n
\]
we see that if $S = T_a$, with $a \in L^\infty(\mathbb{D})$, then
\[
(B_n a)(z) \overset{\text{def}}{=} (B_n T_a)(z) = (n+1)(1 - |z|^2)^{2+n} \sum_{j=0}^{n} \binom{n}{j} (-1)^j \int_\mathbb{D} \frac{a(\omega)|\omega|^{2j}}{|1 - \overline{z}\omega|^{2(2+n)}} dA(\omega)
\]
\[
= \int_\mathbb{D} a(\omega) \frac{(1 - |\omega|^2)^{2+n}}{|1 - \overline{z}\omega|^{2(2+n)}} (n+1)(1 - |\omega|^2)^n dA(\omega)
\]
\[
= \int_\mathbb{D} a(\varphi_z(\zeta))(n+1)(1 - |\zeta|^2)^n dA(\zeta),
\]
where the last equality comes from the change of variables $\omega = \varphi_z(\zeta)$. Since $dA_n(\xi)$ is a probability measure that tends to concentrate its mass at 0 when $n \to \infty$, then $(B_n a)(z)$ is an average of a satisfying $\|B_n(a)\|_\infty \leq \|a\|_\infty$ for all $a \in L^\infty(\mathbb{D})$. A straightforward calculation shows that B_n maps $L^\infty(\mathbb{D})$ into \mathcal{A} for every $n \geq 0$, and we will prove in Corollary 4.6 that the same holds for $\mathcal{L}(L^2_a)$. The last expression in (2.2) clearly shows that $\|B_n(a) - a\|_\infty \to 0$ when $n \to \infty$ for every $a \in \mathcal{A}$. That is, the sequence $\{B_n\}$ works as an approximate identity for \mathcal{A}. In particular, $\lim_n \|T_{B_n(a)} - T_a\| = 0$ for $a \in \mathcal{A}$.

The 0-Berezin transform of an operator is the usual Berezin transform, which has been extensively used in recent research (see for instance [2], [4], [5] and [19]). The n-Berezin transforms of functions (not necessarily bounded) were introduced by Berezin in [6]. Many of the results of this section were
proved by Ahern, Flores and Rudin [2] for n-Berezin transforms of functions of several variables. However, the results here do not follow immediately from theirs, because there are \textit{a priori} several ways to define B_nS for $n \geq 1$ and $S \in \mathfrak{L}(L^2_n)$ so that (2.2) holds when $S = T_a$. If for instance $S \in \mathfrak{L}(L^2_n) \cap \mathfrak{L}(L^2_n(dA_n))$, then the usual Berezin transform of S with respect to the weighted Bergman space $L^2_n(dA_n)$ is $(1 - |z|^2)^{2+n} \langle SK_z^{(n)}, K_z^{(n)} \rangle_{dA_n}$, which differs from our definition of B_nS. It is precisely because of the results of this section (especially Proposition 2.4) that I convinced myself (and hopefully convince the reader) about (2.1) as the right definition of B_nS.

\textbf{Lemma 2.1} Let $S \in \mathfrak{L}(L^2_n)$ and $n \geq 0$. Then
\begin{equation}
(2.3) \quad (n + 2)(1 - |z|^2)B_n(S - T_\omega ST_\omega)(z) = (n + 1)B_{n+1}(T_{1 - \omega_\alpha}ST_{1 - \omega_\alpha})(z)
\end{equation}
for every $z \in \mathfrak{D}$.

\textbf{Proof.} A simple rearrangement of terms gives
\[
\sum_{j=0}^{n} \binom{n}{j} (-1)^j \left[(\omega^j K_z^{(n)}), \omega^j K_z^{(n)} \right] - \langle S(\omega^{j+1} K_z^{(n)}), \omega^{j+1} K_z^{(n)} \rangle
\]
\[
= \langle SK_z^{(n)}, K_z^{(n)} \rangle + (-1)^{n+1} \langle S(\omega^{n+1} K_z^{(n)}), \omega^{n+1} K_z^{(n)} \rangle
\]
\[
+ \sum_{j=1}^{n} \left(\binom{n}{j} + \binom{n}{j-1} \right) (-1)^j \langle S(\omega^j K_z^{(n)}), \omega^j K_z^{(n)} \rangle
\]
\[
= \sum_{j=0}^{n+1} \binom{n+1}{j} (-1)^j \langle S(\omega^j K_z^{(n)}), \omega^j K_z^{(n)} \rangle.
\]
Multiplying by $(n + 2)(n + 1)(1 - |z|^2)^{3+n}$ and using that
\[
T_{1 - \omega_\alpha}(\omega^j K_z^{(n+1)}) = \omega^j K_z^{(n)}
\]
the above equality becomes (2.3).

\textbf{Lemma 2.2} $B_nS_\alpha = (B_nS) \circ \varphi_\alpha$ for every $n \geq 0$, $S \in \mathfrak{L}(L^2_n)$ and $\alpha \in \mathfrak{D}$.

\textbf{Proof.} We shall prove the lemma by induction on n. The easy identity
\begin{equation}
(2.4) \quad (1 - \varphi_\alpha(\omega)\bar{\omega})^{-1} = (1 - \bar{\alpha}\omega^{-1})(1 - \varphi_\alpha(\omega))^{-1}
\end{equation}
implies that
\[
(U_\alpha K_z^{(0)})(\omega) = \frac{|\alpha|^2 - 1}{(1 - \bar{\alpha}\omega)(1 - \varphi_\alpha(\omega))} \frac{|\alpha|^2 - 1}{(1 - \alpha\omega)^2} K_z^{(0)}(\varphi_\alpha(z)\omega).
\]
Thus
\[
\langle B_0 \varphi_\alpha(z) | B_0 \varphi_\alpha(z) \rangle = (1 - |\varphi_\alpha(z)|^2) \langle SK_z^{(0)}, K_z^{(0)} \rangle = (B_0S)(\varphi_\alpha(z))
\]
This takes care of $n = 0$.\qed
The main tool for the inductive step will be formula (2.3), that we rewrite as

\[(B_{n+1}S)(z) = c_n(1 - |z|^2)B_n[T_{(1-\varphi z)}^{-1}(S - T_{\varpi ST_\omega})T_{(1-\omega z)}^{-1}](z),\]

where \(c_n = (n + 2)/(n + 1).\) By (1.1) then

\[T_{(1-\varphi z)}^{-1}(U_\alpha SU_\alpha - T_{\varpi}U_\alpha SU_\alpha T_\omega)T_{(1-\omega z)}^{-1}\]

\[= U_\alpha T_{(1-\varphi_\alpha(z)\varpi)^{-1}}[S - T_{\varphi_\alpha(z)\varpi}ST_{\varphi_\alpha(z)\omega}]T_{(1-\varphi_\alpha(z)\omega)}^{-1}U_\alpha = J.\]

Then (2.4) yields

\[J = |1 - \alpha \varpi|^2 U_\alpha T_{(1-\varphi_\alpha(z)\varpi)^{-1}}[T_{1-\alpha \varpi}ST_{1-\varpi z} - T_{\varpi}ST_{1-\varpi z}]T_{(1-\varphi_\alpha(z)\omega)}^{-1}U_\alpha\]

\[(2.6) = \frac{1 - |\alpha|^2}{|1 - \alpha \varpi|^2} U_\alpha T_{(1-\varphi_\alpha(z)\varpi)^{-1}}[S - T_{\varphi_\alpha(z)\varpi}ST_{\varphi_\alpha(z)\omega}]T_{(1-\varphi_\alpha(z)\omega)}^{-1}U_\alpha.\]

Hence,

\[(B_{n+1}S_\alpha)(z) = c_n(1 - |z|^2)B_n(J)(z)\]

\[= c_n(1 - |\varphi_\alpha(z)|^2)B_n(U_\alpha T_{(1-\varphi_\alpha(z)\varpi)^{-1}}[S - T_{\varphi_\alpha(z)\varpi}ST_{(1-\varphi_\alpha(z)\omega)}^{-1}U_\alpha](z)\]

\[= c_n(1 - |\varphi_\alpha(z)|^2)B_n(T_{(1-\varphi_\alpha(z)\omega)^{-1}}[S - T_{\varphi z}ST_{\varphi z}]T_{(1-\varphi_\alpha(z)\omega)}^{-1})(\varphi_\alpha(z))\]

\[= B_{n+1}(S)(\varphi_\alpha(z)),\]

where the first equality comes from (2.5) with \(U_\alpha SU_\alpha\) instead of \(S,\) the second from (2.6), the third by inductive hypothesis and the last one from (2.5) with \(\varphi_\alpha(z)\) instead of \(z.\)

\[\]
The (conformally) invariant Laplacian is \(\hat{\Delta} = (1 - |z|^2)^2 \partial \bar{\partial} \), where \(\partial \) and \(\bar{\partial} \) are the traditional Cauchy-Riemann operators. So, when \(f \) is analytic on \(\mathbb{D} \), \(\partial f = f' \), \(\bar{\partial} f = 0 \), and \(\bar{\partial} \bar{f} = 0 \). It is easy to check that \(\hat{\Delta} f \circ \psi = \hat{\Delta} (f \circ \psi) \) for every \(\psi \in \text{Aut}(\mathbb{D}) \).

Proposition 2.4 Let \(S \in \mathcal{L}(L^2_a) \) and \(n \geq 0 \). Then

\[
(2.7) \quad \hat{\Delta} B_n S = 4(n + 1)(n + 2)(B_n S - B_{n+1} S).
\]

Proof. By Lemma 2.2 and the conformal invariance of \(\hat{\Delta} \) it is enough to prove that the equality holds at \(z = 0 \). Using the mentioned properties of \(\partial \) and \(\bar{\partial} \), a tedious but straightforward calculation gives

\[
(2.8) \quad \hat{\Delta} [(1 - |z|^2)^{n+2} \langle S(\omega^j K_z^{(n)}), \omega^j K_z^{(n)} \rangle](0) = 4(n + 2)(-\langle S \omega^j, \omega^j \rangle + (n + 2)\langle S \omega^{j+1}, \omega^{j+1} \rangle)
\]

for every \(0 \leq j \leq n \). So, writing \(X_j = (-1)^j \langle S \omega^j, \omega^j \rangle \), we have

\[
\hat{\Delta} (B_n S)(0) = 4(n + 1)(n + 2) \sum_{j=0}^{n} \binom{n}{j} [-X_j - (n + 2)X_{j+1}]
\]

\[
= 4(n + 1)(n + 2) \left\{-X_0 - (n + 2)X_{n+1} - \sum_{j=1}^{n} \left[\binom{n}{j} + (n + 2)\binom{n}{j-1} \right] X_j \right\}.
\]

On the other hand,

\[
(B_n S - B_{n+1} S)(0) = -(n + 2)X_{n+1} + \sum_{j=0}^{n} \left[(n + 1)\binom{n}{j} - (n + 2)\binom{n + 1}{j} \right] X_j.
\]

A comparison of the coefficients for each \(X_j \) gives the result. \(\Box \)

Corollary 2.5 If \(S \in \mathcal{L}(L^2_a) \) and \(n \geq 1 \) then

\[
(2.9) \quad B_n S = \left(1 - \frac{\hat{\Delta}}{4n(n + 1)} \right) B_{n-1} S
\]

and

\[
(2.10) \quad B_n S = G_n(\hat{\Delta}) B_0 S,
\]

where

\[
G_n(\lambda) = \prod_{k=1}^{n} \left(1 - \frac{\lambda}{4k(k + 1)} \right).
\]

Proof. Formula (2.9) is a rewriting of (2.7), while (2.10) follows immediately from (2.9). \(\Box \)
Lemma 2.6 If $S \in \mathcal{L}(L^2_a)$ and $n \geq 0$ then $\hat{\Delta}B_0(B_nS) = B_0\hat{\Delta}(B_nS)$.

Proof. If $f = B_nS$, Corollary 2.3 and (2.7) imply that f and $\hat{\Delta}f$ are bounded. Hence, Lemma 1 of [1] says that $\hat{\Delta}B_0f = B_0\hat{\Delta}f$. ■

Corollary 2.7 Let $S \in \mathcal{L}(L^2_a)$ and $k,j \geq 0$. Then $(B_kB_j)(S) = (B_jB_k)(S)$.

Proof. Combine (2.10) with the previous lemma. ■

3. Algebras related to the maximal ideal space of \mathcal{A}

For the next two subsections, if $E \subset M(\mathcal{A})$ then \overline{E} denotes the closure of E in the space $M(\mathcal{A})$.

Since the $M(\mathcal{A})$-topology agrees with the Euclidean topology on \mathbb{D}, \overline{E} has the same meaning in both topologies when $E \subset r\mathbb{D}$ for some $0 < r < 1$. Later on, we will have to distinguish between closures in different spaces. A sequence $\{z_n\} \subset \mathbb{D}$ is separated if $\rho(z_n,z_k) \geq \delta > 0$ for $n \neq k$.

3.1. One-to-one maps from \mathbb{D} into $M(\mathcal{A})$

Lemma 3.1 Let $E,F \subset \mathbb{D}$. Then $E \cap F = \emptyset$ if and only if $\rho(E,F) > 0$.

Proof. If $E \cap F = \emptyset$ then there is $f \in \mathcal{A}$ such that $f \equiv 1$ on E and $f \equiv 0$ on F. The uniform ρ-continuity of f implies that

$$\rho(E,F) = \rho(E \cap \mathbb{D}, F \cap \mathbb{D}) > 0.$$

Now suppose that $\rho(E,F) \geq \alpha > 0$ and consider the function

$$f(z) = \begin{cases}
1 & \text{if } \rho(z,E) \leq \alpha/2 \\
0 & \text{if } \rho(z,E) > \alpha/2
\end{cases}$$

Simple estimates show that $B_n(f) \to 1$ uniformly on $\{z : \rho(z,E) < \alpha/4\}$ and $B_n(f) \to 0$ uniformly on $\{z : \rho(z,F) < \alpha/4\}$. Since $B_n(f) \in \mathcal{A}$, it separates \overline{E} from \overline{F} for n big enough, showing that they are disjoint. ■

Let $x \in M(\mathcal{A})$ and suppose that (z_n) is a net in \mathbb{D} that tends to x. We can think of (φ_{z_n}) as a net in the product space $M(\mathcal{A})^\mathbb{D}$. By compactness there is a convergent subnet $(\varphi_{z_{n_\beta}})$, meaning that there is some function $\varphi : \mathbb{D} \to M(\mathcal{A})$ such that $f \circ \varphi_{z_{n_\beta}} \to f \circ \varphi$ pointwise on \mathbb{D} for every $f \in \mathcal{A}$.

We aim to show that the whole net (z_n) tends to φ and that φ does not depend on the net. So, suppose that (ω_γ) is another net in \mathbb{D} converging to x such that φ_{ω_γ} tends to some $\psi \in M(\mathcal{A})^\mathbb{D}$. If $\varphi \neq \psi$ there is
some $\xi \in \mathbb{D}$ such that $\varphi(\xi) \neq \psi(\xi)$. Then there are closed disjoint neighborhoods $U, V \subset M(A)$ of $\varphi(\xi)$ and $\psi(\xi)$, respectively. Since $\varphi_{z_n}(\xi) \rightarrow \varphi(\xi)$ and $\varphi_{\omega_n}(\xi) \rightarrow \psi(\xi)$, there are tails of both nets satisfying

$$E = \{\varphi_{z_n}(\xi) : \beta \geq \beta_0\} \subset U \quad \text{and} \quad F = \{\varphi_{\omega_n}(\xi) : \gamma \geq \gamma_0\} \subset V.$$

By Lemma 3.1 then $\rho(E, F) \geq \rho(U \cap \mathbb{D}, V \cap \mathbb{D}) > 0$. Since for every $z, \omega \in \mathbb{D}$ there is a constant $c_\xi > 0$ such that

$$\rho(\varphi_z(\xi), \varphi_\omega(\xi)) < c_\xi \rho(z, \omega),$$

then

$$\rho(E, F) \leq c_\xi \inf\{\rho(z_{\alpha,\beta}, \omega_\gamma) : \beta \geq \beta_0, \gamma \geq \gamma_0\} = 0,$$

where the last equality holds because both nets $(z_{\alpha,\beta})$ and (ω_γ) tend to x. We obtain a contradiction and consequently $\varphi = \psi$. The map φ will be denoted φ_ξ, and notice that $\varphi_\xi(0) = \lim \varphi_{z_n}(0) = \lim z_n = x$.

The following lemma is in [20, Lemma 2.1].

Lemma 3.2 Let S be a separated sequence and $0 < \sigma < 1$. Then there is a finite decomposition $S = S_1 \cup \ldots \cup S_N$ such that for every $1 \leq j \leq N$: $\rho(z, \omega) > \sigma$ for all $z \neq \omega$ in S_j.

Lemma 3.3 Every $x \in M(A)$ is in the closure of some separated sequence.

Proof. Suppose that $x \in M(A)$ and let (ω_α) be a net in \mathbb{D} such that $\omega_\alpha \rightarrow x$. Take a separated sequence S such that $\rho(z, S) < 1/8$ for every $z \in \mathbb{D}$, and for each ω_α pick some z_α in S such that $\rho(z_\alpha, \omega_\alpha) < 1/8$ for every α. Therefore there is $\xi_\alpha \in 8^{-1}\mathbb{D}$ so that $\omega_\alpha = \varphi_{z_\alpha}(\xi_\alpha)$. Taking subnets we can assume that $\xi_\alpha \rightarrow \xi$ with $|\xi| \leq 1/8$. We claim that $\varphi_{z_\alpha}(\xi)$ tends to x. Indeed, if $f \in A$ then

$$|f(\varphi_{z_\alpha}(\xi)) - f(x)| \leq |f(\varphi_{z_\alpha}(\xi)) - f(\varphi_{z_\alpha}(\xi_\alpha))| + |f(\omega_\alpha) - f(x)|,$$

where the first summand tends to 0 because $\rho(\varphi_{z_\alpha}(\xi), \varphi_{z_\alpha}(\xi_\alpha)) = \rho(\xi, \xi_\alpha) \rightarrow 0$, and the second summand tends to 0 because $\omega_\alpha \rightarrow x$. Thus, x is in the closure of the sequence $T = \{\varphi_{z_\alpha}(\xi) : z_\alpha \in S\}$. By Lemma 3.2 we can split $S = S_1 \cup \ldots \cup S_N$, where for each $1 \leq j \leq N$, $\rho(z_1, z_2) > 1/2$ when $z_1, z_2 \in S_j$ are different. We also have the corresponding decomposition $T = T_1 \cup \ldots \cup T_N$, where $T_j = \{\varphi_{z}(\xi) : z \in S_j\}$. Hence, there is at least one j_0 such that x is in the closure of T_{j_0}. The lemma will follow if we show that T_{j_0} is a separated sequence. If $z_1, z_2 \in S_{j_0}$ are different then

$$\rho(z_1, z_2) \leq \rho(z_1, \varphi_{z_1}(\xi)) + \rho(\varphi_{z_1}(\xi), \varphi_{z_2}(\xi)) + \rho(\varphi_{z_2}(\xi), z_2) = 2|\xi| + \rho(\varphi_{z_1}(\xi), \varphi_{z_2}(\xi)).$$

So, $\rho(\varphi_{z_1}(\xi), \varphi_{z_2}(\xi)) \geq (1/2) - 2|\xi| \geq 1/4$, proving our claim.

\blacksquare
Lemma 3.4 Let \((z_n)\) be a net in \(\mathbb{D}\) converging to \(x \in M(\mathcal{A})\). Then

(i) \(\varphi_x\) is a continuous one-to-one map from \(\mathbb{D}\) into \(M(\mathcal{A})\),

(ii) \(f \circ \varphi_x \in \mathcal{A}\) for every \(f \in \mathcal{A}\),

(iii) \(f \circ \varphi_{z_n} \rightarrow f \circ \varphi_x\) uniformly on compact sets of \(\mathbb{D}\) for every \(f \in \mathcal{A}\).

Proof. Suppose that \(\omega \in \mathbb{D}\) and \(f \in \mathcal{A}\). Given \(\varepsilon > 0\) there is \(\delta > 0\) such that \(|f(u) - f(v)| < \varepsilon\) if \(\rho(u, v) < \delta\). Take \(\omega_1 \in K(\omega, \delta)\). Since \(\rho(\varphi_{z_n}(\omega_1), \varphi_{z_n}(\omega)) = \rho(\omega_1, \omega) < \delta\) then \(|f(\varphi_{z_n}(\omega_1)) - f(\varphi_{z_n}(\omega))| < \varepsilon\) for every \(\alpha\). Then

\[
|f(\varphi_x(\omega_1)) - f(\varphi_x(\omega))| \\
\leq |f(\varphi_x(\omega_1)) - f(\varphi_{z_n}(\omega))| + |f(\varphi_{z_n}(\omega)) - f(\varphi_{z_n}(\omega_1))| + |f(\varphi_{z_n}(\omega_1)) - f(\varphi_x(\omega_1))| + \varepsilon
\]

for every \(\alpha\). Taking limits in \(\alpha\) we get \(|f(\varphi_x(\omega_1)) - f(\varphi_x(\omega))| \leq \varepsilon\) when \(\rho(\omega_1, \omega) < \delta\). This proves the continuity of \(\varphi_x\) and (ii).

To prove that \(\varphi_x\) is one-to-one, for an arbitrary \(0 < r < 1\) we will construct a function \(f \in \mathcal{A}\) (depending on \(r\)) such that \((f \circ \varphi_x)(\omega) = \omega\) when \(|\omega| < r\). It is convenient to deal with the hyperbolic metric \(\rho\) instead of \(\rho\). Write \(s = \log \frac{1+r}{1-r}\). By Lemma 3.2 there is a sequence \(\{z_n\}\) in \(\mathbb{D}\) whose closure contains \(x\) and such that \(h(z_n, z_m) > 5s\) if \(n \neq m\). Therefore

\[
(3.1) \quad h(K_h(z_n, 2s), K_h(z_m, 2s)) \geq s \quad \text{if} \quad n \neq m.
\]

Take \(g \in C(\mathbb{D})\) such that \(g(\omega) = \omega\) if \(h(\omega, 0) < s\) (i.e.: if \(|\omega| < r\)) and \(g(\omega) = 0\) if \(h(\omega, 0) > 2s\). Thus \(g \circ \varphi_{z_n}\) is supported in \(K_h(z_n, 2s)\) and

\[
f = \sum_{n \geq 1} (g \circ \varphi_{z_n}) \in C(\mathbb{D}).
\]

Since \(g\) is uniformly continuous with respect to the Euclidean metric then it is \(h\)-uniformly continuous. Hence, given \(\varepsilon > 0\) there is \(\delta\), with \(0 < \delta < s/2\), such that

\[
(3.2) \quad |g(\xi_1) - g(\xi_2)| < \varepsilon \quad \text{if} \quad h(\xi_1, \xi_2) < \delta.
\]

Let \(\omega_1, \omega_2 \in \mathbb{D}\) such that \(h(\omega_1, \omega_2) < \delta\). By (3.1) \(K_h(\omega_1, \delta)\) cuts at most one of the disks \(K_h(z_n, 2s)\). If it doesn’t cut any, then \(f(\omega_1) = f(\omega_2) = 0\). If it cuts \(K_h(z_{n_0}, 2s)\), then \(f(\omega_1) - f(\omega_2) = g(\varphi_{z_{n_0}}(\omega_1)) - g(\varphi_{z_{n_0}}(\omega_2))\), and since \(h(\varphi_{z_{n_0}}(\omega_1), \varphi_{z_{n_0}}(\omega_2)) = h(\omega_1, \omega_2) < \delta\) then (3.2) says that \(|f(\omega_1) - f(\omega_2)| < \varepsilon\). Thus \(f \in \mathcal{A}\).
If k is any positive integer and $|\omega| < r$ then $h(0, \omega) < s$ and $\varphi_{z_k}(\omega) \in K_h(z_k, s)$. So, (3.1) and the inclusion: $\text{supp} (g \circ \varphi_{z_n}) \subset K_h(z_n, 2s)$ imply that $(g \circ \varphi_{z_n})(\varphi_{z_k}(\omega)) = 0$ for $n \neq k$. Consequently

$$f(\varphi_{z_k}(\omega)) = (g \circ \varphi_{z_k})(\varphi_{z_k}(\omega)) = g(\omega) = \omega.$$

Thus, if (z_n) is a net of points in $\{z_n\}$ that tends to x then $(f \circ \varphi_{z_n})(\omega) = \omega$ for every α and every $\omega \in r\mathbb{D}$. Therefore $(f \circ \varphi_x)(\omega) = \omega$ when $\omega \in r\mathbb{D}$.

Suppose that (iii) fails. This means that there are $f \in A$, $0 < r < 1$ and $\varepsilon > 0$ such that $|(f \circ \varphi_{z_n})(\xi_\alpha) - (f \circ \varphi_x)(\xi_\alpha)| > \varepsilon$ for some points $\xi_\alpha \in r\mathbb{D}$.

We can also assume that $\xi_\alpha \rightarrow \xi$. Since $(f \circ \varphi_{z_n})(\xi_\alpha) \rightarrow (f \circ \varphi_x)(\xi)$, this contradicts the uniform ρ-continuity of f. ■

3.2. The hyperbolic parts

Definition. If $x, y \in M(A)$ define $\rho(x, y) = \sup \rho(S, T)$, where S and T run over all the separated sequences in \mathbb{D} so that $x \in \mathbb{S}$ and $y \in \mathbb{T}$. Defining $h(x, y)$ in analogous fashion, we have

$$h(x, y) = \log \frac{1 - \rho(x, y)}{1 + \rho(x, y)}.$$

Lemma 3.5 Let $x, y \in M(A) \setminus \mathbb{D}$. Then

1. $\rho(x, y) = \alpha < 1$ if and only if $y = \varphi_x(\omega)$ for some ω with $|\omega| = \alpha$.

2. $y = \varphi_x(\xi)$ with $\xi \in \mathbb{D}$ if and only if every separated sequences S, T such that $x \in \mathbb{S}$ and $y \in \mathbb{T}$ satisfy $\rho(T, \{\varphi_x(\xi) : z_n \in S\}) = 0$.

3. $h(\varphi_x(\xi_1), \varphi_x(\xi_2)) = h(\xi_1, \xi_2)$ for every $\xi_1, \xi_2 \in \mathbb{D}$.

4. h is a $[0, +\infty]$-valued metric on $M(A)$.

Proof. (1) Suppose that $\rho(x, y) = \alpha < 1$ and take $b \in (a, 1)$. The continuity of φ_x implies that $\varphi_x(\mathbb{D})$ is compact. So, if $y \notin \varphi_x(\mathbb{D})$ there are closed disjoint neighborhoods U of $\varphi_x(\mathbb{D})$ and V of y. Let S and T be separated sequences in \mathbb{D} such that $x \in \mathbb{S}$ and $y \in \mathbb{T}$. If (z_n) is a net in S that tends to x then $\varphi_{z_n}(\xi) \rightarrow \varphi_x(\xi)$ for every $\xi \in \mathbb{D}$. By a compactness argument $\varphi_{z_n}(\mathbb{D}) \subset U$ for a tail $(z_n)_{n \geq n_0}$ of the original net. Let $S_1 = \{z_n \in S : z_n = z_\alpha \text{ for some } \alpha \geq \alpha_0\}$. Then $x \in \mathbb{S}_1$ and $\varphi_{z_n}(\mathbb{D}) \subset U$ for every $z_n \in S_1$. This means that

$$K(z_n, b) \subset U \text{ for every } z_n \in S_1.$$
On the other hand, since \(V \) is a neighborhood of \(y \) then

\[
y \in \overline{T}_1, \quad \text{where} \quad T_1 = \{ z \in T : z \in V \}. \tag{3.4}
\]

Since \(U \) and \(V \) are disjoint, (3.3) and (3.4) say that \(\rho(S_1, T_1) \geq b > a \), contradicting the definition of \(\rho(x, y) = a \). Since \(b \in (a, 1) \) is arbitrary then \(y \in \varphi_x(\partial \mathbb{D}) \), so \(y = \varphi_x(\omega) \) with \(|\omega| \leq a \).

Reciprocally, suppose that \(y = \varphi_x(\omega) \) with \(|\omega| = a \), and let \(S, T \) be separated sequence in \(\mathbb{D} \) such that \(x \in S \) and \(y \in \mathcal{T} \). If \((z_n) \) is a net in \(S \) that tends to \(x \) then \(\varphi_{z_n}(\omega) \to y \). Thus \(y \in \overline{T}_1 \), where \(T_1 = \{ \varphi_{z_n}(\omega) : z_n \in S \} \). So, \(y \in T_1 \cap T \neq \emptyset \) and by Lemma 3.1, \(\rho(T_1, T) = 0 \). That is, given \(\varepsilon > 0 \) there are \(z_n \in S \) and \(\omega_n \in \mathcal{T} \) such that \(\rho(\varphi_{z_n}(\omega), \omega_n) < \varepsilon \), which yields

\[
\rho(z_n, \omega_n) \leq \rho(z_n, \varphi_{z_n}(\omega)) + \rho(\varphi_{z_n}(\omega), \omega_n) < |\omega| + \varepsilon = a + \varepsilon.
\]

So, \(\rho(S, T) \leq a \) and by definition \(\rho(x, y) \leq a \).

(2). The necessity follows from Lemma 3.1. If \(y \neq \varphi_x(\xi) \) then \(\rho(y, \varphi_x(\xi)) \neq 0 \) and there are separated sequences \(T_1, T_2 \) such that \(\varphi_x(\xi) \in \overline{T}_1, y \in \overline{T}_2 \) and \(\rho(T_1, T_2) \geq \delta > 0 \). Let \(S \) be a separated sequence such that \(x \in \mathcal{S} \). Therefore \(x \) is in the closure of \(S_1 = \{ z_n : \rho(\varphi_{z_n}(\xi), T_1) < \delta/2 \} \), because if \(x \in \mathcal{S} \setminus S_1 \) then

\[
\varphi_x(\xi) \in \{ \varphi_{z_n}(\xi) : z_n \in \mathcal{S} \setminus S_1 \} \cap \overline{T}_1
\]

while

\[
\rho(\{ \varphi_{z_n}(\xi) : z_n \in \mathcal{S} \setminus S_1 \}, T_1) \geq \delta/2,
\]

which contradicts Lemma 3.1. So, for \(z_n \in S_1 \), \(\rho(\varphi_{z_n}(\xi), T_2) \geq \delta/2 \).

(3). Fix \(\xi_1, \xi_2 \in \mathbb{D} \). By Lemma 3.2 there is a separated sequence \(S = \{ z_k \} \) such that \(x \in \mathcal{S} \) and \(h(z_n, z_m) \geq h(\xi_1, \xi_2) + h(0, \xi_1) + h(0, \xi_2) \) if \(n \neq m \). Since

\[
\begin{align*}
\quad h(z_n, z_m) & \leq h(z_n, \varphi_{z_n}(\xi_1)) + h(\varphi_{z_n}(\xi_1), \varphi_{z_n}(\xi_2)) + h(\varphi_{z_n}(\xi_2), z_m) \nonumber \\
& = h(0, \xi_1) + h(0, \xi_2) + h(\varphi_{z_n}(\xi_1), \varphi_{z_n}(\xi_2)),
\end{align*}
\]

then \(h(\varphi_{z_n}(\xi_1), \varphi_{z_n}(\xi_2)) \geq h(\xi_1, \xi_2) \) if \(n \neq m \). Therefore

\[
h(\{ \varphi_{z_n}(\xi_1) \}_{n \geq 1}, \{ \varphi_{z_n}(\xi_2) \}_{m \geq 1}) = h(\varphi_{z_n}(\xi_1), \varphi_{z_n}(\xi_2)) = h(\xi_1, \xi_2),
\]

implying that \(h(\varphi_x(\xi_1), \varphi_x(\xi_2)) \geq h(\xi_1, \xi_2) \). For the other inequality let \(T_1, T_2 \) be separated sequences such that \(\varphi_x(\xi_1) \in \overline{T}_1 \) and \(\varphi_x(\xi_2) \in \overline{T}_2 \). For a separated sequence \(S \) such that \(x \in \mathcal{S} \) and \(\varepsilon > 0 \) write

\[
S' = \{ z_n \in S : h(\varphi_{z_n}(\xi_1), T_1) < \varepsilon, \ h(\varphi_{z_n}(\xi_2), T_2) < \varepsilon \}
\]

and \(S'' = S \setminus S' \).
By \((2)\) \(x \notin \overline{\mathcal{S}}\). So, \(x \in \overline{\mathcal{S}}\) and
\[
h(T_1, T_2) \leq h(\varphi_{z_n}(\xi_1), \varphi_{z_n}(\xi_2)) + 2\epsilon = h(\xi_1, \xi_2) + 2\epsilon.
\]
That is, \(h(\varphi_x(\xi_1), \varphi_x(\xi_2)) \leq h(\xi_1, \xi_2) + 2\epsilon\). \((4)\). We must prove only that given \(x, y, z \in M(\mathcal{A})\),
\[
(3.5) \quad h(x, y) \leq h(x, z) + h(z, y)
\]
The inequality is obvious if its right member is infinite. Otherwise \((1)\) says that \(x = \varphi_x(\xi_1)\) and \(y = \varphi_x(\xi_2)\) for some \(\xi_1, \xi_2 \in \mathcal{D}\). Then \((3.5)\) becomes
\[
h(\varphi_x(\xi_1), \varphi_x(\xi_2)) \leq h(\varphi_x(\xi_1), \varphi_x(0)) + h(\varphi_x(0), \varphi_x(\xi_2)),
\]
which holds by \((3)\).

Definition. If \(x \in M(\mathcal{A})\) define the hyperbolic part of \(x\) as
\[
H(x) = \{\varphi_x(\omega) : \omega \in \mathcal{D}\}.
\]
Observe that \((1)\) of Lemma 3.5 implies that
\[
H(x) = \{y \in M(\mathcal{A}) : \rho(x, y) < 1\} = \{y \in M(\mathcal{A}) : h(x, y) < \infty\}
\]
and by \((4)\) of the same lemma, \(\{H(x) : x \in M(\mathcal{A})\}\) is a partition of \(M(\mathcal{A})\).

In fact if \(z \in H(x) \cap H(y)\) then for any \(u \in H(x)\),
\[
h(u, y) \leq h(u, x) + h(x, z) + h(z, y) < \infty.
\]
So, \(H(x) \subset H(y)\) and by symmetry they coincide.

Lemma 3.6 The map \(x \mapsto \varphi_x\) from \(M(\mathcal{A})\) into \(M(\mathcal{A})^\mathcal{D}\) is continuous.

Proof. Let \((x_\alpha)\) be a net in \(M(\mathcal{A})\) that tends to \(x\) and \(\xi \in \mathcal{D}\). We must show that if \((x_\beta)\) is a subnet such that \(\varphi_{x_\beta}(\xi) \rightarrow y\) then \(y = \varphi_x(\xi)\). Let \(\mathcal{S} = \{z_n\}\) and \(\mathcal{T} = \{\omega_n\}\) be separated sequences such that \(x \in \overline{\mathcal{S}}\) and \(y \in \overline{\mathcal{T}}\).

For \(\delta > 0\) write
\[
U = \bigcup_{n \geq 1} K(z_n, \delta) \quad \text{and} \quad V = \bigcup_{n \geq 1} K(\omega_n, \delta).
\]
Since there is \(f \in \mathcal{A}\) such that \(f(z_n) = 0\) for all \(n\) and \(f \equiv 1\) on \(\mathcal{D} \setminus U\) then \(\overline{U} \supset \{m \in M(\mathcal{A}) : |f(m)| < 1/2\}\), a neighborhood of \(x\). So, \(\overline{U}\) is a neighborhood of \(x\) and by the same reason \(\overline{V}\) is a neighborhood of \(y\). Since \(x_\beta \rightarrow x\) and \(\varphi_{x_\beta}(\xi) \rightarrow y\), there is \(\beta_0\) such that for every \(\beta \geq \beta_0\),
\begin{align*}
(i) \quad & \varphi_{x_\beta}(\xi) \in \overline{V}, \quad \text{and} \\
(ii) \quad & x_\beta \in \overline{\mathcal{S}_\beta}, \quad \text{where} \ \mathcal{S}_\beta = \{z_\beta(\beta)\}_{n \geq 1} \text{ is a separated sequence in } U.
\end{align*}
Assume that $\beta \geq \beta_0$. Since
$$\varphi_{x_{n}}(\xi) \in \overline{\{\varphi_{z_{n}}(\beta)\}_{n \geq 1} \cap \bigcup_n K(\omega_n, \delta)}$$
then Lemma 3.1 says that $\rho({\varphi_{z_{n}}, (\beta), T}) \leq \delta$. So, there is n_0 such that
$\rho(\varphi_{z_{n}}, (\beta), T) < 2\delta$. On the other hand, by definition of U and (ii) there is some $z_{k_0} \in S$ such that $\rho(z_{k_0}, z_{n_0}, (\beta)) \leq \delta$. Since there is $c_{\xi} > 0$ such that
$$\rho(\varphi_{z_{k_0}}, (\beta), T) \leq c_{\xi}\rho(z_{k_0}, z_{n_0}, (\beta)) \leq c_{\xi}\delta,$$
then $\rho(\varphi_{z_{k_0}}, (\beta), T) \leq (c_{\xi} + 2)\delta$. This shows that
$$\rho(\{\varphi_{z_{n}}(\xi) : z_n \in S\}, T) \leq (c_{\xi} + 2)\delta,$$
and since $\delta > 0$ is arbitrary, $\rho(\{\varphi_{z_{n}}(\xi) : z_n \in S\}, T) = 0$. Since S and T are arbitrary separated sequences such that $x \in S$ and $y \in T$ then (2) of Lemma 3.5 tells us that $y = \varphi_{x}(\xi)$.

3.3. Hyperbolic algebras

A closed self-adjoint subalgebra B of A that separates the points of D and contains the constants will be called a prehyperbolic algebra. For such B, Theorem 4.28 of [13] implies that whenever $b \in B$ is invertible in A then the inverse belongs to B. Hence, the disk is dense in $M(B)$, because if there exists $y \in M(B)$ that is not in the closure of D then there is $f \in B$ such that $f(y) = 0$ and $|f| \geq \delta > 0$ on D. Since clearly f is invertible in A, then so is in B and consequently f cannot vanish anywhere in $M(B)$, a contradiction.

The inclusion of B in A induces by transposition a projection $\pi : M(A) \rightarrow M(B)$. Since $\pi(D) = D$ is dense in $M(B)$ then π is onto. For a set $E \subset D$ we write \overline{E}_{M}, with $M = M(A)$ or $M(B)$, to distinguish between closures in the corresponding space. No distinction will be made for the closure of sets in C.

A closed set $F \subset M(A)$ will be called saturated if $H(x) \subset F$ whenever $x \in F$. If $\pi : M(A) \rightarrow M(B)$ is the natural projection, write
$$G_{B} = \{y \in M(B) : \pi^{-1}(y) \text{ is a singleton}\}$$
and
$$\Gamma_{B} = \{y \in M(B) : \pi^{-1}(y) \text{ is saturated}\}.$$
That is, if $y \in M(B)$ then $y \in G_{B}$ if and only if B separates every $x \in \pi^{-1}(y)$ from any other point of $M(A)$ (so $\pi^{-1}(y) = \{x\}$), and $y \in \Gamma_{B}$ if and only if $b \circ \varphi_{x}$ is constant for all $x \in \pi^{-1}(y)$ and $b \in B$. Since no single point is a saturated set then $G_{B} \cap \Gamma_{B} = \emptyset$. In addition, there could be points in $M(B)$ that are not in $G_{B} \cup \Gamma_{B}$. We will be interested in the cases that exclude the last possibility.
Definition. A prehyperbolic algebra \mathcal{B} will be called hyperbolic if $M(\mathcal{B}) = G_B \cup \Gamma_B$. That is, if $\Gamma^{-1}(\pi(x)) = \{x\}$ or contains $H(x)$ for every $x \in M(\mathcal{A})$.

Lemma 3.7 Let $\mathcal{B} \subset \mathcal{A}$ be a prehyperbolic algebra. Then

1. Γ_B is closed,
2. the restriction $\pi_0 : \Gamma^{-1}(\Gamma_B) \to G_B$ of π is an onto homeomorphism.

Proof. (1) If x is in the closure of $\Gamma^{-1}(\Gamma_B)$ take a net (x_{α}) in $\Gamma^{-1}(\Gamma_B)$. Hence, if $y \in D$ and $f \in \mathcal{B}$, Lemma 3.6 gives

$$f(x) - f(\varphi_x(\omega)) = \lim f(x_{\alpha}) - f(\varphi_{x_{\alpha}}(\omega)) = 0,$$

implying that $f \circ \varphi_x \equiv f(x)$, so $x \in \Gamma^{-1}(\Gamma_B)$. That is, $\Gamma^{-1}(\Gamma_B)$ is closed in $M(\mathcal{A})$ and then $\pi(\Gamma^{-1}(\Gamma_B))$ is closed in $M(\mathcal{B})$.

(2) By definition of G_B, π_0 is one-to-one and onto, so we must show that $\pi_0 : G_B \to \Gamma_B$ is continuous. Let (y_{α}) be a net in G_B such that $y_{\alpha} \to y \in G_B$ and let $x_{\alpha} \in \pi^{-1}(G_B)$ such that $\pi(x_{\alpha}) = y_{\alpha}$. If $(x_{\alpha_{\beta}})$ is a convergent subnet of (x_{α}), say to x, then $y_{\alpha_{\beta}} = \pi(x_{\alpha_{\beta}}) \to \pi(x) = y$. So, $x \in \Gamma^{-1}(y)$, but since $y \in G_B$ then $\pi^{-1}(y) = \{x\}$. Hence every convergent subnet of (x_{α}) tends to x, and then $x_{\alpha} \to x$.

Proposition 3.8 Let $\mathcal{B} \subset \mathcal{A}$ be a prehyperbolic algebra and $y \in M(\mathcal{B})$. The following conditions are equivalent

1. $y \in \Gamma_B$.
2. $f \circ \varphi_{z_{\alpha}} \to c \in \mathbb{C}$ uniformly on compact sets for every net (z_{α}) in \mathbb{D} tending to y and every $f \in \mathcal{B}$.
3. For every separated sequence \mathcal{S} such that $y \in \mathcal{S}^{M(\mathcal{B})}$ and every $f \in \mathcal{B}$ there is a subsequence $\{z_n\}$ of \mathcal{S} (depending on f) such that $f \circ \varphi_{z_n} \to c \in \mathbb{C}$ pointwise on \mathbb{D}.

Proof. (a1) \Rightarrow (a2). If $y \in \Gamma_B$ then $\pi^{-1}(y)$ is saturated. Let (z_{α}) be a net in \mathbb{D} such that $z_{\alpha} \to y$ in $M(\mathcal{B})$ and take a subnet $(z_{\alpha_{\beta}})$ that converges in $M(\mathcal{A})$, say to x. Thus $\pi(z_{\alpha_{\beta}}) \to \pi(x) = y$ in $M(\mathcal{B})$, saying that $x \in \pi^{-1}(y)$. Since $H(x) \subset \pi^{-1}(y)$ (because it is saturated) then

$$f(\varphi_x(\xi)) = \lim f(\varphi_{z_{\alpha_{\beta}}}(\xi)) = \text{const.} = \lim f(\varphi_{z_{\alpha_{\beta}}}(0)) = \lim f(z_{\alpha_{\beta}}) = f(y)$$

for every $f \in \mathcal{B}$ and $\xi \in \mathbb{D}$. This proves that whenever $(z_{\alpha_{\beta}})$ is a subnet of (z_{α}) that converges in $M(\mathcal{A})$ then $f \circ \varphi_{z_{\alpha_{\beta}}} \to f(y)$ pointwise. By Lemma 3.4 the convergence is also uniform on compact sets, and consequently $f \circ \varphi_{z_{\alpha}} \to f(y)$ in that way.
(a2)⇒(a3). If \(y \in \overline{\mathcal{S}M(B)} \) there is a net \((z_n)\) in \(\mathcal{S} \) such that \(z_n \to y \) in \(M(B) \). If \(f \in B \) then by (a2), \(f \circ \varphi_{z_n} \to c \in \mathbb{C} \) uniformly on compact sets. Therefore for any positive integer \(n \) there is some \(z_n \) (that we rename as \(z_n \)) such that
\[
\sup \{ |(f \circ \varphi_{z_n})(\omega) - c| : |\omega| \leq 1 - n^{-1} \} \leq n^{-1}.
\]
Therefore \(\{ z_n \} \) is a subsequence of \(\mathcal{S} \) that satisfies (a3).

(a3)⇒(a1). We will show that (a3) fails when (a1) fails. If \(y \notin \Gamma_B \) there is \(x \in \pi^{-1}(y) \) such that \(H(x) \not\subset \pi^{-1}(y) \). Therefore there is \(f \in B \) such that \(f \circ \varphi_x \neq \text{const.} \), or what is the same, \((f \circ \varphi_x)(\omega) \neq f(x) \) for some \(\omega \in \mathbb{D} \). Put \(\eta = |(f \circ \varphi_x)(\omega) - f(x)| > 0 \). If \(\mathcal{S} \) is any separated sequence such that \(x \in \overline{\mathcal{S}M(A)} \) and we take
\[
S_1 = \{ z \in \mathcal{S} : |(f \circ \varphi_{z_n})(\omega) - f(z_n)| \geq \eta/2 \}
\]
then \(x \in \overline{\mathcal{S}_1M(B)} \). Hence \(y = \pi(x) \in \overline{\mathcal{S}_1M(B)} \) and (a3) fails for \(S_1 \) and \(f \).

Suppose that \(f \) is a continuous function from \(M(A) \) into a topological space \(T \). If \(B \) is a hyperbolic algebra, the restriction \(f|_D \) admits a continuous extension from \(M(B) \) into \(T \) if and only if \(f(\pi^{-1}(y)) = \text{const.} \) for every \(y \in \Gamma_B \). In particular, for \(T = \mathbb{C} \) we obtain that \(f \in A \) belongs to \(B \) if and only if \(f(\pi^{-1}(y)) = \text{const.} \) for every \(y \in \Gamma_B \).

Let \(B \subset L^\infty(\mathbb{D}) \) be a closed algebra. A sequence \(\{ z_n \} \subset \mathbb{D} \) is called interpolating for \(B \) if for every \(\{ \eta_n \} \in \ell^\infty \) there exists \(f \in B \) such that \(f(z_n) = \eta_n \) for every \(n \). It is clear that if \(B \) is a subalgebra of \(A \) then every interpolating sequence for \(B \) must be separated and that every separated sequence is interpolating for \(A \). We say that \(f \in A \) separates two sets \(E, F \subset M(A) \) when \(\overline{f(E)} \cap \overline{f(F)} = \emptyset \).

Proposition 3.9 Let \(B \subset A \) be a prehyperbolic algebra. For \(y \in M(B) \) consider the following conditions

(a) \(y \in G_B \).

(b) There is an interpolating sequence \(\mathcal{S} = \{ z_n \} \) for \(B \), whose closure in \(M(B) \) contains \(y \), such that for every \(\delta > 0 \) sufficiently small there exists \(f \in B \) that separates \(\{ z_n \} \) from \(\mathbb{D} \setminus \bigcup_n K(z_n, \delta) \).

Then (b) implies (a), and if \(B \) is hyperbolic, (a) implies (b).

Proof. (b)⇒(a). Let \(y \in M(B) \) and \(\mathcal{S} \) as in (b). We claim that \(\pi^{-1}(y) \subset \overline{\mathcal{S}M(A)} \), because otherwise there is \(x \in \pi^{-1}(y) \) and a separated sequence \(T \subset \mathbb{D}, \) with \(x \in T^{M(A)} \), such that \(\rho(\mathcal{S}, T) \geq \alpha > 0 \). The continuity of \(\pi \) implies that \(y = \pi(x) \in T^{M(B)} \), but this is not possible because by hypothesis there is \(f \in B \) such that \(\overline{f(\mathcal{S})} \cap \overline{f(T)} = \emptyset \), which contradicts \(y \in \overline{\mathcal{S}M(B)} \cap \overline{T^{M(B)}} \).
Now suppose that there are two different points \(x_1, x_2 \in \pi^{-1}(y) \). Then there is a disjoint decomposition \(\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2 \), where

\[
x_1 \in \overline{\mathcal{S}_1^M(\mathcal{A})} \quad \text{and} \quad x_2 \in \overline{\mathcal{S}_2^M(\mathcal{A})}.
\]

Since \(\mathcal{S} \) is interpolating for \(\mathcal{B} \) there exists \(f \in \mathcal{B} \) that separates \(\mathcal{S}_1 \) from \(\mathcal{S}_2 \), leading to the same contradiction obtained before. Hence, \(\pi^{-1}(y) \) is a single point.

(b) \(\Rightarrow \) (b) for \(\mathcal{B} \) hyperbolic. If \(y \in G_{\mathcal{B}} \) then \(\pi^{-1}(y) = \{ x \} \) for some \(x \in M(\mathcal{A}) \). Since \(\pi^{-1}(\Gamma_{\mathcal{B}}) \) is closed in \(M(\mathcal{A}) \) (by Lemma 3.7) and \(x \not\in \pi^{-1}(\Gamma_{\mathcal{B}}) \) then there is a closed neighborhood \(F \) of \(x \) in \(M(\mathcal{A}) \) such that \(F \cap \pi^{-1}(\Gamma_{\mathcal{B}}) = \emptyset \). Hence there is \(f \in \mathcal{A} \) such that \(f \equiv 1 \) on \(F \) and \(f \equiv 0 \) on \(\pi^{-1}(\Gamma_{\mathcal{B}}) \).

Let \(T \subset \mathbb{D} \) be a separated sequence such that \(x \in \overline{T}^M(\mathcal{A}) \). Since \(f \equiv 1 \) on a neighborhood of \(x \) then \(x \in \overline{\mathcal{S}^M(\mathcal{A})} \), where

\[
\mathcal{S} = \{ z \in T : f(z) = 1 \} = \{ z_n \}.
\]

Hence, \(y = \pi(x) \in \overline{\mathcal{S}^M(\mathcal{B})} \). Observe also that \(\overline{\mathcal{S}^M(\mathcal{A})} \subset F \subset \pi^{-1}(G_{\mathcal{B}}) \).

Let \(\{ \eta_n \} \) be an arbitrary sequence in \(\ell^\infty \) and take \(g \in \mathcal{A} \) such that \(g(z_n) = \eta_n \) for every \(n \). Since \(f \equiv 0 \) on \(\pi^{-1}(\Gamma_{\mathcal{B}}) \) then so is \(h = fg \in \mathcal{A} \), and consequently \(h \in \mathcal{B} \). In addition, \(h(z_n) = f(z_n)g(z_n) = \eta_n \) for every \(n \), which shows that \(\mathcal{S} \) is interpolating for \(\mathcal{B} \). Since \(f \) is \(\rho \)-uniformly continuous and \(f(z_n) = 1 \) for all \(n \) then

\[
\bigcup_n K(z_n, \delta) \subset \{ z : |f(z)| > 1/2 \}
\]

when \(\delta > 0 \) is small enough. Take \(a \in \mathcal{A} \) such that

\[
(3.6) \quad a(z_n) = 1 \quad \text{for all} \quad n, \quad \text{and} \quad a \equiv 0 \quad \text{on} \quad \mathbb{D} \setminus \bigcup_n K(z_n, \delta).
\]

Since \(f \equiv 0 \) on \(\pi^{-1}(\Gamma_{\mathcal{B}}) \) then

\[
\pi^{-1}(\Gamma_{\mathcal{B}}) \subset \{ z : |f(z)| < 1/4 \}^M(\mathcal{A}) \subset \mathbb{D} \setminus \bigcup_n K(z_n, \delta),
\]

implying that \(a \equiv 0 \) on \(\pi^{-1}(\Gamma_{\mathcal{B}}) \). Hence \(a \in \mathcal{B} \) and (3.6) says that it separates \(\mathcal{S} \) from \(\mathbb{D} \setminus \bigcup_n K(z_n, \delta) \). So (b) holds.

Propositions 3.8 and 3.9 provide criteria to decide whether a given prehyperbolic algebra is hyperbolic or not. Let us summarize these criteria in the next corollary.

Corollary 3.10 A prehyperbolic algebra \(\mathcal{B} \) is hyperbolic if and only if every \(y \in \mathcal{M}(\mathcal{B}) \) satisfies some of the conditions \((a_1), (a_2), (a_3)\) or some of the conditions \((b_1), (b_2)\).
4. Operator-valued compact maps

We recall that if \(S \in \mathcal{L}(L^2_\alpha) \) and \(z \in \mathbb{D} \) then \(S_z = U_z S U_z \), where \(U_z f = (f \circ \varphi_z) \varphi_z' \). Consider the map \(\Psi_S : \mathbb{D} \to \mathcal{L}(L^2_\alpha) \) given by \(\Psi_S(z) = S_z \). We will study the possibility to extend \(\Psi_S \) continuously to \(M(\mathcal{A}) \) when \(\mathcal{L}(L^2_\alpha) \) is provided with the weak or the strong operator topology (WOT and SOT, respectively). We will also look for a possible extension to \(M(\mathcal{B}) \), where \(\mathcal{B} \) is an arbitrary hyperbolic algebra.

Theorem 4.1 Let \((E,d)\) be a metric space and \(f : \mathbb{D} \to E \) be a continuous map. Then \(f \) admits a continuous extension from \(M(\mathcal{A}) \) into \(E \) if and only if \(f \) is uniformly \((\rho,d)\) continuous and \(\overline{f(\mathbb{D})} \) is compact.

Proof. Suppose that \(f \in C(M(\mathcal{A}),E) \). Since \(\mathbb{D} \) is dense in the compact space \(M(\mathcal{A}) \) then \(\overline{f(\mathbb{D})} = f(M(\mathcal{A})) \) is compact. If \(f \) is not uniformly \((\rho,d)\) continuous there are two sequences \(z_n, \omega_n \in \mathbb{D} \) such that \(\rho(z_n, \omega_n) \to 0 \) and \(d(f(z_n), f(\omega_n)) \geq \delta > 0 \) for every \(n \). By the continuity of \(f \) on \(\mathbb{D} \) the sequence does not accumulate on \(\mathbb{D} \). Let \(x \in \{z_n \setminus M(\mathcal{A}) \setminus \mathbb{D} \} \) and \((z_n) \) be a subnet of \(\{z_n\} \) that tends to \(x \). Since every \(z_\alpha \) is some \(z_{n(\alpha)} \), writing \(\omega_\alpha = \omega_{n(\alpha)} \) we have a subnet \((\omega_\alpha) \) of the sequence \(\{\omega_n\} \) such that

\[
\rho(\omega_\alpha, \omega_\alpha) \to 0 \quad \text{and} \quad d(f(z_\alpha), f(\omega_\alpha)) \geq \delta \quad \text{for all} \quad \alpha.
\]

The first condition in (4.1) implies that \(g(\omega_\alpha) \to g(x) \) for every \(g \in \mathcal{A} \), meaning that \(\omega_\alpha \to x \) in \(M(\mathcal{A}) \). Since \(f \) is continuous on \(M(\mathcal{A}) \) then \(\lim f(\omega_\alpha) = f(x) = \lim f(z_\alpha) \), contradicting (4.1).

Now assume that \(f \) is uniformly \((\rho,d)\) continuous on \(\mathbb{D} \) and \(\overline{f(\mathbb{D})} \) is compact. For \(x \in M(\mathcal{A}) \) write

\[
F(x) \overset{\text{def}}{=} \{ \lambda \in E : f(z_\alpha) \to \lambda, \text{ for some net } z_\alpha \to x, \ z_\alpha \in \mathbb{D} \}.
\]

The compactness of \(\overline{f(\mathbb{D})} \) assures that \(F(x) \) is nonempty. Then \(F \) is a multivalued function defined on \(M(\mathcal{A}) \), and a standard diagonal argument shows that \(f \) can be extended continuously to \(M(\mathcal{A}) \) if and only if \(F(x) \) is single-valued for every \(x \in M(\mathcal{A}) \). So, let \(x \in M(\mathcal{A}) \) and assume that there are \(\lambda_1, \lambda_2 \in F(x) \) such that \(d(\lambda_1, \lambda_2) = \alpha > 0 \). Let \(B(\lambda, r) \) denote the open ball in \(E \) of center \(\lambda \in E \) and radius \(r > 0 \), and consider the sets

\[
V_i = \{ z \in \mathbb{D} : f(z) \in B(\lambda_i, \alpha/4) \}, \quad i = 1, 2.
\]

Since \(\lambda_i \in F(x) \) then \(x \in V_i^{M(\mathcal{A})} \) for \(i = 1, 2 \). Lemma 3.1 then tells us that \(\rho(V_1, V_2) = 0 \). On the other hand,

\[
d(f(V_1), f(V_2)) \geq d(B(\lambda_1, \alpha/4), B(\lambda_2, \alpha/4)) \geq \alpha/2.
\]

By the uniform \((\rho,d)\)-continuity of \(f \), the last inequality implies that \(\rho(V_1, V_2) > 0 \), a contradiction. \(\blacksquare \)
Lemma 4.2 For $z, \alpha \in \mathbb{D}$ put $\lambda = \lambda(z, \alpha) = (\alpha \bar{z} - 1)/(1 - \bar{z}\alpha)$. Then $U_{\varphi_{z}((\alpha))} U_{z} = V_{\lambda} U_{\alpha}$, where $(V_{\lambda} f)(\omega) = \lambda f(\lambda \omega)$ for $f \in L^{2}_{\alpha}$.

Proof. Since the function $\varphi_{\varphi_{z}((\alpha))} \circ \varphi_{z} \circ \varphi_{\alpha}$ is an automorphism that fixes the origin, it must be a rotation. A little bit of algebra shows that this function maps λ to 1. Since $\varphi_{\varphi_{z}((\alpha))}$ is its own inverse then $\varphi_{z} \circ \varphi_{\alpha}(\lambda \omega) = \varphi_{\varphi_{z}((\alpha))}(\omega)$. Therefore

$$(U_{\varphi_{z}((\alpha))} U_{z} f)(\omega) = (f \circ \varphi_{z} \circ \varphi_{\varphi_{z}((\alpha))}(\omega)) \varphi'_{z}(\varphi_{\varphi_{z}((\alpha))}(\omega)) \varphi'_{\varphi_{z}((\alpha))}(\omega)$$

$$= (f \circ \varphi_{z} \circ \varphi_{z} \circ \varphi_{\alpha}(\lambda \omega)) \varphi'_{z}(\varphi_{\alpha}(\lambda \omega)) \varphi'_{\alpha}(\lambda \omega) \lambda$$

$$= (f \circ \varphi_{\alpha})(\lambda \omega) \varphi'_{\alpha}(\lambda \omega) \lambda = (V_{\lambda} U_{\alpha} f)(\omega),$$

where the third equality holds because since $\varphi_{z} \circ \varphi_{z} = \text{id}$ then $(\varphi'_{z} \circ \varphi_{z}) \varphi'_{z} = 1$.

Lemma 4.3 Let $f \in L^{2}_{\alpha}$ and $\varepsilon > 0$. Then there is $\delta = \delta(f, \varepsilon) > 0$ such that $\rho(z_{1}, z_{2}) < \delta \Rightarrow \| U_{z_{1}} f - U_{z_{2}} f \| < \varepsilon$.

Proof. Since the polynomials are dense in L^{2}_{α} and $\| U_{z} \| = 1$ for every $z \in \mathbb{D}$, it is enough to assume that f is a polynomial. If $\rho(z_{1}, z_{2}) < \delta$ then $z_{2} = \varphi_{z_{1}}(\alpha)$ with $|\alpha| < \delta$. By the previous lemma,

$$(I - U_{\varphi_{z_{1}}((\alpha))} U_{z_{1}}) f(\omega) = f(\omega) - f \left(\alpha - \lambda \omega \right) \left(\left| \alpha \right|^{2} - 1 \right) \frac{\lambda \omega}{1 - \bar{\alpha} \lambda \omega} \lambda,$$

where λ comes from the lemma. When $\alpha \to 0$ we have $\lambda(z_{1}, \alpha) \to -1$ uniformly in z_{1}, so the above expression tends to 0 uniformly in z_{1} and ω. Hence,

$$\| U_{z_{1}} f - U_{\varphi_{z_{1}}((\alpha))} f \| = \| (U_{\varphi_{z_{1}}((\alpha))} U_{z_{1}} - I) f \| < \varepsilon$$

if $|\alpha|$ is small enough. That is, if δ is small enough.

Proposition 4.4 Let $S \in \mathcal{L}(L^{2}_{\alpha})$. Then the map $\Psi : \mathbb{D} \to (\mathcal{L}(L^{2}_{\alpha}), \text{WOT})$ extends continuously to $M(A)$.

Proof. The closed the ball $B(0, \| S \|) \subset \mathcal{L}(L^{2}_{\alpha})$ of center 0 and radius $\| S \|$ is compact and metrizable with the WOT-topology. Since $\Psi_{S}(\mathbb{D})$ is contained in $B(0, \| S \|)$, Theorem 4.1 reduces the problem to show that Ψ_{S} is uniformly continuous from the disk with the pseudo-hyperbolic metric into $B(0, \| S \|)$ with the weak operator topology. This amounts to see that for every $f, g \in L^{2}_{\alpha}$, the function $z \mapsto \langle S_{z} f, g \rangle$ is uniformly continuous from (\mathbb{D}, ρ) into $(\mathbb{C}, | |)$. For $z_{1}, z_{2} \in \mathbb{D}$ we have

$$U_{z_{1}} S U_{z_{1}} - U_{z_{2}} S U_{z_{2}} = U_{z_{1}} S (U_{z_{1}} - U_{z_{2}}) + (U_{z_{1}} - U_{z_{2}}) S U_{z_{2}} = A + B.$$

If $f, g \in L^{2}_{\alpha}$ then $|\langle A f, g \rangle| \leq \| U_{z_{1}} S \| \| (U_{z_{1}} - U_{z_{2}}) f \|_{2} \| g \|_{2}$ and $|\langle B f, g \rangle| = |\langle f, B^{*} g \rangle| \leq \| f \|_{2} \| U_{z_{2}} S^{*} \| \| (U_{z_{1}} - U_{z_{2}}) g \|_{2}$. By Lemma 4.3 both expressions can be made small if we take $\rho(z_{1}, z_{2})$ small enough.
Theorem 4.5 Let \(S \in \mathfrak{T}(\mathcal{A}) \). Then the map
\[
\Psi_S : \mathbb{D} \to (\mathfrak{L}(L^2_a), \text{SOT})
\]
extends continuously to \(M(\mathcal{A}) \). In addition, \(\Psi_S(M(\mathcal{A})) \subset \mathfrak{T}(\mathcal{A}) \).

Proof. First suppose that \(S = T_a \), with \(a \in \mathcal{A} \). If \(z \in \mathbb{D} \) tends to \(x \in M(\mathcal{A}) \), Lemma 3.4 says that \(a \circ \varphi_z \to a \circ \varphi_x \) uniformly on compact sets. Thus, if \(f \in L^2_a \) and \(0 < r < 1 \),
\[
\| (T_{a \circ \varphi_z} - T_{a \circ \varphi_x}) f \|^2 \leq \sup_{rB} |a \circ \varphi_z - a \circ \varphi_x|^2 \| f \|_2^2 + 2 \| a \|_\infty^2 \int_{D \setminus rD} |f|^2 dA.
\]
We can choose some \(r = r(f, \|a\|_{\infty}) \) close enough to 1 so that the second term is smaller than a given \(\varepsilon > 0 \), and for such \(r \) the first term tends to 0 as \(z \to x \). Since
\[
\Psi_{S+T} = \Psi_S + \Psi_T,
\]
the case of a polynomial in Toeplitz operators reduces to the case \(S = T_{a_1} \cdots T_{a_k} \), where \(a_j \in \mathcal{A} \) and \(\|a_j\|_{\infty} \leq 1 \) for \(j = 1, \ldots, k \). Consider the operators
\[
S_j = \begin{cases} T_{a_1 \circ \varphi_z} \cdots T_{a_{j-1} \circ \varphi_z} T_{a_j \circ \varphi_x} \cdots T_{a_k \circ \varphi_x} & \text{if } 1 \leq j \leq k \\ T_{a_1 \circ \varphi_z} \cdots T_{a_k \circ \varphi_x} & \text{if } j = k + 1 \end{cases}
\]
If \(f \in L^2_a \) then
\[
\| (S_{k+1} - S_1) f \| \leq \sum_{j=1}^{k} \| (S_{j+1} - S_j) f \|
\]
and since we have proved that \(T_{a_j \circ \varphi_z} - T_{a_j \circ \varphi_x} \to 0 \) in the strong operator topology as \(z \to x \), then
\[
\| (S_{j+1} - S_j) f \| = \| T_{a_1 \circ \varphi_z} \cdots T_{a_{j-1} \circ \varphi_z} (T_{a_j \circ \varphi_z} - T_{a_j \circ \varphi_x}) T_{a_{j+1} \circ \varphi_x} \cdots T_{a_k \circ \varphi_x} f \| \leq \| (T_{a_j \circ \varphi_z} - T_{a_j \circ \varphi_x}) T_{a_{j+1} \circ \varphi_x} \cdots T_{a_k \circ \varphi_x} f \| \to 0
\]
when \(z \to x \). Finally, if \(S \in \mathfrak{T}(\mathcal{A}) \) is arbitrary, given \(\varepsilon > 0 \) there is a polynomial in Toeplitz operators with symbols in \(\mathcal{A} \), say \(T \), such that \(\|S - T\| < \varepsilon \). By Proposition 4.4 there is some \(S_x \in \mathfrak{L}(L^2_a) \) (i.e.: \(S_x = \Psi_S(x) \)) such that
\[
S_z - T_z \to S_x - T_x \quad \text{weakly when } z \to x.
\]
Weak limits do not increase norms, so \(\|S_x - T_x\| \leq \varepsilon \). The result follows because \(\|S_z - T_z\| < \varepsilon \) for all \(z \in \mathbb{D} \) and \(T_z \to T_x \) strongly when \(z \to x \). \(\blacksquare \)
Corollary 4.6 If $S \in \mathcal{L}(L^2_a)$ and $n \geq 0$ is an integer then $B_n S \in \mathcal{A}$. Besides, $B_n S_x = (B_n S) \circ \varphi_x$ for every $x \in M(A)$.

Proof. By (2.1) and Lemma 2.2

$$(B_n S)(z) = ((B_n S) \circ \varphi_z)(0) = (B_n S_z)(0) = (n+1) \sum_{j=0}^{n} \binom{n}{j} (-1)^j \langle S_z^{(n)} \omega^j, \omega^j \rangle.$$

Since by Proposition 4.4 the map $z \mapsto \langle S_z^{(n)} \omega^j, \omega^j \rangle$ extends continuously to $M(A)$, it belongs to \mathcal{A} for every $0 \leq j \leq n$. For the second assertion take a net (z_α) in \mathbb{D} that tends to x and then take limits in the equality $(B_n S_{z_\alpha})(\xi) = (B_n S)(\varphi_{z_\alpha}(\xi))$ for each fixed $\xi \in \mathbb{D}$. The first term tends to $(B_n S_x)(\xi)$ because Proposition 4.4 says that $z \mapsto \langle S_z^{(n)} \omega^j, \omega^j \rangle$ extends continuously to $M(A)$, and the second term tends to $(B_n S)(\varphi_x(\xi))$ because $B_n S \in \mathcal{A}$. ■

Corollary 4.7 If $S \in \mathcal{L}(L^2_a)$ and $x \in M(A)$ the following conditions are equivalent

(i) $S_u = \lambda I$ for every $u \in H(x)$

(ii) $S_u = \lambda I$ for some $u \in H(x)$

(iii) $B_0 S \equiv \lambda$ on $H(x)$.

Proof. Since $H(u) = H(x)$ when $u \in H(x)$ then every $v \in H(x)$ has the form $v = \varphi_u(\omega)$ for some $\omega \in \mathbb{D}$. By the previous corollary

$$(B_0 S)(v) = (B_0 S)(\varphi_u(\omega)) = (B_0 S_u)(\omega).$$

This identity and the fact that B_0 acts in a one-to-one fashion on $\mathcal{L}(L^2_a)$ give all the equivalences. ■

Since for $a \in A$ we have

$$(T_a)_x^* = T_{a \circ \varphi_x} \rightarrow T_{a \circ \varphi_x} = (T_{a})_x^*$$

in the SOT-topology when $z \rightarrow x$, then also $(T_z)^* \rightarrow (T_x)^*$ in the SOT-topology for all $T \in \mathfrak{F}(A)$. Also, since the product of a WOT-convergent and a SOT-convergent net in $\mathcal{L}(L^2_a)$ tends weakly to the product of the limits, Proposition 4.4 and Theorems 4.5 imply that

$$(4.2) \quad S_x T_x = (ST)_x \quad \text{and} \quad T_x S_x = (TS)_x$$

for every $S \in \mathcal{L}(L^2_a), T \in \mathfrak{F}(A)$ and $x \in M(A)$. This fails if we only assume $S, T \in \mathcal{L}(L^2_a)$.
Indeed, consider the operator defined by $Sf(\omega) = f(-\omega)$. Since $S^2 = I$ then $(S^2)_x = I$ for every $x \in M(\mathcal{A})$. On the other hand, since $SK^{(0)}_x = K^{(0)}_x$ then

$$(B_0S)(z) = (1 - |z|^2)^2(K^{(0)}_{z^2}, K^{(0)}_z) = \frac{(1 - |z|^2)^2}{(1 + |z|^2)^2}.$$

So $(B_0S)(z) \to 0$ when $|z| \to 1$, and then $(B_0S)(x) = 0$ for all $x \in M(\mathcal{A}) \setminus \mathbb{D}$. Corollary 4.7 then tells us that $S_x = 0$ for $x \in M(\mathcal{A}) \setminus \mathbb{D}$, making (4.2) impossible for this choice of S and $T = S$.

Lemma 4.8 Let $S \in \mathcal{L}(L^2_\alpha)$ and $x \in M(\mathcal{A})$. Suppose that there is some $n_0 \geq 0$ such that $(B_{n_0}S) \circ \varphi_x = g$ harmonic. Then $(B_nS) \circ \varphi_x = g$ for every $n \geq 0$.

Proof. By Corollary 4.6, $\tilde{\Delta}(B_{n_0}S_x) = \tilde{\Delta}g = 0$, which together with (2.7) yields $B_{n_0+1}S_x = B_{n_0}S_x = g$. Then $B_nS_x = g$ for every $n \geq n_0$. Thus $B_0(B_nS_x) = B_0g = g$ for $n \geq n_0$, implying that

$$g = \lim_{n \to \infty} B_0B_nS_x = \lim_{n \to \infty} B_nB_0S_x = B_0S_x,$$

where the second equality follows from Corollary 2.7 and the last one because since $B_0S_x \in \mathcal{A}$ by Corollary 4.6, then $B_n(B_0S_x) \to B_0S_x$ uniformly. Taking $n_0 = 0$, we have proved above that $B_nS_x = g$ for every $n \geq 0$. $lacksquare$

By the lemma we can add two more equivalences to Corollary 4.7, saying that $B_nS \equiv \lambda$ on $H(x)$ for every (or for some) $n \geq 0$.

Theorem 4.9 Let $S \in \mathfrak{S}(\mathcal{A})$ and \mathcal{B} be a hyperbolic algebra. Then the following conditions are equivalent,

1. $S_x = \lambda I$ when $x \in \pi^{-1}(y)$ for every $y \in \Gamma_\mathcal{B}$, where $\lambda \in \mathbb{C}$ depends only on y,

2. there is a continuous map $\Psi^\mathcal{B}_S : M(\mathcal{B}) \to (\mathfrak{S}(\mathcal{A}), SOT)$ such that $\Psi^\mathcal{B}_S \circ \pi = \Psi_S$,

3. $B_nS \in \mathcal{B}$ for some $n \geq 0$,

4. $B_nS \in \mathcal{B}$ for all $n \geq 0$.

If $S \in \mathcal{L}(L^2_\alpha)$ the theorem holds replacing $(\mathfrak{S}(\mathcal{A}), SOT)$ by $(\mathcal{L}(L^2_\alpha), WOT)$ in (2).

Proof. If (1) holds then for every $y \in M(\mathcal{B})$ and $x \in \pi^{-1}(y)$, S_x is an operator that only depends on y. Hence $\Psi^\mathcal{B}_S(y) = S_x$ is well defined and satisfies the equality in (2). The continuity of $\Psi^\mathcal{B}_S$ from $M(\mathcal{B})$ into any of the metric spaces $(\mathfrak{S}(\mathcal{A}), SOT)$ or $(\mathcal{L}(L^2_\alpha), WOT)$ (according to the hypothesis) follows from the respective continuity of Ψ_S, which is given by Theorem 4.5 and Proposition 4.4.
Now suppose that (2) holds. This means that if \(y \in M(B) \) then \(S_x \) is the same operator \(T \) for every \(x \in \pi^{-1}(y) \). Since \(\varphi_x(D) \subset \pi^{-1}(y) \) for \(y \in \Gamma_B \), then \(S_{\varphi_x(\omega)} = T \) for every \(\omega \in \mathbb{D} \). Corollary 4.6 then says that

\[
(B_0S)(\varphi_x(\omega)) = (B_0S_{\varphi_x(\omega)})(0) = (B_0T)(0)
\]

for every \(x \in \pi^{-1}(y) \) and \(\omega \in \mathbb{D} \). Writing \(\lambda = (B_0T)(0) \), we obtain that \(B_0S \equiv \lambda \) on \(H(x) \) for every \(x \in \pi^{-1}(y) \). Hence \(B_0S \) is constant on \(\pi^{-1}(y) \) for every \(y \in \Gamma_B \), meaning that \((B_0S)|_{D} \) extends continuously to \(M(B) \). Since the Gelfand-Naimark Theorem identifies \(B \) with \(C(M(B)) \) then \(B_0S \in B \). This proves (3) for \(n = 0 \). If (3) holds for some \(n_0 \geq 0 \) then \(B_{n_0}S = \lambda_y \in \mathbb{C} \) on \(\pi^{-1}(y) \) for every \(y \in \Gamma_B \). Lemma 4.8 then implies that the same happens with \(B_nS \) for all \(n \geq 0 \). This proves (4). Finally, if (4) holds then \((B_0S)|_{\pi^{-1}(y)} = \lambda_y \in \mathbb{C} \) for \(y \in \Gamma_B \). In particular, \(B_0S \equiv \lambda_y \) on \(H(x) \) for every \(x \in \pi^{-1}(y) \). Then (1) follows from Corollary 4.7.

If \(S \in \mathfrak{L}(L^2_a) \) satisfies the conditions of the theorem then the map \(z \mapsto S_z \) admits a continuous extension to \(M(B) \) given by \(\Psi^B_S \). Write

\[
\Psi^B_S(y) = \hat{S}^B_y
\]

when \(y \in M(B) \). If \(B = A \) we keep the previous notation \(\Psi_S(y) = S_y \) for \(y \in M(A) \). Also, since it is clear that we can identify \(\hat{S}^B_z \) with \(S_z \) when \(z \in \mathbb{D} \), we do not make this notation distinction for \(z \in \mathbb{D} \). Observe that if \(y \in M(B) \) and \((z_\alpha) \) is a net in \(\mathbb{D} \) that tends to \(y \) in \(M(B) \), then \(\hat{S}^B_y \) admits the two alternative and equivalent expressions

\[
\hat{S}^B_y = \lim_\alpha S_{z_\alpha},
\]

a WOT-limit in general and a SOT-limit if \(S \in \mathfrak{T}(A) \), or

\[
\hat{S}^B_y = S_x \text{ for some (or all) } x \in \pi^{-1}(y),
\]

where \(\pi : M(A) \to M(B) \) is the natural projection. Also, if \(b \in B \) we can look at \(b \) as a continuous function on \(M(B) \) or on \(M(A) \). If \(B \neq A \) we write \(\hat{b}^B \) when we need to distinguish the domain of the function, otherwise \(b \) will be looked as a function on \(M(A) \). Of course, if \(z \in \mathbb{D} \) then \(b(z) \) has the same meaning either way.

If \(B \) is a hyperbolic algebra, \(b \in B \) and \(y \in \Gamma_B \), then for every \(x \in \pi^{-1}(y) \) we have

\[
(T_b)_x = T_{b_0\varphi_x} = \lambda
\]

with \(\lambda \in \mathbb{C} \) depending only on \(y \) (actually \(\lambda = \hat{b}^B(y) \)). Since \(\mathfrak{T}(B) \) is generated by these Toeplitz operators, the same holds for every \(S \in \mathfrak{T}(B) \). Theorem 4.9 then says that \(B_nS \in B \) when \(S \in \mathfrak{T}(B) \), for every nonnegative integer \(n \).
5. Approximation and truncation by Toeplitz operators

If $A \subset L^\infty(\mathbb{D})$ is a subalgebra, we write $\mathfrak{T}_0(A)$ for the algebra generated by the Toeplitz operators T_a, with $a \in A$, without taking closure. In [4] Axler and Zheng found simple but very ingenious estimates for the norm of operators in $\mathfrak{T}_0(L^\infty(\mathbb{D}))$. The present section (especially Lemmas 5.2 and 5.5) makes heavy use of their method.

5.1. Norm estimates and truncation

The following lemma is a particular case of Lemma 4.2.2 in [21].

Lemma 5.1 If $c < 0$ and $t > -1$ then

$$J_{c,t}(z) = \int_D \frac{(1 - |\omega|^2)^t}{1 - z\overline{\omega}} dA(\omega), \quad z \in \mathbb{D},$$

is bounded.

The next result appeared in [4] for $p = 6$. The proof sketched here is a standard modification of that proof involving Lemma 5.1.

Lemma 5.2 Let $p > 4$. Then there is a constant $C_p < \infty$ such that if $S \in \mathfrak{L}(L^2_a)$, then

$$\int_D \frac{|(SK_z^{(0)})(w)|}{\sqrt{1 - |w|^2}} dA(w) \leq \frac{C_p \|S_z 1\|_p}{\sqrt{1 - |z|^2}}$$

for all $z \in \mathbb{D}$ and

$$\int_D \frac{|(SK_z^{(0)})(w)|}{\sqrt{1 - |z|^2}} dA(z) \leq \frac{C_p \|S_w^* 1\|_p}{\sqrt{1 - |w|^2}}$$

for all $w \in \mathbb{D}$.

Proof. To prove (5.1) let $S \in \mathfrak{L}(L^2_a)$ and fix $z \in \mathbb{D}$. Since

$$U_z 1 = (|z|^2 - 1)K_z^{(0)} \quad \text{and} \quad U_z U_z = I$$

then

$$U_z S_z 1 = (|z|^2 - 1)SK_z^{(0)}.$$

Thus

$$\int_D \frac{|(SK_z^{(0)})(w)|}{\sqrt{1 - |w|^2}} dA(w) = \frac{1}{1 - |z|^2} \int_D \frac{|(S_z 1)(\varphi_z(w))| |\varphi_z'(w)|}{\sqrt{1 - |w|^2}} dA(w).$$
Making the substitution \(w = \varphi_z(\lambda) \) in the last integral and using Holder’s inequality with \(1/p + 1/q = 1 \), we obtain

\[
\int_D \frac{|(SK_z(0)^{(0)})(w)|}{\sqrt{1 - |w|^2}} dA(w) = \frac{1}{\sqrt{1 - |z|^2}} \int_D \frac{|(S_z(1)(\lambda))|}{\sqrt{1 - |\lambda|^2}} dA(\lambda)
\leq \frac{\|S_z1\|_p}{\sqrt{1 - |z|^2}} \left(\int_D \frac{dA(\lambda)}{|1 - \bar{z}\lambda|^q(1 - |\lambda|^2)^{q/2}} \right)^{1/q}
\leq \frac{\|S_z1\|_p}{\sqrt{1 - |z|^2}} J(z)^{1/q},
\]

where

\[
J(z) = \int_D \frac{(1 - |\lambda|^2)^{-q/2}}{|1 - \bar{z}\lambda|^{2-q/2}+(3/2)q-2} dA(\lambda).
\]

Since \(p > 4 \) then \(q < 4/3 \), which yields \(q/2 < 2/3 < 1 \) and \((3/2)q - 2 < 0 \). By Lemma 5.1 there is \(J_q > 0 \) such that \(J(z) \leq J_q \) for every \(z \in \mathbb{D} \). This proves (5.1) with \(C_p = J_q^{1/q} \). Replace \(S \) with \(S^* \) and interchange the roles of \(w \) and \(z \) in (5.1) to obtain

\[
\int_D \frac{|(S^*K_w^{(0)}(0))(w)|}{\sqrt{1 - |w|^2}} dA(z) \leq \frac{C_p\|S^*1\|_p}{\sqrt{1 - |z|^2}}.
\]

Then use the equality \((S^*K_w^{(0)}(0))(z) = (SK_z^{(0)})(w)\) to obtain (5.2). \(\square \)

Lemma 5.3 Let \(S \in L(L^2_\mathbb{D}) \), \(a, b \in L^\infty(\mathbb{D}) \) and \(p > 4 \). Then

\[
\|T_bST_a\|_{L(L^2_\mathbb{D})} \leq C_p (\|a\|_\infty \|b\|_\infty)^{1/2} \sup_{\omega \in D} \{\|S_z1\|_p |a(z)|\}^{1/2} \sup_{\omega \in D} \{\|S^*_w1\|_p |b(w)|\}^{1/2},
\]

where \(C_p \) is the constant of Lemma 5.2.

Proof. For \(f \in L^2_\mathbb{D} \) and \(w \in D \), we have

\[
(ST_a f)(w) = \langle ST_a f, K_w^{(0)} \rangle = \langle af, S^*K_w^{(0)} \rangle
= \int_D f(z)a(z)(S^*K_w^{(0)})(z) dA(z)
= \int_D f(z)a(z)(SK_z^{(0)})(w) dA(z).
\]

Thus, if \(M_b \) denotes the multiplication operator,

\[
(M_bST_a f)(w) = \int_D f(z)a(z)b(w)(SK_z^{(0)})(w) dA(z).
\]
If \(\Phi(z, w) = |a(z)b(w)(SK_z^0)(w)| \) and \(h(z) = (1 - |z|^2)^{-1/2} \) then (5.1) yields
\[
\int_D \Phi(z, w)h(w) \, dA(w) \leq C_p\|b\|_\infty \|S_z\|_p |a(z)| \, h(z)
\leq C_p\|b\|_\infty \sup_{z \in D}\{\|S_z\|_p |a(z)|\} \, h(z),
\]
and by (5.2)
\[
\int_D \Phi(z, w)h(z) \, dA(w) \leq C_p\|a\|_\infty \|S_w^*\|_p |b(w)| \, h(w)
\leq C_p\|a\|_\infty \sup_{\omega \in D}\{\|S_w^*\|_p |b(w)|\} \, h(w).
\]
By Schur’s theorem (see the proof in [21, p. 42]) the operator \(M_bST_a \) satisfies an inequality as in the lemma. The result follows because
\[
\|(T_bST_a)f\|_{L^2} \leq \|(M_bST_a)f\|_{L^2}
\]
for every \(f \in L^2_a \).

Suppose that \(1 < p < p' < \infty, f \in L^p(\mathbb{D}) \) and \(0 < r < 1 \). Split the integral
\[
\|f\|_p^p = \|f\chi_{D \setminus rD}\|_p^p + \|f\chi_{rD}\|_p^p,
\]
where \(\chi_E \) denotes the characteristic function of the set \(E \). Taking \(\alpha = p'/p \) and \(\beta = p'/(p' - p) \) we have \(\alpha^{-1} + \beta^{-1} = 1 \). By Holder’s inequality
\[
\|f\chi_{D \setminus rD}\|_p^p \leq \|f\|_{\alpha p}^p \|\chi_{D \setminus rD}\|_\beta = \|f\|_{p'}^p (1 - r^2)^{1 - \frac{p'}{p}},
\]
and consequently
\[
\|f\|_p^p \leq \|f\|_{p'}^p (1 - r^2)^{1 - \frac{p'}{p}} + \|f\chi_{rD}\|_p^p.
\]

Proposition 5.4 Suppose that \(S \in \mathcal{T}_0(L^\infty(\mathbb{D})) \) and \(F \subset M(\mathcal{A}) \) is a closed saturated set such that \(B_0S \equiv 0 \) on \(F \). Given \(\varepsilon > 0 \) there is an open neighborhood \(\Omega \) of \(F \) in \(M(\mathcal{A}) \) such that if \(U \subset \Omega \cap \mathbb{D} \) is measurable, then
\[
\|T_{a\chi_U}S\|_{L^2(\mathbb{D})} < \varepsilon \quad \text{and} \quad \|ST_{a\chi_U}\|_{L^2(\mathbb{D})} < \varepsilon
\]
for every \(a \in L^\infty(\mathbb{D}) \) with \(\|a\|_\infty \leq 1 \).

Proof. Since \(F \) is saturated and \(B_0S \equiv 0 \) on \(F \), Proposition 4.4 and Corollary 4.7 say that \(S_z \xrightarrow{\text{wot}} S_z = 0 \) when \(z \to x \in F \), with \(z \in \mathbb{D} \). Thus \(S_z1 \to 0 \) weakly in \(L^2_a \) and consequently
\[
S_z1 \to 0 \quad \text{uniformly on compact sets as} \quad z \to x \quad (z \in \mathbb{D})
\]
for every \(x \in F \).
Write

\[S = \sum_{i=1}^{m} \prod_{j=1}^{n_i} T_{a_j}, \]

with \(a_j \in L^\infty(\mathbb{D}) \), and fix \(p, p' \) with \(4 < p < p' \). Then

\[\|S_1\|_{p'} = \left\| \sum_{i=1}^{m} \prod_{j=1}^{n_i} T_{a_j} \varphi_{z_1} \right\|_{p'} \leq \sum_{i=1}^{m} \prod_{j=1}^{n_i} c_{p'} \|a_j\|_{\infty} = c, \]

where \(c_{p'} \) is the norm of the analytic projection \(P_+ \) acting on \(L^{p'}(\mathbb{D}) \). For \(0 < r < 1 \), (5.3) yields

\[\|S_1\|_p \leq \|S_1\|_{p'} (1 - r)^{1 - \frac{p}{p'}} + \|(S_1)\chi_{rD}\|_{p'}. \]

By (5.6) there is \(r \) close enough to 1 so that the first member of the sum is smaller than \(\varepsilon/2 \), while (5.5) and the compactness of \(F \) imply that there is a neighborhood \(\Omega \) of \(F \) so that the second member is smaller than \(\varepsilon/2 \) for every \(z \in \Omega \cap \mathbb{D} \). In particular, if \(U \subset \Omega \cap \mathbb{D} \) this holds for every \(z \in U \). Since \(\|a\|_{\infty} \leq 1 \), Lemma 5.3 gives

\[\|ST_{a_{\chi_{U}}}\|^2 \leq C_{p}^2 \sup_{D} \{\|S_1\|_p : z \in U\} \|S_{\omega}^{*}1\|_p \leq C_{p}^2 c \varepsilon^{1/p}, \]

where \(c \) comes from (5.6) with \(S^{*} \) instead of \(S \), and \(C_{p} \) is the constant of Lemma 5.3. To prove the first inequality of (5.4) observe that \(B_{0}S^{*} = B_{0}S \) also satisfies the hypothesis of the proposition and \(\|T_{a_{\chi_{U}}}S^{*}\| = \|S_{\omega}T_{a_{\chi_{U}}}\| \). □

5.2. Approximation properties of the \(k \)-Berezin transforms

Lemma 5.5 Suppose that \(\{S_{k}\} \) is a bounded sequence in \(\mathcal{L}(L^{2}_{a}) \) such that \(\|B_{0}S_{k}\|_{\infty} \to 0 \) when \(k \to \infty \). Then

\[\sup_{z \in D} |(S_{k})_z| \to 0 \]

uniformly on compact subsets of \(\mathbb{D} \) when \(k \to \infty \).

Proof. Since there is a constant \(C \) such that \(\|S_{k}\| \leq C \) for every \(k \), then it is enough to prove that for every \(S \in \mathcal{L}(L^{2}_{a}) \), \(\eta > 0 \) and \(r \in (0, 1) \), there is a function \(c(r, \eta) > 0 \), independent of \(S \), such that

\[\sup_{z \in D} |(S_1)(u)| \leq c(r, \eta)\|B_{0}S\|_{\infty} + \eta\|S\| \]

when \(u \in r\mathbb{D} \).
Since
\[K^{(0)}_z(w) = \sum_{m=0}^{\infty} (m+1)z^m \omega^m, \]
then for \(z, \lambda \in \mathbb{D} \) we have
\[(B_0S)(\varphi_z(\lambda)) = (B_0S_z)(\lambda) = (1 - |\lambda|^2)^2 \sum_{j,m=0}^{\infty} (j+1)(m+1)\langle S_z \omega^j, \omega^m \rangle \tilde{\lambda}^j \lambda^m, \]
where the first equality comes from Lemma 2.2. Then, for \(0 < \delta < 1/2 \) (to be chosen later) we obtain
\[
\int_{\delta D} \frac{(B_0S)(\varphi_z(\lambda))\tilde{\lambda}^n}{(1 - |\lambda|^2)^2} \, dA(\lambda) = \sum_{j,m=0}^{\infty} (j+1)(m+1)\langle S_z \omega^j, \omega^m \rangle \int_{\delta D} \tilde{\lambda}^{j+n} \lambda^{m} \, dA(\lambda)
\]
\[= \sum_{j=0}^{\infty} (j+1)\langle S_z \omega^j, \omega^{j+n} \rangle \delta^{2j+2n+2}
\]
\[= \delta^{-n+2}\left(\langle S_z 1, \omega^n \rangle + \sum_{j=1}^{\infty} (j+1)\langle S_z \omega^j, \omega^{j+n} \rangle \delta^{2j}\right). \]

Since \(0 < \delta < 1/2 \) and \(\|\omega^j\| = (j+1)^{-1/2} \) then
\[|\langle S_z 1, \omega^n \rangle| \leq \frac{1}{\delta^{2n+2}}\|B_0S\|_\infty \int_{\delta D} \delta^n \, dA(\lambda) \left(1 - |\lambda|^2\right)^2 + \|S\| \sum_{j=1}^{\infty} (j+1)\|\omega^j\| \|\omega^{j+n}\| \delta^{2j} \]
\[\leq 2\delta^{-n}\|B_0S\|_\infty + \delta \|S\|, \]
where the last inequality holds because \(\sum_{j=1}^{\infty} \delta^{2j} \leq \delta \) when \(0 < \delta < 1/2 \). By (5.8)
\[(S_z 1)(u) = \langle S_z 1, K_u^{(0)} \rangle = \sum_{n \geq 0} (n+1)\langle S_z 1, \omega^n \rangle u^n, \]
implying that
\[|(S_z 1)(u)| \leq \sum_{0 \leq n \leq N-1} (n+1)|\langle S_z 1, \omega^n \rangle| + \sum_{n \geq N} (n+1)^{1/2}\|S_z\| r^n \]
for \(z \in \mathbb{D}, \ u \in r\mathbb{D} \) and \(N \geq 1 \). Since \(r \in (0,1) \) we can fix some integer \(N = N(r, \eta) \) big enough so that the second sum is bounded by \((\eta/2)\|S\| \). Using (5.9) in (5.10) we get
\[|(S_z 1)(u)| \leq N \sum_{0 \leq n \leq N-1} |\langle S_z 1, \omega^n \rangle| + (\eta/2)\|S\|
\]
\[\leq 2N^2\delta^{-N}\|B_0S\|_\infty + N^2\delta\|S\| + (\eta/2)\|S\| \]
for \(z \in \mathbb{D} \) and \(u \in r\mathbb{D} \). Choosing \(\delta = \delta(r, \eta) < \min\{\eta/2N^2, 1/2\} \) we obtain (5.7) with \(c(r, \eta) = 2N^2\delta^{-N} \). \(\blacksquare \)
Lemma 5.6 Let \(\{S_k\} \) be a sequence in \(\mathcal{L}(L^2_a) \) such that for some \(p' > 4 \),

\[
\|B_0 S_k\|_\infty \to 0, \quad \text{when } k \to \infty,
\]

\[
\sup_{z \in D} \|(S_k)_z 1\|_{p'} \leq C \quad \text{and} \quad \sup_{\omega \in D} \|(S_k^*)_\omega 1\|_{p'} \leq C,
\]

where \(C > 0 \) does not depend on \(k \). Then

\[
\|S_k\|_{\mathcal{L}(L^2_a)} \to 0 \quad \text{when } k \to \infty.
\]

Proof. By (5.12) and Lemma 5.3 with \(a = b = 1 \),

\[
\|S_k\|_{\mathcal{L}(L^2_a)} \leq C_{p'} \sup_{z \in D} \|(S_k)_z 1\|_{p'}^{1/2} \sup_{\omega \in D} \|(S_k^*)_\omega 1\|_{p'}^{1/2} \leq C_{p'} C.
\]

Hence, \(\{S_k\} \) is a bounded sequence in \(\mathcal{L}(L^2_a) \) that satisfies (5.11). Under these conditions Lemma 5.5 says that

\[
\sup_{z \in D} \|(S_k)_z 1\| \to 0 \quad \text{uniformly on compact sets of } \mathbb{D}.
\]

Let \(p \) with \(4 < p < p' \). By (5.3)

\[
\sup_{z \in D} \|(S_k)_z 1\|_p \leq \sup_{z \in D} \|(S_k)_z 1\|_{p'} (1 - r)^{1 - \frac{p}{p'}} + \sup_{z \in D} \|(S_k)_z 1\chi_r D\|_p
\]

for every \(0 < r < 1 \). By (5.12) the first member of the sum is bounded by

\[
C_{p'} (1 - r)^{1 - \frac{p}{p'}},
\]

which can be made small by taking \(r \) close to 1, and by (5.13) the second member of the sum tends to 0 as \(k \to \infty \). Therefore,

\[
\sup_{z \in D} \|(S_k)_z 1\|_p \to 0 \quad \text{when } k \to \infty
\]

for every \(p \in (4, p') \). Using again Lemma 5.3, this time with \(p \) instead of \(p' \), we obtain

\[
\|S_k\|_{\mathcal{L}(L^2_a)} \leq C_p \sup_{z \in D} \|(S_k)_z 1\|_p^{1/2} \sup_{\omega \in D} \|(S_k^*)_\omega 1\|_{p'}^{1/2} \leq C_p \sup_{z \in D} \|(S_k)_z 1\|_p^{1/2} C^{1/2} \to 0
\]

when \(k \to \infty \), where the last inequality holds by (5.12), since \(\|\cdot\|_p \leq \|\cdot\|_{p'} \). ■
Theorem 5.7 If \(a \in L^\infty(\mathbb{D}) \) then \(T_{B_k(a)} \to T_a \) in operator norm when \(k \to \infty \). In particular, \(\mathcal{T}(A) = \mathcal{T}(L^\infty(\mathbb{D})) \).

Proof. Write \(S_k = T_{B_k(a)} - T_a \). Since Corollary 2.7 says that \(B_0B_k = B_kB_0 \) on \(\Sigma(L^2) \) then

\[
B_0S_k = B_0T_{B_k(a)} - B_0T_a = B_0B_k(a) - B_0(a) = B_kB_0(a) - B_0(a),
\]

which tends uniformly to 0 when \(k \to \infty \) because \(B_0(a) \in A \). That is, \(\{S_k\} \) satisfies (5.11). On the other hand, if \(p' > 4 \) then

\[
\|(S_k)z1\|_{p'} = \|P_+M(B_k(a) - a)\phi_z,1\|_{p'} \leq c_{p'}(\|B_k(a)\|_\infty + \|a\|_\infty) \leq 2c_{p'}\|a\|_\infty,
\]

where \(c_{p'} \) is the norm of the analytic projection \(P_+ \) acting on \(L^{p'}(\mathbb{D}) \) (see [21, p. 54]). Since

\[
(S_k^*)z = P_+M(B_k(a) - a)\phi_z
\]

then also

\[
\|(S_k^*)z1\|_{p'} \leq 2c_{p'}\|a\|_\infty.
\]

So, \(\{S_k\} \) satisfies (5.12) and Lemma 5.6 then says that \(\|S_k\|_{\Sigma(L^2)} \to 0 \) as \(k \to \infty \). \(\blacksquare\)

Remark 5.8 An obvious consequence of the theorem is that Theorems 4.5 and 4.9 hold for \(S \in \mathcal{T}(L^\infty(\mathbb{D})) \). The argument of Theorem 5.7 works word by word for any \(S \in \Sigma(L^2) \) such that \(T_{B_k}S = S \) satisfies (5.12) for some \(p' > 4 \). So, \(T_{B_k} \to S \) for such \(S \). Maybe this holds for every \(S \in \mathcal{T}_0(L^\infty(\mathbb{D})) \), which would imply that \(\mathcal{T}(L^\infty(\mathbb{D})) \) is the closure of \(\{T_a : a \in A\} \).

6. Abelianization

Lemma 6.1 Let \(F \subset M(A) \setminus \mathbb{D} \) be a closed saturated set, \(\Omega \subset M(A) \) an open neighborhood of \(F \) and \(k \geq 0 \) an integer. Write \(U = \Omega \cap \mathbb{D} \) and \(\mathfrak{F} = \{a \in L^\infty(\mathbb{D}) : a \equiv 0 \text{ on } U\} \). Then

\[
B_ka \equiv 0 \text{ on } F \text{ for every } a \in \mathfrak{F}.
\]

In particular, if \(B \) is a hyperbolic algebra and \(F = \pi^{-1}(\Gamma_B) \) then \(B_ka \in B \) and \(T_a \in \Sigma(B) \).

Proof. By Lemma 4.8 it is enough to prove the lemma for \(k = 0 \). Let \(x \in F \) and take a net \(\{z_\alpha\} \) in \(\mathbb{D} \) such that \(z_\alpha \to x \). We claim that for every \(r \in (0, 1) \) there is \(\alpha_0 = \alpha_0(r) \) such that \(\phi_{z_\alpha}(r\mathbb{D}) \subset \Omega \) for \(\alpha \geq \alpha_0 \). Otherwise there is a subnet \(\{z_\alpha\} \) and points \(\xi_\beta \in r\mathbb{D} \) such that \(\phi_{z_\alpha}(\xi_\beta) \not\in \Omega \) for all \(\beta \). We can assume that \(\xi_\beta \to \xi_0 \), with \(\|
\xi_0\| \leq r \). If \(f \in A \), the inequality

\[
|f(\phi_{z_\alpha}(\xi_\beta)) - f(\phi_x(\xi_0))| \leq |f(\phi_{z_\alpha}(\xi_\beta)) - f(\phi_{z_\alpha}(\xi_0))| + |f(\phi_{z_\alpha}(\xi_0)) - f(\phi_x(\xi_0))|
\]

and the uniform \(\rho \)-continuity of \(f \) imply that \(f(\phi_{z_\alpha}(\xi_\beta)) \to f(\phi_x(\xi_0)) \).
Therefore
\[\varphi_{z_{a \beta}}(\xi) \to \varphi_{z}(\xi_0) \in H(x) \subset F, \]
and since \(\Omega \) is a neighborhood of \(F \) then \(\varphi_{z_{a \beta}}(\xi) \in \Omega \) for \(\beta \geq \beta_0 \), a contradiction. So, if \(a \in F \) and \(0 < r < 1 \), there is \(\alpha_0 \) such that \((a \circ \varphi_{z_a})(\omega) = 0 \) for \(|\omega| < \rho \) and \(\alpha \geq \alpha_0 \). Hence for \(\alpha \geq \alpha_0 \),
\[
|(B_0a)(z_a)| \leq \int_D |(a \circ \varphi_{z_a})(\omega)| dA(\omega) = \int_{D \setminus rD} |(a \circ \varphi_{z_a})(\omega)| dA(\omega) \leq \|a\|_\infty (1 - r^2),
\]
which can be made arbitrarily small by taking \(r \) close enough to 1. Therefore \((B_0a)(z_a) \to 0 \), but since also \((B_0a)(z_a) \to (B_0a)(x) \) then \((B_0a)(x) = 0 \), and this happens for all \(x \in F \).

Now suppose that \(F = \pi^{-1}(\Gamma_B) \), with \(B \) a hyperbolic algebra. Since \(B_kx \in A \) identically vanishes on \(\pi^{-1}(\Gamma_B) \) then \(B_kx \in B \). Consequently \((B_kx) \in \mathfrak{T}(B) \), and since by Theorem 5.7, \(T_{B_kx} \to T_a \) as \(k \to \infty \), then so is \(T_a \).

Let \(F \subset M(A) \) be a closed set. A set \(U \subset \mathbb{D} \) will be called a relative neighborhood of \(F \) if there is some open neighborhood \(\Omega \subset M(A) \) of \(F \) such that \(U = \Omega \cap \mathbb{D} \). Since the disk is dense in \(M(A) \) and \(\Omega \) is open, it is clear that \(\overline{U}_M(A) \) contains \(\Omega \), and consequently it is a neighborhood of \(F \). Also, for \(V \subset \mathbb{D} \) we will denote \(V^c = \mathbb{D} \setminus V \).

Lemma 6.2 Let \(S = \sum_{i=1}^m \prod_{j=1}^{n_i} T_{a_{ij}} \), with \(a_{ij} \in L^\infty(\mathbb{D}) \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n_i \), and \(F \subset M(A) \) be a closed saturated set such that \(B_0S \equiv 0 \) on \(F \). Then given \(\varepsilon > 0 \) there exist relative neighborhoods \(U, V \) of \(F \) such that
\[
\left\| S - \left(\sum_{i=1}^m \prod_{j=1}^{n_i} T_{a_{ij}} \right) T_{xUV} \right\| < \varepsilon.
\]

Proof. Without loss of generality we can assume that \(\|a_{ij}\|_\infty \leq 1 \) for every \(i, j \). By Proposition 5.4 there is a relative neighborhood \(\hat{U} \) of \(F \) such that \((6.1) \)
\[
\|S - ST_{xUV}\| = \|ST_{xUV}\| < \varepsilon.
\]
By Lemma 6.1 and (4.2), for \(1 \leq i \leq m \) each of the operators
\[
S_k^i \overset{\text{def}}{=} \left(\prod_{j=k}^{n_i} T_{a_{ij}} \right) T_{xUV}, \quad 1 \leq k \leq n_i, \quad S_{n_i+1} = T_{xUV}
\]
satisfies \(B_0S_k^i = 0 \) on \(F \). Hence, a new use of Proposition 5.4 provides a relative neighborhood \(V \) of \(F \) such that
\[
\|T_{a_{ij}}S_k^i \| \leq \varepsilon
\]
for every \(1 \leq i \leq m \) and \(1 \leq k \leq n_i \).
Indeed, the proposition says that there are relative neighborhoods V_k^i of F that satisfy the inequality for each i and k, but it also says that their intersection satisfies the inequality. Therefore

$$\|T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e S_k^i - T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e S_{k+1}^i\|
$$

$$= \|T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e T_{a_k}^i S_{k+1}^i - T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e S_k^i\|
$$

$$\leq \|T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e \| \|T_{a_k}^i - T_{a_k}^i \chi V e\| S_{k+1}^i
$$

$$\leq \|T_{a_k}^i \chi V e S_{k+1}^i\| < \varepsilon,$$

which leads to

$$\|T_{a_1}^i \cdots T_{a_n}^i \chi V e - T_{a_1}^i \chi V e \cdots T_{a_n}^i \chi V e T_{\chi V e}\|
$$

$$\leq \sum_{k=1}^{n_i} \|T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e S_k^i - T_{a_1}^i \chi V e \cdots T_{a_{k-1}}^i \chi V e S_{k+1}^i\| < n_i \varepsilon.$$

Therefore

$$\left\| \left(\sum_{i=1}^{m} \prod_{j=1}^{n_i} T_{a_j}^i \right) \chi V e - \left(\sum_{i=1}^{m} \prod_{j=1}^{n_i} T_{a_j}^i \chi V e \right) \chi V e \right\| \leq \sum_{i=1}^{m} n_i \varepsilon.$$

Since $ST_{\chi V e} = (\sum_{i=1}^{m} \prod_{j=1}^{n_i} T_{a_j}^i)T_{\chi V e}$ and $\varepsilon > 0$ is arbitrary, the lemma follows from (6.1) and the above inequality.

If $B \subset L^\infty(\mathbb{D})$ is a subalgebra, we write $C_0(B)$ for the bilateral ideal of $\mathfrak{T}_0(B)$ generated by commutators $[T_a, T_b] = T_a T_b - T_b T_a$, with $a, b \in B$. Therefore, $C(B)$ is the closure of $C_0(L^\infty(\mathbb{D}))$.

Lemma 6.3. Let B be a hyperbolic algebra. If $S \in C_0(L^\infty(\mathbb{D}))$ is such that $B_0S \in B$ and $\overline{B_0S}^B \equiv 0$ on Γ_B then $S \in C(B)$.

Proof. By hypothesis

$$S = \sum_{i=1}^{m} T_{b_1^i} \cdots T_{b_{n_i}^i} [a_1^i, a_2^i] T_{c_1^i} \cdots T_{c_{k_i}^i},$$

where n_i, k_i and m are some positive integers and all the symbols are in $L^\infty(\mathbb{D})$. If $\overline{B_0S}^B \equiv 0$ on Γ_B, Lemma 6.2 says that given $\varepsilon > 0$ there are relative neighborhoods U, V of Γ_B such that if

$$R = \sum_{i=1}^{m} T_{b_1^i \chi V e} \cdots T_{b_{n_i}^i \chi V e} [a_1^i \chi V e, a_2^i \chi V e] T_{c_1^i \chi V e} \cdots T_{c_{k_i}^i \chi V e} T_{\chi V e}$$

then $\|S - R\| < \varepsilon$. By Lemma 6.1 every Toeplitz operator involved in the last expression is in $\mathfrak{T}(B)$. So, $R \in C(B)$ and then so is S.

\[\blacksquare\]
It is well known that if B, D are C^*-algebras and ϕ is a $*$-homomorphism from B to D, then $\|\phi\| \leq 1$ and ϕ is an isometry if and only if ϕ is one-to-one [13, p. 100].

Theorem 6.4 If B is a hyperbolic algebra then

1. $\mathcal{C}(B) = \{S \in \mathcal{T}(B) : \hat{B}_0S^B \equiv 0 \text{ on } \Gamma_B\} = \{S \in \mathcal{T}(B) : \hat{S}^B_y = 0 \text{ for all } y \in \Gamma_B\}$.

2. $S - T_{B_0S} \in \mathcal{C}(B)$ for every $S \in \mathcal{T}(B)$.

3. The C^*-algebras $\mathcal{T}(B)/\mathcal{C}(B)$ and $C(\Gamma_B)$ are isomorphic via $\phi : S + \mathcal{C}(B) \mapsto \hat{B}_0S^B|_{\Gamma_B}$.

Proof. (1). The equality of the last two sets follows from Corollary 4.7. Suppose first that $S \in \mathcal{C}_0(B)$, so

$$S = \sum_{1 \leq i \leq n} A_i [T_{a_i}, T_{b_i}] B_i,$$

where $a_i, b_i \in B$ and $A_i, B_i \in \mathcal{T}_0(B)$. If $x \in \pi^{-1}(\Gamma_B)$ then $a_i \circ \varphi_x$ and $b_i \circ \varphi_x$ are constant functions for all $1 \leq i \leq n$. By (4.2) then

$$S_x = \sum_{1 \leq i \leq n} (A_i)_x [T_{a_i \circ \varphi_x}, T_{b_i \circ \varphi_x}] (B_i)_x = 0.$$

Since every $S \in \mathcal{C}(B)$ can be approximated by operators of this form, then $S_x = 0$ for every $x \in \pi^{-1}(\Gamma_B)$. By Corollary 4.7 then $B_0S \equiv 0$ on $\pi^{-1}(\Gamma_B)$, which is another way to say that $\hat{B}_0S^B \equiv 0$ on Γ_B. This proves the inclusion of the first set into the second one.

Suppose now that $S \in \mathcal{T}(B)$ and $\hat{B}_0S^B \equiv 0$ on Γ_B. We can assume that $\|S\| = 1$. Let $0 < \varepsilon < 1$ and take $Q \in \mathcal{T}_0(B)$ such that $\|Q - S\| < \varepsilon$. Since $Q \in \mathcal{T}(B)$ then $\hat{Q}^B_y = \lambda I$ and $\hat{B}_0Q^B(y) = \lambda$ for every $y \in \Gamma_B$, where $\lambda \in \mathbb{C}$ depends on y. Thus

$$(\hat{B}_0Q^B)_y = \lim_{z \to y} T_{(B_0Q)\circ \varphi_z} = T_{(B_0Q)^B(y)} = \lambda I.$$

Then

$$B_0(Q - T_{B_0Q})^B \equiv 0 \quad \text{on } \Gamma_B$$

by Corollary 4.7, and since $\hat{B}_0S^B \equiv 0$ on Γ_B then

$$B_0(T_{B_0S})^B \equiv 0 \quad \text{on } \Gamma_B$$

by the same corollary.
So, if
\[S_1 = Q - T_{B_0} + T_{B_0}S \]
then \(\hat{B}_0 S_1^B \equiv 0 \) on \(\Gamma_B \) and
\[
\|S_1 - S\| \leq \|Q - S\| + \|T_{B_0} - T_{B_0}Q\| \leq 2\|Q - S\| < 2 \varepsilon.
\]
In [20, Thm. 1.1] it is proved that
\[\mathfrak{C}(L^\infty(\mathbb{D})) = \mathfrak{T}(L^\infty(\mathbb{D})) \]
so it contains the identity \(I \).

Since Theorem 5.7 implies that
\[\mathfrak{C}(L^\infty(\mathbb{D})) = \mathfrak{C}(A) \]
then \(I \in \mathfrak{C}(A) \). Consequently there is \(R \in \mathfrak{C}_0(A) \) such that \(\|R - I\| < \varepsilon \). Thus
\[
\|RS_1 - S_1\| \leq \|R - I\| \|S_1\| < \varepsilon(\|S\| + 2 \varepsilon) < 3 \varepsilon.
\]
Since \(B_0 S_1 \equiv 0 \) on \(\pi^{-1}(\Gamma_B) \), Corollary 4.7 says that \((S_1)_{x} = 0 \) for all \(x \in \pi^{-1}(\Gamma_B) \). By (4.2) then \((RS_1)_{x} = R_{x}(S_1)_{x} = 0 \) for all \(x \in \pi^{-1}(\Gamma_B) \), which means that
\[B_0(RS_1) \in \mathcal{B} \quad \text{and} \quad B_0(RS_1)^B \equiv 0 \quad \text{on } \Gamma_B. \]
But since \(R \in \mathfrak{C}_0(A) \) and \(S_1 \in \mathfrak{T}_0(A) \) then \(RS_1 \in \mathfrak{C}(A) \), which together with Lemma 6.3 gives \(RS_1 \in \mathfrak{C}(B) \). By (6.2) and (6.3), \(\|RS_1 - S\| < 5 \varepsilon \) and (1) follows.

(2). Let \(y \in \Gamma_B \). Since \(S \in \mathfrak{T}(\mathcal{B}) \) then \(\hat{S}_y^B = \lambda I \). Thus
\[
(\hat{B}_0 S)^B(y) = \lambda \quad \text{and} \quad (\hat{T}_{B_0}^B S)_y = T_{(B_0 S)^B(y)} = \lambda I.
\]
The result then follows from (1).

(3). By (1) the map \(\phi \) is well-defined and one-to-one. It is clear that \(\phi \) is *-linear. Suppose that \(S, T \in \mathfrak{T}(\mathcal{B}) \) and \(y \in \Gamma_B \). Then
\[\hat{S}_y^B = \lambda_S I \quad \text{and} \quad \hat{T}_y^B = \lambda_T I \]
for some \(\lambda_S, \lambda_T \in \mathbb{C} \) that depend on \(y \). Hence
\[
\hat{B}_0(ST)^B(y) = \lim_{z \to y} \langle S_z T_z, 1, 1 \rangle = \langle \hat{S}_y^B \hat{T}_y^B, 1, 1 \rangle = \langle \lambda_S \lambda_T, 1, 1 \rangle = \lambda_S \lambda_T = \langle (B_0 S)^B(y), (B_0 T)^B(y) \rangle,
\]
and \(\phi \) is multiplicative. If \(f \in C(\Gamma_B) \) we can extend \(f \) to a continuous function \(F \) on \(M(B) \). Therefore \(F \in \mathcal{B} \) and
\[\phi(T_F + \mathfrak{C}(\mathcal{B})) = \hat{B}_0 F^B|_{\Gamma_B} = f. \]
So, \(\phi \) is onto.

\[\blacksquare \]
Theorem 6.5 Let \(B \) be a hyperbolic algebra and \(S \in \mathfrak{T}_0(L^\infty(\mathbb{D})) \). Then

1. \(S \in \mathfrak{T}(B) \) if and only if \(B_0S \in B \).
2. \(S \in \mathfrak{C}(B) \) if and only if \(\hat{B}_0S^B \equiv 0 \) on \(\Gamma_B \).

Proof. (1). We know the necessity from Theorem 4.9. Suppose that \(S = \sum_{i=1}^m \prod_{j=1}^{n_i} T_{a_j^i} \), where all \(a_j^i \in L^\infty(\mathbb{D}) \), and \(B_0S \in B \). Then \(T_{B_0S} \in \mathfrak{T}(B) \) and

\[B_0(S - T_{B_0S})^B \equiv 0 \quad \text{on} \quad \Gamma_B. \]

Consequently Lemma 6.2 tells us that given \(\varepsilon > 0 \) there are relative neighborhoods \(U, V \) of \(\Gamma_B \) such that

\[\|S - T_{B_0S} - \sum_{i=1}^m \prod_{j=1}^{n_i} T_{a_j^i}\chi_U \cdot T_{(B_0S)^B}\chi_U\| < \varepsilon. \]

By Lemma 6.1,

\[T_{a_j^i}\chi_U, T_{(B_0S)^B}\chi_U \in \mathfrak{T}(B) \]

for all \(1 \leq i \leq m \) and \(1 \leq j \leq n_i \). Therefore \(S \in \mathfrak{T}(B) \).

(2). The necessity follows from (1) of Theorem 6.4. For the sufficiency, observe that it is implicit in the condition \(\hat{B}_0S^B \equiv 0 \) on \(\Gamma_B \) that \(B_0S \in B \).

By the previous assertion then \(S \in \mathfrak{T}(B) \). So, (1) of Theorem 6.4 says that \(S \in \mathfrak{C}(B) \). \(\blacksquare \)

If \(B \) is a hyperbolic algebra and \(a \in A \), then \(a \in B \) if and only if \(B_0a \in B \). Therefore the theorem says that \(T_a \in \mathfrak{T}(B) \) if and only if \(a \in B \) and that \(T_a \in \mathfrak{C}(B) \) if and only if \(a \equiv 0 \) on \(\pi^{-1}(\Gamma_B) \).

The algebra \(C(\overline{\mathbb{D}}) \), of continuous functions on the closed disk is hyperbolic, its maximal ideal space identifies with \(\overline{\mathbb{D}} \), and it is immediate that \(\Gamma_C(\overline{\mathbb{D}}) = \partial\mathbb{D} \) via this identification. Since by Coburn’s theorem \(\mathfrak{C}(C(\overline{\mathbb{D}})) \) is the ideal of compact operators, then part (2) of the theorem says that \(S \in \mathfrak{T}_0(L^\infty(\mathbb{D})) \) is compact if and only if

\[(B_0S)(z) \rightarrow 0 \quad \text{as} \quad |z| \rightarrow 1^- \]

That is, we recover the theorem of Axler and Zheng [4, Thm. 2.2]. It is clear that the above condition is equivalent to \(S_z = 0 \) for all \(x \in M(A) \setminus \mathbb{D} \), or what is the same, \(S_z \rightarrow 0 \) in the SOT-topology when \(|z| \rightarrow 1 \).
7. Applications

7.1. Continuous functions up to a boundary set

Suppose that $E \subset \partial \mathbb{D}$ is a closed set and consider the algebra C_E formed by the functions of \mathcal{A} that extend continuously to E. Then C_E is a hyperbolic algebra. If $id \in \mathcal{A}$ denotes the function $id(z) = z$ and for $\lambda \in \partial \mathbb{D}$ we write $M_\lambda = \{ x \in M(\mathcal{A}) : id(x) = \lambda \}$ for the fiber of λ over $M(\mathcal{A})$, then $M(\mathcal{C}_E)$ consists of $M(\mathcal{A}) / \sim$, where \sim is the equivalence relation that collapses M_λ to a single point (depending on λ) for each $\lambda \in E$. Thus, Γ_{C_E} can be identified with E. Theorem 6.4 then says that $C(\mathcal{C}_E) = \{ S \in \mathfrak{T}(C_E) : \lim_{z \to E} (B_0 S)(z) = 0 \}$ and $\mathfrak{T}(C_E) / C(\mathcal{C}_E) \simeq C(E)$.

As mentioned before, when $E = \partial \mathbb{D}$, the above isomorphism is part of Coburn’s theorem. Now consider the algebra CL^∞_E formed by the functions in $L^\infty(\mathbb{D})$ that extend continuously to E. Since $CL^\infty_E \not\subset \mathcal{A}$, it is not a hyperbolic algebra. So, at a first sight it is not possible to apply our results to this algebra. Fortunately, Theorem 5.7 gives us a way to overcome this apparent difficulty. In fact, it is easy to prove that if $f \in CL^\infty_E$ then $B_k f \in C_E$ for every $k \geq 0$ and $(B_k f)(\lambda) = f(\lambda)$ for $\lambda \in E$. By Theorem 5.7 then $\mathfrak{T}(C_E) = \mathfrak{T}(CL^\infty_E)$ and $\mathfrak{C}(C_E) = \mathfrak{C}(CL^\infty_E)$.

7.2. The McDonald-Sundberg Theorem

Let \mathcal{U} be the C^*-subalgebra of $L^\infty(\mathbb{D})$ generated by $H^\infty = \{ f \in L^\infty(\mathbb{D}) : f \text{ is analytic} \}$. The celebrated corona theorem of Carleson [10] states that \mathbb{D} is dense in $M(H^\infty)$, the maximal ideal space of H^∞. This translates into the alternative description of \mathcal{U} as $C(M(H^\infty))$. Since Schwarz Lemma implies that $H^\infty \subset \mathcal{A}$ then $\mathcal{U} \subset \mathcal{A}$. Therefore \mathcal{U} is a prehyperbolic algebra and we aim to prove that it is hyperbolic.

Clearly, every interpolating sequence for H^∞ is interpolating for \mathcal{U}. The interpolating sequences for H^∞ were characterized by Carleson in [9]. Suppose that $x \in M(H^\infty) \setminus \mathbb{D}$ is in the closure of some interpolating sequence $\{z_n\}$ for H^∞, where we can assume that $z_n \neq 0$ for all $n \geq 1$. It is known that the infinite product

$$b(\omega) = \prod_{n \geq 1} \frac{|z_n|}{z_n} \varphi_{z_n}(\omega)$$

represents a function $b \in H^\infty$ such that $b(z_n) = 0$ for all $n \geq 1$. This b is called an interpolating Blaschke product.
We also know (see [15, p. 404]) that if $\delta \in (0, 1)$ then there is $\varepsilon(\delta) > 0$ such that

$$|b(\omega)| \geq \varepsilon(\delta) \quad \text{for every} \quad \omega \in \mathbb{D} \setminus \bigcup_{n \geq 1} K(z_n, \delta).$$

Thus x satisfies condition (b_2) of Proposition 3.9. On the other hand, if $x \in M(H^\infty) \setminus \mathbb{D}$ is not in the closure of any interpolating sequence for H^∞, it is known that for every net (z_α) in \mathbb{D} that tends to x,

$$f \circ \varphi_{z_\alpha} \to \lambda \in \mathbb{C}$$

uniformly on compact sets for every $f \in H^\infty$ (see [15, Ch. X]). Since \mathcal{U} is the C^*-algebra generated by H^∞ the same holds for every $f \in \mathcal{U}$. Thus x satisfies (a_2) of Proposition 3.8. Consequently Corollary 3.10 tells us that \mathcal{U} is hyperbolic and that $\Gamma_\mathcal{U}$ is formed by the points $x \in M(H^\infty)$ that are not in the closure of any interpolating sequence for H^∞. Such points are usually called ‘trivial points’ because they can be characterized as the $x \in M(H^\infty)$ whose Gleason part (with respect to H^∞) is just $\{x\}$. For the definition and further information on Gleason parts the reader may consult the original paper of Hoffman [16] or Garnett’s book [15, Ch. X].

Theorem 6.4 now tells us that $\mathcal{E}(\mathcal{U}) / \mathcal{E}(\mathcal{U}) \simeq C(\Gamma_\mathcal{U})$, a result obtained by McDonald and Sundberg in [17]. Theorem 6.4 also says that $\mathcal{E}(\mathcal{U}) = \{S \in \mathcal{E}(\mathcal{U}) : \overline{B_0S^\mathcal{U}} \equiv 0 \text{ on } \Gamma_\mathcal{U}\}$ and $S - T_{B_0S} \in \mathcal{E}(\mathcal{U})$, which are recent additions to the McDonald-Sundberg Theorem discovered by Axler and Zheng [5].

7.3. The algebra of nontangential limits

Consider the algebra $\mathcal{N} = \{f \in \mathcal{A} : f \text{ has nontangential limits a.e. on } \partial \mathbb{D}\}$. It is clear that \mathcal{N} is prehyperbolic, and we are going to use Corollary 3.10 to show that it is hyperbolic. To do so we need to characterize the interpolating sequences for \mathcal{N}. For $u \in \partial \mathbb{D}$ and $0 < \alpha < \pi/2$ let $\Lambda_\alpha(u) = \{u - \omega : |\arg \omega - \arg u| < \alpha, \text{ and } 0 < |u - \omega| < 1\}$ be an angular region with vertex u of total opening 2α. If $V \subset \mathbb{D}$ set

$$\text{NT}_\alpha(V) = \{u \in \partial \mathbb{D} : u \in \overline{V \cap \Lambda_\alpha(u)}\} \quad \text{and} \quad \text{NT}(V) = \bigcup_{0 < \alpha < \pi/2} \text{NT}_\alpha(V).$$

Geometrically, $\text{NT}(V)$ is the subset of $\partial \mathbb{D}$ that can be approached nontangentially by points of V. If $u \in \partial \mathbb{D}$, $0 < r < 1$ and $0 < \alpha < \pi/2$, there is some $0 < \beta < \pi/2$ depending on α and r such that the r-pseudohyperbolic neighborhood of $\Lambda_\alpha(u)$ is contained in $\Lambda_\beta(u)$. Thus

$$(7.1) \quad \text{NT}(V) = \text{NT}(\{z \in \mathbb{D} : \rho(z, V) \leq r\}).$$

We write $|E|$ for the one-dimensional Lebesgue measure of $E \subset \partial \mathbb{D}$.

Lemma 7.1 A separated sequence \(S = \{z_n\} \) is interpolating for \(N \) if and only if \(|NT(S)| = 0 \). If that is the case, for any \(r > 0 \) sufficiently small there exists \(f \in N \) that separates \(S \) from \(\mathbb{D} \setminus \bigcup_{n \geq 1} K(z_n, r) \).

Proof. Suppose that \(|NT(S)| = 0 \) and \(\rho(z_n, z_m) \geq \delta > 0 \) for \(n \neq m \). By (7.1) then \(|NT(\bigcup_{n \geq 1} K(z_n, \delta/4)| = 0 \). Take \(f \in A \) such that

\[
f(z_n) = 1 \quad \text{for all } n \quad \text{and } f \equiv 0 \quad \text{on } \mathbb{D} \setminus \bigcup_{n \geq 1} K(z_n, \delta/4).
\]

So, \(f \) has null nontangential limit a.e. on \(\partial \mathbb{D} \). Thus \(f \in N \) and separates \(S \) from \(\mathbb{D} \setminus \bigcup_{n \geq 1} K(z_n, \delta/4) \). If \(\{\eta_n\} \) is an arbitrary sequence and we take \(g \in A \) such that \(g(z_n) = \eta_n \) for every \(n \) then \(fg \in N \) and \(f(z_n)g(z_n) = \eta_n \) for every \(n \). So, \(S \) is interpolating for \(N \).

Now suppose that \(|NT(S)| > 0 \). If \(0 < \alpha_k < \alpha_{k+1} \to \pi/2 \) is a strictly increasing sequence, then \(NT(S) = \bigcup_k NT_{\alpha_k}(S) \). So, there is some \(\alpha_k = \alpha \) such that \(|NT_{\alpha}(S)| > 0 \), and consequently there exists a compact set \(E \subset NT_{\alpha}(S) \) of positive measure. That is, \(u \in \Lambda_{\alpha}(u) \cap S \) for every \(u \in E \).

So, if \(u \in E \) there is some \(z_n \in \Lambda_{\alpha}(u) \cap S \). Since \(\Lambda_{\alpha}(u) \) is open, it is geometrically clear that there is a an open neighborhood \(I_n \) of \(u \) in \(\partial \mathbb{D} \) such that \(z_n \in \Lambda_{\alpha}(u) \cap S \) for every \(v \in I_n \). By the compactness of \(E \) there is a finite set \(\mathcal{R}_1 \) in \(S \) such that \(\Lambda_{\alpha}(u) \cap \mathcal{R}_1 \neq \emptyset \) for every \(u \in E \). If \(r_1 = \max\{|z| : z \in \mathcal{R}_1\} \) and \(S_1 = \{z \in S : |z| \leq r_1\} \) then we also have \(\Lambda_{\alpha}(u) \cap S_1 \neq \emptyset \) for every \(u \in E \). We can repeat this process with \(S \setminus S_1 \) instead of \(S \) to obtain \(r_2 \in (r_1, 1) \) such that \(S_2 = \{z \in S : r_1 < |z| \leq r_2\} \) then \(\Lambda_{\alpha}(u) \cap S_2 \neq \emptyset \) for every \(u \in E \). We keep going to construct a sequence \(0 < r_1 < \cdots < r_n < \cdots < 1 \) such that \(S_n = \{z \in S : r_n-1 < |z| \leq r_n\} \) then

\[
\Lambda_{\alpha}(u) \cap S_n \neq \emptyset \quad \text{for every } u \in E.
\]

The sequence \(\{r_n\} \) must tend to 1 because if \(r_n \leq r < 1 \) for every \(n \) then \(\{z : |z| \leq r\} \cap S \) is infinite, which is not possible because \(S \) is separated.

Now take

\[
\mathcal{T}_1 = \bigcup_{j \text{ odd}} S_j \quad \text{and} \quad \mathcal{T}_2 = \bigcup_{j \text{ even}} S_j.
\]

Since (7.2) holds for all \(n \geq 1 \) then \(E \subset NT_{\alpha}(\mathcal{T}_1) \cap NT_{\alpha}(\mathcal{T}_2) \), and since \(|E| > 0 \), the interpolation problem

\[
f(z_n) = \begin{cases} 1 & \text{for } z_n \in \mathcal{T}_1 \\ 0 & \text{for } z_n \in \mathcal{T}_2 \end{cases}
\]

cannot be solved by a function with nontangential limits almost everywhere on \(E \).
Theorem 7.2 The algebra \(\mathcal{N} \) is hyperbolic. In addition, \(y \in M(\mathcal{N}) \) is in \(G_{\mathcal{N}} \) if and only if \(y \) is in the closure of some interpolating sequence for \(\mathcal{N} \).

Proof. Let \(y \in M(\mathcal{N}) \). If \(y \) is in the closure of an interpolating sequence for \(\mathcal{N} \) the previous lemma says that \(y \) satisfies condition \((b_2)\) of Proposition 3.8, and consequently \(y \in \Gamma_{\mathcal{N}} \). By Corollary 3.10 then \(\mathcal{N} \) is hyperbolic.

The nontangential limit function of \(f \in \mathcal{N} \) will be denoted \(\tilde{f} \). So, \(\tilde{f} \in L^\infty(\partial\mathbb{D}) \).

Lemma 7.3 Let \(f \in \mathcal{N} \). Then \(\tilde{f}^\mathcal{N} \equiv 0 \) on \(\Gamma_{\mathcal{N}} \) if and only if \(\tilde{f} = 0 \).

Proof. If there is \(y \in \Gamma_{\mathcal{N}} \) such that \(|\tilde{f}^\mathcal{N}(y)| = \delta > 0 \) and \(\mathcal{S} \) is a separated sequence such that \(y \in \mathcal{S}^{M(\mathcal{N})} \), then \(y \) is in the \(M(\mathcal{N}) \)-closure of

\[
\mathcal{S}_1 = \{z \in \mathcal{S} : |f(z)| > \delta/2\}.
\]

Since \(y \in \Gamma_{\mathcal{N}} \) then Theorem 7.2 and Lemma 7.1 imply that \(|\text{NT}(\mathcal{S}_1)| > 0 \), and since \(|\tilde{f}| \geq \delta/2 \) for almost every point of \(\text{NT}(\mathcal{S}_1) \), the sufficiency holds.

Now suppose that \(\tilde{f} \neq 0 \), so there is some \(\delta > 0 \) such that \(|\tilde{f}| > \delta \) on a set of positive measure. It is easy then to construct a separated sequence \(\mathcal{S} \) such that \(|\text{NT}(\mathcal{S})| > 0 \) and \(|f(z)| > \delta/2 \) for every \(z \in \mathcal{S} \). The necessity will follow if we show that \(\mathcal{S}^{M(\mathcal{N})} \cap \Gamma_{\mathcal{N}} \neq \emptyset \), because for any \(y \) in the intersection we would have \(|\tilde{f}^\mathcal{N}(y)| \geq \delta/2 \).

Since \(\mathcal{N} \) is hyperbolic, if \(\mathcal{S}^{M(\mathcal{N})} \cap \Gamma_{\mathcal{N}} = \emptyset \) then \(\mathcal{S}^{M(\mathcal{N})} \subset G_{\mathcal{N}} \). So, Proposition 3.9 says that for every \(y \in \mathcal{S}^{M(\mathcal{N})} \setminus \mathcal{S} \) there is an interpolating sequence \(T_y \) for \(\mathcal{N} \), such that \(y \in T_y^{M(\mathcal{N})} \). Hence, for every \(0 < r < 1 \) the \(M(\mathcal{N}) \)-closure of \(\bigcup_{z \in T_y} K(z, r) \) is a neighborhood of \(y \) (by Lemma 7.1). By the
compactness of $\mathfrak{F}^{M(N)} \setminus \mathcal{S}$ there are finitely many interpolating sequences T_1, \ldots, T_N for \mathcal{N} such that the closure of

$$U \overset{\text{def}}{=} \bigcup_{1 \leq j \leq N} \bigcup_{z \in T_j} K(z, r)$$

is a neighborhood of $\mathfrak{F}^{M(N)} \setminus \mathcal{S}$. Thus there is $0 < \rho < 1$ so that $\mathcal{S} \cap \{z \in \mathbb{D} : |z| \geq \rho\}$ is contained in U. Together with (7.1) this yields

$$\text{NT}(\mathcal{S}) \subset \bigcup_{1 \leq j \leq N} \text{NT}(\bigcup_{z \in T_j} K(z, r)) = \bigcup_{1 \leq j \leq N} \text{NT}(T_j),$$

which is impossible because $|\text{NT}(\mathcal{S})| > 0$ while $|\text{NT}(T_j)| = 0$ for $j = 1, \ldots, N$.

\textbf{Lemma 7.4} If $S \in \mathfrak{T}(\mathcal{N})$ then for almost every $u \in \partial \mathbb{D}$ there is $\lambda(u) \in \mathbb{C}$ such that $S_z \overset{\text{SOT}}{\longrightarrow} \lambda(u)I$ when $z \overset{\text{nt}}{\rightarrow} u$.

\textbf{Proof.} Let $a \in \mathcal{N}$ and suppose that $u \in \partial \mathbb{D}$ is such that $a(z) \rightarrow \lambda \in \mathbb{C}$ when $z \overset{\text{nt}}{\rightarrow} u$. If $0 < \alpha < \pi/2$ and $0 < r < 1$ there is $\beta = \beta(\alpha, r)$ in $(\alpha, \pi/2)$ such that $\varphi_z(\omega) \in \Lambda_\beta(u)$ when $z \in \Lambda_\alpha(u)$ and $|\omega| \leq r$. Therefore $a \circ \varphi_z \rightarrow \lambda$ uniformly on $r \mathbb{D}$ when $z \rightarrow u$ inside $\Lambda_\alpha(u)$. Since r is arbitrary the convergence is uniform on compact sets, implying that $(T_u)_z = T_{u \circ \varphi_z} \rightarrow \lambda I$ in the SOT-topology when $z \rightarrow u$ inside $\Lambda_\alpha(u)$. Since α is arbitrary and the product of operators is continuous with respect to the SOT-topology, the lemma holds for every $S \in \mathfrak{T}_0(\mathcal{N})$. If $S \in \mathfrak{T}(\mathcal{N})$ take a sequence $\{S_n\}$ in $\mathfrak{T}_0(\mathcal{N})$ that converges to S. So, for every $n \geq 1$ there is a set $E_n \subset \partial \mathbb{D}$ of full measure such that

$$(S_n)_z \overset{\text{SOT}}{\longrightarrow} \lambda_n(u)I \quad \text{when} \quad z \overset{\text{nt}}{\rightarrow} u \in E_n.$$

Therefore the set $E = \cap E_n$ has full measure, and given $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon)$ such that if $u \in E$,

$$|\lambda_n(u) - \lambda_m(u)| \leq \lim_{z \overset{\text{nt}}{\rightarrow} u} \|\lambda_n(u)I - \lambda_m(u)I\| = \|\lambda_n(u) - \lambda_m(u)\| < \varepsilon$$

for all $n, m \geq n_0$. This implies that there is some $\lambda(u) \in \mathbb{C}$ such that $\lambda_n(u) \rightarrow \lambda(u)$ for every $u \in E$. If $f \in L^2_a$ has norm 1, $u \in E$ and $n \geq n_0$, (7.3) yields

$$\|S_z f - \lambda(u)f\| \leq \|S_z f - (S_n)_z f\| + \|(S_n)_z f - \lambda_n(u)f\| + |\lambda_n(u) - \lambda(u)| \|f\| \leq \|S - S_n\| + |\lambda_n(u) - \lambda(u)| + \|(S_n)_z f - \lambda_n(u)f\| \leq 2\varepsilon + \|(S_n)_z f - \lambda_n(u)f\| \rightarrow 2\varepsilon$$

when $z \overset{\text{nt}}{\rightarrow} u$. Thus $S_z f \rightarrow \lambda(u)f$ in L^2_a when $z \overset{\text{nt}}{\rightarrow} u \in E$ and the lemma holds for S.

\hfill \blacksquare
Theorem 7.5 \(\mathfrak{T}(\mathcal{N})/\mathfrak{C}(\mathcal{N}) \cong L^\infty(\partial \mathbb{D}) \) and

\[
(7.4) \quad \mathfrak{C}(\mathcal{N}) = \{ S \in \mathfrak{T}(\mathcal{N}) : \widetilde{B}_0 S = 0 \}
\]

\[
(7.5) \quad = \{ S \in \mathfrak{T}(\mathcal{N}) : S_z \overset{SOT}{\rightarrow} 0, \text{ when } z \overset{nt}{\rightarrow} u \text{ for a.e. } u \in \partial \mathbb{D} \}.
\]

Proof. Equality (7.4) follows immediately from Theorem 6.4 and Lemma 7.3.

By Lemma 7.4, for every \(S \in \mathfrak{T}(\mathcal{N}) \) there is a set \(E_S \subset \partial \mathbb{D} \) of full measure and \(\lambda_S : E_S \rightarrow \mathbb{C} \) such that

\[
(7.6) \quad S_z \overset{SOT}{\rightarrow} \lambda_S(u)I \text{ when } z \overset{nt}{\rightarrow} u \in E_S.
\]

Then \((B_0 S)(z) = (B_0 S_z)(0) = \langle S_z 1, 1 \rangle \rightarrow \lambda_S(u) \) when \(z \overset{nt}{\rightarrow} u \in E_S \), which means that \((B_0 S)(u) = \lambda_S(u) \) for every \(u \in E_S \). This proves (7.5).

Let \(\Phi : \mathfrak{T}(\mathcal{N})/\mathfrak{C}(\mathcal{N}) \rightarrow L^\infty(\partial \mathbb{D}) \) given by \(\Phi(S + \mathfrak{C}(\mathcal{N})) = \widetilde{B}_0 S \). By (7.4) \(\Phi \) is well-defined and one-to-one. It is also clear that \(\Phi \) is *-linear. To prove that \(\Phi \) is multiplicative let \(S, T \in \mathfrak{T}(\mathcal{N}) \) and use (7.6) to obtain

\[
\widetilde{B}_0(ST)(u) = \lim_{z \overset{nt}{\rightarrow} u} \langle S_z T_z 1, 1 \rangle = \lambda_S(u)\lambda_T(u) = \langle B_0 S(u), B_0 T(u) \rangle
\]

for every \(u \in E_S \cap E_T \). Hence \(\phi \) is a *-homomorphism and we only need to show that it is onto. Let \(a \in L^\infty(\partial \mathbb{D}) \) and consider the Poisson integral

\[
A(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-it}|^2} a(e^{it}) \, dt.
\]

So, \(A \) is a bounded harmonic function such that \(\hat{A} = a \). Since \(A \) is uniformly continuous with respect to \(\rho \) then \(A \in \mathcal{N} \). So, \(T_A \in \mathfrak{T}(\mathcal{N}) \) and

\[
\Phi(T_A + \mathfrak{C}(\mathcal{N})) = \widetilde{B}_0 T_A = B_0 A = \hat{A} = a.
\]

Let \(\mathcal{U} \) be the algebra of the McDonald-Sundberg Theorem. Since every \(f \in H^\infty \) has nontangential limits a.e. then \(\mathcal{U} \subset \mathcal{N} \subset \mathcal{A} \). Therefore

\[
\mathfrak{C}(\mathcal{U}) \subset \mathfrak{C}(\mathcal{N}) \subset \mathfrak{C}(\mathcal{A}).
\]

We shall show that both inclusions are proper. The function

\[
a = \sin \left(\log \frac{1 + |z|}{1 - |z|} \right)
\]

is in \(\mathcal{A} \) but has no nontangential limit at any point of \(\partial \mathbb{D} \) [8]. Hence,

\[
T_a \in \mathfrak{C}(\mathcal{A}) \setminus \mathfrak{T}(\mathcal{N}).
\]
The Shilov boundary of H^∞, denoted ∂H^∞, is the smallest closed set $F \subset M(H^\infty)$ such that
\[\|f\|_\infty = \sup_{x \in F} |\hat{f}(x)| \quad \text{for every } f \in H^\infty. \]

It is known that ∂H^∞ is properly contained in Γ_U [15, p. 438], and that a function $f \in U$ satisfies $\hat{f}_U \equiv 0$ on ∂H^∞ if and only if its nontangential function vanishes a.e. on ∂D (see [3, Thm. 7] and [7, Coro. 1.3]). So, take $y \in \Gamma_U \setminus \partial H^\infty$ and $f \in U$ such that $\hat{f}_U \equiv 0$ on ∂H^∞ and $\hat{f}_U(y) = 1$. Since $f(z)$ has trivial nontangential limits almost everywhere then $T_f \in \mathcal{C}(\mathcal{N})$ but since $\hat{f}_U \not\equiv 0$ on Γ_U then $T_f \not\in \mathcal{C}(U)$.

Let $\mathcal{N}L^\infty$ be the algebra of functions in $L^\infty(D)$ that have nontangential limits a.e. on ∂D. From the paragraph preceding (7.1) it easily follows that if $f \in \mathcal{N}L^\infty$ then $B_k f$ has the same nontangential limits as f a.e. on ∂D for every $k \geq 0$. Thus Theorem 5.7 tells us that
\[\mathfrak{H}(\mathcal{N}) = \mathfrak{H}(\mathcal{N}L^\infty) \quad \text{and} \quad \mathfrak{C}(\mathcal{N}) = \mathfrak{C}(\mathcal{N}L^\infty). \]

Moreover, let $E \subset D$ be a set of positive measure. Then all of the above can be generalized (with similar proofs) for the algebras
\[\mathcal{N}L^\infty_E = \{ f \in L^\infty(D) : f \text{ has nontangential limits a.e. on } E \} \]
and
\[\mathcal{N}_E = \mathcal{N}L^\infty_E \cap \mathcal{A}. \]
Hence, we obtain a version of Theorem 7.5, where \mathcal{N} is replaced by \mathcal{N}_E or $\mathcal{N}L^\infty_E$ and ∂D is replaced by E.

7.4. Constant on hyperbolic parts

Definition. If $F \subset M(\mathcal{A}) \setminus D$ is a closed saturated set, define
\[\text{CO}(F) = \{ f \in \mathcal{A} : f|_F = \text{const.} \}. \]
and
\[\text{COH}(F) = \{ f \in \mathcal{A} : f|_{H(x)} = \text{const. for every } x \in F \}. \]
These notations stand for ‘constant on F’ and ‘constant on hyperbolic parts of F’, respectively. It is clear that $\text{CO}(F)$ and $\text{COH}(F)$ are hyperbolic algebras and that
\[F = \pi_1^{-1}(\Gamma_{\text{CO}(F)}) = \pi_2^{-1}(\Gamma_{\text{COH}(F)}), \]
where π_1 and π_2 are the projections from $M(\mathcal{A})$ onto the respective maximal ideal spaces.
If \(B \) is a hyperbolic algebra and \(\pi : M(\mathcal{A}) \rightarrow M(\mathcal{B}) \) is the usual projection then

\[
\{ S \in \mathfrak{T}_0(\mathcal{A}) : B_0 S|_{\pi^{-1}(\Gamma_B)} = 0 \} \subset \mathfrak{C}(\mathcal{B}) \subset \{ S \in \mathfrak{T}(\mathcal{A}) : B_0 S|_{\pi^{-1}(\Gamma_B)} = 0 \},
\]

where the first inclusion follows from Theorem 6.5 and the second from Theorem 6.4. Observe that since the first set contains \(\mathfrak{C}_0(\mathcal{B}) \), it is dense in \(\mathfrak{C}(\mathcal{B}) \). The significance of \(\text{CO}(F) \) and \(\text{COH}(F) \) is given by the following

Proposition 7.6 Let \(\mathcal{B} \) be a hyperbolic algebra and \(F \subset M(\mathcal{A}) \) be a closed saturated set. Then the following conditions are equivalent

1. \(F = \pi^{-1}(\Gamma_B) \),
2. \(\mathfrak{C}(\mathcal{B}) = \mathfrak{C}(\text{COH}(F)) \),
3. \(\text{CO}(F) \subset \mathcal{B} \subset \text{COH}(F) \).

Proof. We prove first the equivalence between (1) and (2). If (1) holds then the comment following (7.7) says that \(\{ S \in \mathfrak{T}_0(\mathcal{A}) : B_0 S|_{F} = 0 \} \) is dense in both \(\mathfrak{C}(\mathcal{B}) \) and \(\mathfrak{C}(\text{COH}(F)) \), so they must coincide. If (2) holds, (7.7) implies that

\[
\{ S \in \mathfrak{T}_0(\mathcal{A}) : B_0 S|_{\pi^{-1}(\Gamma_B)} = 0 \} \subset \{ S \in \mathfrak{T}(\mathcal{A}) : B_0 S|_{F} = 0 \}.
\]

Therefore \(F \subset \pi^{-1}(\Gamma_B) \), and a symmetrical argument gives the other inclusion, so (1) holds.

If (1) holds the functions of \(\text{CO}(F) \) are continuous on \(M(\mathcal{B}) \) and the functions of \(\mathcal{B} \) are continuous on \(M(\text{COH}(F)) \). Since these are all \(C^* \)-algebras, (3) holds. If (3) holds then

\[
\mathfrak{C}(\text{CO}(F)) \subset \mathfrak{C}(\mathcal{B}) \subset \mathfrak{C}(\text{COH}(F)),
\]

so the proof of (2) reduces to show that \(\mathfrak{C}(\text{CO}(F)) = \mathfrak{C}(\text{COH}(F)) \). But this equality is a special case of the equivalence between (1) and (2). \(\blacksquare \)

Let us write \(\text{COH} \) for \(\text{COH}(M(\mathcal{A}) \setminus \mathcal{D}) \). In this case the last proposition says that \(\mathfrak{C}(\text{COH}) = \mathfrak{C}(\mathcal{C}(\mathcal{D})) \), and this is the ideal of compact operators \(\mathcal{K} \). Then Theorem 6.4 tells us that \(S - T_{B_0} S \in \mathcal{K} \) for every \(S \in \mathfrak{T}(\text{COH}) \). In particular,

\[
\mathfrak{T}(\text{COH})/\mathcal{K} = \{ T_b + \mathcal{K} : b \in \text{COH} \}.
\]

The center of an algebra \(\mathcal{B} \) is formed by the elements that commute with all the members of \(\mathcal{B} \). Our next result relates \(\mathfrak{T}(\text{COH})/\mathcal{K} \) with the center of \(\mathfrak{T}(L^{\infty}(\mathcal{D}))/\mathcal{K} \).
Suppose that \(S \in \mathcal{K} \) and for \(z \in \mathbb{D} \) let \(k_z^0 = (1 - |z|^2)K_z^{(0)} \). Since \(\|k_z^0\| = 1 \) and \(k_z^0 \to 0 \) weakly as \(|z| \to 1 \), then

\[
|(B_0S)(z)| \leq \|Sk_z^0\| \to 0 \quad \text{when } |z| \to 1.
\]

Therefore \(S_x = 0 \) for every \(x \in M(A) \setminus \mathbb{D} \).

Theorem 7.7 Let \(\mathcal{I} = \{S \in \mathfrak{T}(L^\infty(\mathbb{D})): S_x = 0 \text{ for } x \in M(A) \setminus \mathbb{D}\} \). Then

\[
\{T_b + \mathcal{K} : b \in \text{COH}\} \subset \text{Center}(\mathfrak{T}(L^\infty(\mathbb{D})))/\mathcal{K}) \subset \{T_b + \mathcal{I} : b \in \text{COH}\}
\]

Proof. We prove first that if \(S \in \mathfrak{T}(L^\infty(\mathbb{D})) \) and \(b \in \text{COH} \) then \([S, T_b] \in \mathcal{K} \). Let \(S_n \in \mathfrak{T}_0(A) \) such that \(S_n \to S \). Since \((S_nT_b - T_bS_n) \to (ST_b - T_bS)\) we can assume that \(S \in \mathfrak{T}_0(A) \). By (4.2),

\[
(ST_b - T_bS)_x = S_x(T_b)_x - (T_b)_xS_x \quad \text{for every } x \in M(A),
\]

and since \((T_b)_x\) is a constant operator for every \(x \in M(A) \setminus \mathbb{D} \), then

\[
[S, T_b]_x = 0 \quad \text{for } x \in M(A) \setminus \mathbb{D}.
\]

The comment after Theorem 6.5 then says that \([S, T_b] \) is compact. This proves that \(\{T_b + \mathcal{K} : b \in \text{COH}\} \) is contained in the center of \(\mathfrak{T}(L^\infty(\mathbb{D})))/\mathcal{K} \).

Now suppose that \(S \in \mathfrak{T}(L^\infty(\mathbb{D})) \) is such that

\[
S + \mathcal{K} \subset \text{Center}(\mathfrak{T}(L^\infty(\mathbb{D})))/\mathcal{K}.
\]

This means that \(ST_a - T_aS \in \mathcal{K} \) for every \(a \in L^\infty(\mathbb{D}) \). So,

\[
S_x(T_a)_x - (T_a)_xS_x = 0 \quad \text{for every } x \in M(A) \setminus \mathbb{D},
\]

or equivalently,

\[
S_x(T_a)_x - (T_a)_xS_x \overset{\text{SOT}}{\to} 0 \quad \text{as } |z| \to 1.
\]

Let \(x \in M(A) \setminus \mathbb{D} \) and take a net \((z_n)\) in \(\mathbb{D} \) converging to \(x \). The closed ball of center 0 and radius \(\|S\| \) in \(\mathfrak{L}(L_a^2) \) admits a metric \(d \) with the SOT-topology. Since \(S_{z_n} \overset{\text{SOT}}{\to} S_x \) then for every integer \(n \geq 1 \) there is some point of the net, that we rename as \(z_n \), such that \(d(S_{z_n}, S_x) < 1/n \). So,

\[
S_{z_n} \overset{\text{SOT}}{\to} S_x.
\]

If \(\{r_n\} \) is a sequence in \((0, 1)\) that tends to 1, we can assume (taking a subsequence of \(\{z_n\} \) if needed) that \(K(z_n, r_n) \cap K(z_j, r_j) = \emptyset \) if \(n \neq j \). For an arbitrary \(a \in L^\infty(\mathbb{D}) \) consider the function

\[
b(\omega) = \sum_{j \geq 1} (a \circ \varphi_{z_j})(\omega) \chi_{K(z_j, r_j)}(\omega).
\]
Hence \((T_b)_{\phi z_n} = T_{b \circ \phi z_n}\), where
\[
(b \circ \phi z_n)(\omega) = a(\omega)\chi_{K(0,r_n)}(\omega) + \sum_{j : j \neq n} (a \circ \phi z_j)(\phi z_n(\omega))\chi_{K(\phi z_n(z_j),r_j)}(\omega)
\]
\[
= g_n(\omega) + h_n(\omega).
\]
Since the support of \(h_n\) is disjoint from \(K(0,r_n) = r_n\mathbb{D}\) then
\[
|h_n(\omega)| \leq \|a\|_{\infty} \chi_{D \setminus r_nD}(\omega) \quad \text{for all } \omega \in \mathbb{D}.
\]
Since \(r_n \to 1\), it is clear that \(T_{h_n} \xrightarrow{\text{SOT}} 0\) and \(T_{g_n} \xrightarrow{\text{SOT}} T_a\). Thus
\[
(7.10) \quad (T_b)_{\phi z_n} = T_{g_n} + T_{h_n} \xrightarrow{\text{SOT}} T_a.
\]
By (7.8)
\[
S_{\phi z_n}(T_a)_{\phi z_n} - (T_a)_{\phi z_n} S_{\phi z_n} \xrightarrow{\text{SOT}} 0,
\]
which together with (7.9) and (7.10) gives \(S_x T_a - T_a S_x = 0\). This means that \(S_x\) commutes with every Toeplitz operator with symbol in \(L^\infty(\mathbb{D})\).

The concept of center plays an important role when studying localizations of \(C^*\)-algebras (see [13, Th. 7.47]). I believe that the ideal \(\mathcal{I}\) in Theorem 7.7 is \(\mathcal{K}\), so the inclusions of the theorem should be equalities. If \(S \in \mathcal{L}(L^2_a)\), the essential spectrum \(\sigma_e(S)\) is the spectrum of \(S + \mathcal{K}\) in the Calkin algebra \(\mathcal{L}(L^2_a)/\mathcal{K}\). Let \(\sigma(S)\) denote the usual spectrum of \(S\). Is it true that
\[
\sigma_e(S) = \bigcup_{x \in M(A) \setminus \mathbb{D}} \sigma(S_x) \quad \text{for every } S \in \mathcal{L}(L^\infty(\mathbb{D}))?
\]
There is strong evidence to support an affirmative answer. This holds for \(S \in \mathcal{L}(\text{COH})\), while the example preceding Lemma 4.8 shows that this fails for a general \(S \in \mathcal{L}(L^2_a)\). This example appeared in [4], where it is also shown that there is an infinite dimensional orthogonal projection \(P\) such that \(B_0 P(z) \to 0\) when \(|z| \to 1\). We do not know the answer even for a general Toeplitz operator with bounded symbol.

Acknowledgement. I thank Manuel Flores for many interesting discussions regarding the Berezin transforms.
References

Recibido: 20 de noviembre de 2001

Daniel Suárez
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193, Bellaterra, Barcelona (Spain)
dsuarez@mat.uab.es