Construction of a Continuous $SL(3, \mathbb{R})$ Action on 4-Sphere

Dedicated to Professor Nobuo Shimada on his 60th birthday

Fuichi UCHIDA*

§ 0. Introduction

Let $\Phi_0 : SO(3) \times M_3(\mathbb{R}) \to M_3(\mathbb{R})$ denote the $SO(3)$ action on the vector space $M_3(\mathbb{R})$ of all real matrices of degree 3, defined by $\Phi_0(A, X) = AXA^{-1}$ for $A \in SO(3)$ and $X \in M_3(\mathbb{R})$. Put $(X, Y) = \text{trace } XY$ for $X, Y \in M_3(\mathbb{R})$. Then (X, Y) is an $SO(3)$ invariant inner product of $M_3(\mathbb{R})$. Denote by V and $S(V)$ the linear subspace of $M_3(\mathbb{R})$ consisting of symmetric matrices of trace 0 and its unit sphere, respectively. Then V and $S(V)$ are $SO(3)$ invariant.

Let $\Phi : SO(3) \times S(V) \to S(V)$ denote the restricted action of Φ_0. This is an orthogonal $SO(3)$ action on the 4-sphere $S(V)$. In this note, we shall show that the $SO(3)$ action Φ on $S(V)$ is extended to a continuous $SL(3, \mathbb{R})$ action Ψ on $S(V)$, but the action Ψ is not C^1-differentiable. It is still open whether the $SO(3)$ action Φ can be extended to a C^1-differentiable $SL(3, \mathbb{R})$ action or not.

The problem is motivated by the following (cf. [1]). We studied real analytic $SL(n, \mathbb{R})$ actions on spheres, and it was important to consider the restricted $SO(n)$ actions. Moreover, we gave an orthogonal $SO(4)$ action on 6-sphere which was not extendable to any continuous $SL(4, \mathbb{R})$ action.

§ 1. An Action of $GL(2, \mathbb{R})$ on 2-Disk

1.1. Denote by D the set of complex numbers with modulus ≤ 1. We regard D as a closed unit 2-disk. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $GL(2, \mathbb{R})$, and put

$$\alpha = (a + d + (b - c)i)/2, \quad \beta = (a - d - (b + c)i)/2.$$
Then \(\det A = |\alpha|^2 - |\beta|^2 \) and

\[
TAT^{-1} = \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} \quad \text{for} \quad T = \begin{pmatrix} i & 1 \\ i & -1 \end{pmatrix}.
\]

Define a map \(\psi_1 : GL(2, \mathbb{R}) \times D \to D \) by

\[
\psi_1(A, w) = \begin{cases}
\frac{(\alpha w + \beta)}{(\bar{\beta} w + \bar{\alpha})} & \text{if } \det A > 0 \\
\frac{(\beta \bar{w} + \alpha)}{(\bar{\alpha} \bar{w} + \beta)} & \text{if } \det A < 0.
\end{cases}
\]

The map \(\psi_1 \) is well-defined, because

\[
|\bar{\beta} w + \bar{\alpha}| \geq |\bar{\alpha}| - |\bar{\beta} w| \geq |\alpha| - |\beta| > 0 \quad \text{for } |w| \leq 1, \det A > 0,
\]

\[
|\bar{\alpha} \bar{w} + \beta| \geq |\beta| - |\bar{\alpha} \bar{w}| \geq |\beta| - |\alpha| > 0 \quad \text{for } |w| \leq 1, \det A < 0
\]

and

\[
|\alpha + \beta \bar{w}|^2 - |\alpha w + \beta|^2 = (|\alpha|^2 - |\beta|^2)(1 - |w|^2)
\]

for any complex numbers \(\alpha, \beta, w \). Moreover, we see that the map \(\psi_1 \) is a continuous action of \(GL(2, \mathbb{R}) \) on \(D \) and \(\psi_1(A, 1) = 1 \) if and only if \(A \) is of the form \(\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} \), by a routine work.

Here we describe a distinct property of the action \(\psi_1 \). Define \(M_1(x - iy) = \begin{pmatrix} x & y \\ y & -x \end{pmatrix} \) for real numbers \(x, y \). Then

\[
M_1(\psi_1(A, w)) = AM_1(w)A^{-1} \quad \text{for } w \in D, A \in O(2).
\]

Finally we notice the following fact. Consider a correspondence \(w \to z \) of complex numbers defined by

\[
z = i(1 + w)/(1 - w), \quad w = (z - i)/(z + i).
\]

The correspondence induces a homeomorphism of the interior \(\mathring{D} \) onto the upper half plane \(\mathcal{H} \), and the action \(\psi_1 \) corresponds to an action \(\psi_2 \) of \(GL(2, \mathbb{R}) \) on \(\mathcal{H} \). We see that the action \(\psi_2 \) is well-known, in fact,

\[
\psi_2(A, z) = \begin{cases}
(az + b)/(cz + d) & \text{if } \det A > 0, \\
(a\bar{z} + b)/(c\bar{z} + d) & \text{if } \det A < 0,
\end{cases}
\]

where \(z \in \mathcal{H} \) and \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \).
§ 2. An Action of $SL(3, \mathbb{R})$ on 4-Sphere

2.1. Let $N(3)$ and $T(3)$ denote the closed subgroups of $SL(3, \mathbb{R})$ consisting of matrices of the forms

\[
\begin{pmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{pmatrix}, \quad \begin{pmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{pmatrix}
\]

respectively. Let $\pi: N(3) \to GL(2, \mathbb{R})$ be a projection defined by

\[
\pi \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
\]

Put

\[
M(x-iy) = \frac{1}{\sqrt{8}} \begin{pmatrix}
2m & 0 & 0 \\
0 & x-m & y \\
0 & y & -x-m
\end{pmatrix}, \quad m = \sqrt{(4-x^2-y^2)/3}
\]

for real numbers x, y such that $x^2 + y^2 \leq 1$. Then we have an injection $M: \mathcal{D} \to S(V)$. Define a map $\psi: N(3) \times M(\mathcal{D}) \to M(\mathcal{D})$ by

\[
\psi(A, M(w)) = M(\psi_1(\pi(A), w)) \quad \text{for} \quad w \in \mathcal{D}, A \in N(3).
\]

We see that the map ψ is a continuous action of $N(3)$ on $M(\mathcal{D})$. Then

\[(a) \quad \psi(A, M(1)) = M(1) \quad \text{if and only if} \quad A \in T(3).
\]

By the property (\ast) for ψ_1, we see that

\[(b) \quad \psi(A, M(w)) = AM(w)A^{-1} \quad \text{for} \quad w \in \mathcal{D}, A \in SO(3) \cap N(3).
\]

In addition, for each $w \in \mathcal{D}$, there is an element $A \in SO(3) \cap N(3)$ such that

\[(c) \quad M(w) = AM(\mid w \mid)A^{-1}.
\]

2.2. Denote by $S_+(V)$ (resp. $S_-(V)$) the set of $X \in S(V)$ such that $\det X \geq 0$ (resp. $\det X \leq 0$). If $X \in S_+(V)$ (resp. $X \in S_-(V)$), then $X = AM(x)A^{-1}$ (resp. $X = -AM(x)A^{-1}$) for some $A \in SO(3)$ and a unique real number x such that $0 \leq x \leq 1$. Notice that $\det X = 0$ if and only if $x = 1$; in addition, $AM(x)A^{-1} = M(x)$ if and only if

\[(d) \quad A \in SO(3) \cap T(3) \quad \text{for} \quad 0 < x \leq 1,
\]

\[A \in SO(3) \cap N(3) \quad \text{for} \quad x = 0.
\]
Let \(P \in SL(3, \mathbb{R}) \) and \(A \in SO(3) \). We can express

1. \(PA = A_1N_1 \) and \((PA)^{-1} = A_2N_2 \)

for some \(A_p \in SO(3) \) and \(N_p \in N(3) \). Put

\[
 PA \Delta AM(x)A = A_1\psi(N_1, M(x))A_1^{-1}, \quad PP(-AM(x)A^{-1}) = -A_2\psi(N_2, M(x))A_2^{-1}.
\]

If \(AM(x)A^{-1} = A'M(x)A'^{-1} \), then \(A' = AK \) for some \(K \in SO(3) \cap N(3) \) by (d); hence \(PA' = A_1(N_1K) \) and \((PA')^{-1} = A_2(N_2K) \) where \(N_pK \in N(3) \). Therefore we see that the definition (ii) does not depend on the choice of \(A \), by the condition (b).

Next we show that the definition (ii) does not depend on the expression (i) by the condition (b). Suppose

\[
 PA = A_1N_1 = A_1'N_1' \quad \text{and} \quad (PA)^{-1} = A_2N_2 = A_2'N_2'
\]

for \(A_p \in SO(3), \ N_p \in N(3) \). Then \(A_p = A_pB_p \) and \(N_p = B_p^{-1}N_p \) for some \(B_p \in SO(3) \cap N(3) \). Hence

\[
 A_p\psi(N_p, M(x))A'^{-1} = A_pB_p\psi(N_p', M(x))B_p^{-1}A'^{-1} = A_p\psi(B_pN_p', M(x))A'^{-1} = A_p\psi(N_p, M(x))A'^{-1}.
\]

Consequently we can define continuous mappings

\[
 \Psi_+: SL(3, \mathbb{R}) \times S_+(V) \longrightarrow S_+(V), \quad \Psi_-: SL(3, \mathbb{R}) \times S_-(V) \longrightarrow S_-(V)
\]

by \(\Psi_+(P, X) = PAX \) (resp. \(\Psi_-(P, X) = PFX \)) for \(P \in SL(3, \mathbb{R}) \) and \(X \in S_+(V) \) (resp. \(X \in S_-(V) \)).

2.3. Next we show that \(\Psi_+ \) (resp. \(\Psi_- \)) is an action of \(SL(3, \mathbb{R}) \) on \(S_+(V) \) (resp. \(S_-(V) \)). Let \(P, Q \in SL(3, \mathbb{R}) \) and \(A \in SO(3) \). Express

\[
 PA = A_1N_1, \quad QA = A_1'N_1'; \quad (PA)^{-1} = A_2N_2, \quad (QA_2)^{-1} = A_2'N_2'
\]

for some \(A_p, A_p' \in SO(3) \) and \(N_p, N_p' \in N(3) \). Then

\[
 QPA = A_1'N_1'N_1 \quad \text{and} \quad (QPA)^{-1} = A_2'N_2'N_2.
\]

By the conditions (b) and (c), we see that

\[
 \psi(N_p, M(x)) = B_pM(x)pB_p^{-1} = \psi(B_p, M(x)p)
\]

for some \(B_p \in SO(3) \cap N(3) \) and a real number \(x_p \) such that \(0 \leq x_p \leq 1 \). Since

\[
 QA_1B_1 = A_1'(N_1B_1) \quad \text{and} \quad (QA_2B_2)^{-1} = A_2'(N_2B_2),
\]

we see that
Thus we obtain
\[\mathcal{Q}(\Delta \psi(N, M(x))) = \mathcal{Q}(\Delta \psi(N_1 B_1 M(x) B_1^{-1} A_1^{-1})) = \mathcal{Q}(\Delta (A_1 B_1 M(x) B_1^{-1} A_1^{-1})) \]
\[= A_1^t \psi(N_1 B_1, M(x)) B_1^{-1} A_1^t = QP \Delta A M(x) A^{-1}, \]
\[QP(-A M(x) A^{-1}) = QP(-A_2 M(x) A_2^{-1}) = QP(-A_2 B_2 M(x_2) B_2^{-1} A_2^{-1}) \]
\[= -A_2^t \psi(N_2 B_2, M(x_2)) A_2^{-1} = A_2^t \psi(N_2 B_2, M(x)) A_2^{-1} = QP(-A M(x) A^{-1}). \]

Thus we obtain \(\mathcal{Q}(\Delta X) = \mathcal{Q} \Delta X \) for \(X \in S_+ \), and \(\mathcal{Q}(\Delta X) = \mathcal{Q} \Delta X \) for \(X \in S_-(V) \), respectively; hence \(\Psi_+ \) and \(\Psi_- \) are actions.

2.4. Here we show that the actions \(\Psi_+ \) and \(\Psi_- \) coincide on the intersection \(S_+(V) \cap S_-(V) \). Let \(X \in S_+(V) \cap S_-(V) \). Then

\[X = A M(1) A^{-1} = -A S M(1) S^{-1} A^{-1} \]

for some \(A \in SO(3) \), where \(S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in SO(3) \). Let \(P \in SL(3, R) \). We can express

\[(P S)^{-1} = A_1 N_1 \]

for some \(A_1 \in SO(3) \) and \(N_1 \in T(3) \). Then

\[P A = A_1' N_1^{-1} S^{-1} = (A_1 S^{-1}) (S' N_1^{-1} S^{-1}) \]

where \(A_1 S^{-1} \in SO(3) \) and \(S' N_1^{-1} S^{-1} \in T(3) \). Therefore, we see that by the condition (a),

\[P \Delta A M(1) A^{-1} = A_1 S^{-1} \psi(S' N_1^{-1} S^{-1}, M(1)) S A_1^{-1} = A_1 S^{-1} M(1) S A_1^{-1}, \]
\[P \Delta (-A S M(1) S^{-1} A^{-1}) = -A_1 \psi(N_1, M(1)) A_1^{-1} = -A_1 M(1) A_1^{-1}. \]

Hence we see that the actions \(\Psi_+ \) and \(\Psi_- \) coincide on \(S_+(V) \cap S_-(V) \). Thus we obtain a continuous action \(\Psi \) of \(SL(3, R) \) on \(S(V) \) whose restriction on \(S_+(V) \) (resp. \(S_-(V) \)) is the action \(\Psi_+ \) (resp. \(\Psi_- \)).

By the definition of \(\Psi \), we see that

\[\Psi(P, X) = P X P^{-1} = \Phi(P, X) \]

for each \(P \in SO(3) \) and \(X \in S(V) \). Hence the action \(\Psi \) is a desired continuous action of \(SL(3, R) \) on \(S(V) \).

§ 3. Non-Differentiability of \(\Psi \)

Denote by \(S_d(V) \) the set consisting of the diagonal matrices of \(S(V) \). Then \(S_d(V) \) is a one-dimensional \(C^\infty \)-submanifold of \(S(V) \). Put \(G_t = \text{diag}(e^{-2t}, e^t, e^t) \)
for each real number \(t \). The correspondence \(X \to \Psi(G_t, X) \) defines a homeomorphism \(h_t \) of \(S_d(V) \) onto itself. We shall show that the homeomorphism \(h_t \) is not \(C^1 \)-differentiable for each \(t \neq 0 \). Put

\[
D(\theta) = (1/\sqrt{6}) \text{diag} (\cos \theta + \sqrt{3} \sin \theta, \cos \theta - \sqrt{3} \sin \theta, -2 \cos \theta)
\]

for each real number \(\theta \). The correspondence \(\theta \to D(\theta) \) defines a \(C^\infty \)-differentiable submersion of \(\mathbb{R} \) onto \(S_d(V) \). The point \(D(\pi/6) = M(1) \) is a fixed point of the homeomorphism \(h_t \) for each real number \(t \). Define a function \(f(t, \theta) \) by

\[
h_t(D(\theta)) = \text{diag} (-, -, f(t, \theta))
\]

for each real numbers \(t, \theta \). We show that \(f(t, \theta) \) is not \(C^1 \)-differentiable at \(\theta = \pi/6 \) for each \(t \neq 0 \).

Suppose first \(\pi/6 \leq \theta \leq \pi/3 \). Then

\[
D(\theta) = M(\sqrt{3} \cos \theta - \sin \theta)
\]

and hence

\[
h_t(D(\theta)) = M(\psi_1(\text{diag} (e^t, e^t), \sqrt{3} \cos \theta - \sin \theta)) = D(\theta).
\]

Therefore \(f(t, \theta) = (-2/\sqrt{6}) \cos \theta \); hence

\[
\lim_{\theta \to \pi/6^+} \frac{\partial}{\partial \theta} f(t, \theta) = 1/\sqrt{6}.
\]

Suppose next \(0 \leq \theta \leq \pi/6 \). Then

\[
D(\theta) = -SM(2 \sin \theta)S^{-1} \quad \text{for} \quad S = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},
\]

and hence

\[
h_t(D(\theta)) = -SM(\psi_1(\text{diag} (e^t, e^{-2t}), 2 \sin \theta)S^{-1} = -SM(x(t, \theta))S^{-1},
\]

where

\[
x(t, \theta) = \frac{2(e^t + e^{-2t}) \sin \theta + (e^t - e^{-2t})}{2(e^t - e^{-2t}) \sin \theta + (e^t + e^{-2t})}
\]

and \(f(t, \theta) = -\sqrt{(4-x(t, \theta)^2)/6} \). Therefore we obtain

\[
\lim_{\theta \to \pi/6^-} \frac{\partial}{\partial \theta} f(t, \theta) = e^{3t}/\sqrt{6}.
\]

Consequently, we see that \(f(t, \theta) \) is not \(C^1 \)-differentiable at \(\theta = \pi/6 \) for each \(t \neq 0 \), and hence the action \(\Psi \) of \(SL(3, \mathbb{R}) \) on \(S(V) \) is not \(C^1 \)-differentiable.
Reference
