Scattering Theory for Wave Equations with Dissipative Terms

By

Kiyoshi MOCHIZUKI*

§ 1. Introduction

We shall consider wave equations of the form

\[w_{tt}(x, t) + b(x, t)w_t(x, t) - \Delta w(x, t) = 0, \]

where \(x \in \mathbb{R}^n \) \((n \neq 2)\), \(t \geq 0, \)

\(w_t = \partial w/\partial t, \ w_{tt} = \partial^2 w/\partial t^2 \) and \(\Delta \) is the \(n \)-dimensional Laplacian. \(b(x, t) \) is a non-negative function and is assumed to satisfy the following conditions:

(A1) There exist constants \(C_1 > 0 \) and \(\delta > 0 \) such that

\[0 \leq b(x, t) \leq C_1 (1 + |x|)^{-1 - \delta} \]

for any \(x \in \mathbb{R}^n, \ t \geq 0. \)

(A2) \(b_t(x, t) \) is bounded continuous in \(x \in \mathbb{R}^n \) and \(t \geq 0. \)

In the following we assume that \(\delta \leq 1 \) without any loss of generality.

Since \(b(x, t) > 0, \) \(b(x, t)w_t(x, t) \) represents the resistance of viscous type. Our aim of this note is to show that the solutions of (1.1) are asymptotically equal for \(t \rightarrow \infty \) to those of the free wave equation

\[w_{tt}(x, t) - \Delta w(x, t) = 0. \]

More precisely, we shall show the existence of the Møller wave operators.

We restrict ourselves to solutions with finite energy. For pairs \(f = \{f_1, f_2\} \) of functions in \(\mathbb{R}^n \) the energy is defined by

\[\|f\|_E^2 = \int_{\mathbb{R}^n} (|Df_1|^2 + |f_2|^2) \, dx. \]

where \(Df_i = (D_{x_1} f_i, \ldots, D_{x_n} f_i) \) \((D_j = \partial/\partial x_j)\) and \(|Df_i|^2 = \sum_{j=1}^n |D_j f_i|^2. \) The Hilbert space \(\mathcal{H} \) is defined as the completion in the energy norm of

Communicated by S. Matsusura, February 5, 1976.

* Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466, Japan.
smooth data with bounded support in \mathbb{R}^n. Put $u = \{w, w_t\}$. Then (1.1) can be expressed in the matrix notation as

\begin{equation}
(1.4) \quad u_t = A(t)u = A_0u - V(t)u,
\end{equation}

where

\[A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad V(t) = \begin{pmatrix} 0 & 0 \\ 0 & b(x, t) \end{pmatrix}. \]

Put $u^0 = \{w^0, w^0_t\}$. Then (1.2) is expressed as

\begin{equation}
(1.5) \quad u^0_t = A_0 u^0.
\end{equation}

A_0 determines a skew-selfadjoint operator in \mathcal{H} with domain

\begin{equation}
(1.6) \quad \mathcal{D}(A_0) = \{f \in \mathcal{H}; \mathcal{A}f, D\mathcal{A}_f \in L^2(\mathbb{R}^n) \ (j=1, \ldots, n)\},
\end{equation}

where all the derivatives are considered in the distribution sense. Thus, A_0 generates a one-parameter group $\{U_0(t) = e^{tA}; t \in \mathbb{R}\}$ of unitary operators. Under the above conditions on $b(x, t)$, $A(t)$ determines for each $t \geq 0$ a closed operator in \mathcal{H} with domain $\mathcal{D}(A(t)) = \mathcal{D}(A_0)$. Moreover, positive numbers belong to the resolvent set of each $A(t)$ and $A(t)(A(0) - I)^{-1}$, where I is the identity in \mathcal{H}, is continuously differentiable in t in operator norm. Thus applying results of Kato [2], we see that there exists a unique family $\{U(t, s); t \geq s \geq 0\}$ of contraction evolution operators which is defined as mapping solution data of (1.4) at time s into those at time t.

Now the main results can be stated as follows:

Theorem 1. (a) *The wave operator*

\begin{equation}
(1.7) \quad Z = \lim_{t \to \infty} U_0(-t)U(t, 0)
\end{equation}

exists. (b) *Z is a not identically vanishing contraction operator in \mathcal{H}. (c) If we denote by Z^* the adjoint of Z, then*

\begin{equation}
(1.8) \quad Z^* = \lim_{t \to \infty} U(t, 0)^*U_0(t).
\end{equation}

We also consider the special case where $b(x, t)$ is independent of t. Then the operator $A = A_0 - V$, where $V = \begin{pmatrix} 0 & 0 \\ 0 & b(x) \end{pmatrix}$, generates a semi-group $\{U(t); t \geq 0\}$ of contraction operators.
In this case we have the following

Theorem 2. (a) The wave operators

\begin{equation}
W = \lim_{t \to \infty} U(t) U_0(-t),
\end{equation}

\begin{equation}
Z = \lim_{t \to \infty} U_0(-t) U(t)
\end{equation}

exist. (b) They both are not identically vanishing contraction operators in \(\mathcal{H} \). (c) \(U_0(t) \) and \(U(t) \) are intertwined by both \(W \) and \(Z \), i.e.,

\begin{equation}
W U_0(t) = U(t) W, \quad Z U(t) = U_0(t) Z \quad \text{for any } t \geq 0.
\end{equation}

(d) The scattering operator, defined by \(S = ZW \), commutes with \(U_0(t) \):

\begin{equation}
S U_0(t) = U_0(t) S \quad \text{for any } t \in \mathbb{R}.
\end{equation}

The proof of these theorems will be based on the "smooth perturbation theory" developed by Kato [3].

The above theorems generalize some results already announced in Mochizuki [7], where the main concern was in the local energy decay for wave equations with non-linear dissipative terms. The scattering theory has been developed by Lax-Phillips [4] for wave equation: \(\frac{\partial^2 w}{\partial t^2} = \Delta w \) in an exterior domain of \(\mathbb{R}^n \) (\(n \geq 2 \)) with lossy boundary conditions: \(\alpha(x) \frac{\partial w}{\partial t} = Q \), \(\alpha(x) > Q \). Some related problems has been studied in [1] and [5].

§ 2. Preliminaries

First we shall show an inequality for \(L^2 \)-solutions of the Helmholtz equation

\begin{equation}
-\Delta u - \kappa^2 u = f(x) \quad \text{in } \mathbb{R}^n,
\end{equation}

where \(\kappa \) is a complex number such that \(\text{Im } \kappa \neq 0 \) and \(f(x) \) is a function such that \((1 + |x|)^{n+\alpha/2} f(x) \in L^2(\mathbb{R}^n) \).

Lemma 2.1. Let \(\text{Im } \kappa \geq 0 \). Then we have for any \(\rho > 0 \)
\[
(2.2) \quad \frac{1}{2} \int_{S_s} \left(\frac{\partial u}{\partial r} + \frac{n-1}{2r} u \right)^2 + |\kappa|^2 |u|^2 \, dS
+ |\text{Im} \ \kappa| \int_{S_s} \left(|Du|^2 + \frac{n-1}{2r} |u|^2 + |\kappa|^2 |u|^2 \right) \, dx
= \frac{1}{2} \int_{S_s} |\theta_\pm|^2 \, dS + \int_{S_s} \text{Re} \left[f i \kappa u \right] \, dx,
\]
where \(r = |x|, S_o = \{ x; |x| = \rho \}, K_o = \{ x; |x| < \rho \} \) and
\[
(2.3) \quad \theta_\pm = \frac{\partial u}{\partial r} + \frac{n-1}{2r} u + i \kappa u.
\]

Proof. Note the identity
\[
-\text{Re} \left[\frac{\partial u}{\partial r} i \kappa u \right] = -\text{Im} \ \kappa \ \frac{n-1}{2r} |u|^2 + \frac{1}{2} |\theta_\pm|^2 + \frac{1}{2} \left(\left| \frac{\partial u}{\partial r} + \frac{n-1}{2r} u \right|^2 + |\kappa|^2 |u|^2 \right).
\]
Then (2.2) follows from the integration by parts of (2.1) multiplied by \(i \kappa u \).

Lemma 2.2. Let \(\text{Im} \ \kappa \geq 0 \). Then we have
\[
(2.4) \quad |\text{Im} \ \kappa| \int_{R^s} r^3 \left\{ |\zeta_\pm|^2 + \frac{(n-1)(n-3)}{4r^3} |u|^4 \right\} \, dx
+ \int_{R^s} r^{-1-\delta} \left\{ \left(1 - \frac{\delta}{2} \right) (|\zeta_\pm|^2 - |\theta_\pm|^2) + \frac{\delta}{2} |\theta_\pm|^2 \right\} \, dx
+ \frac{(n-1)(n-3)(2-\delta)}{8} \int_{R^s} r^{-3+2\delta} |u|^4 \, dx
= \int_{R^s} r^4 \text{Re} \left[f \bar{\theta}_\pm \right] \, dx,
\]
where
\[
(2.5) \quad \zeta_\pm = Du + \frac{n-1}{2r} \frac{x}{r} u + i \kappa \frac{x}{r} u.
\]

Proof (cf., Mochizuki [6]). Put \(v = e^{-i \kappa r} r^{(n-1)/2} u \). Then
\[
(2.6) \quad -4v + \left(\frac{n-1}{2} + 2i \kappa \right) \frac{\partial v}{\partial r} + \frac{(n-1)(n-3)}{4r^2} v = e^{-i \kappa r} r^{(n-1)/2} f.
\]
Multiply by \(e^{+i \text{Im} \ \kappa r^{-n+1+\delta}} \left(\frac{\partial \bar{v}}{\partial r} \right) \) on both sides and take the real parts. Then the repeated use of integration by parts gives (2.4) if we note
\[(2.7) \quad \zeta_\pm = e^{\pm i\omega r} r^{-(n-1)/2} Dv \quad \text{and} \quad \theta_\pm = \sum_{j=1}^n \frac{\zeta_j}{r} [\zeta_\pm]_j, \]

where \([\zeta_\pm]_j\) is the \(j\)-th component of \(\zeta_\pm\).

Proposition 2.1. Let \(u\) be a \(L^2\)-solution of (2.1). Then there exists a constant \(C_2 > 0\) such that for any \(\kappa \in C_R\)

\[(2.8) \quad |\kappa|^2 \int_{R^*} (1 + r)^{-1-\delta} |u|^2 dx \leq C_2 \int_{R^*} (1 + r)^{1+\delta} |f|^2 dx. \]

Proof. Multiply by \((1 + \rho)^{-2\delta} r^{-1+\delta}\) on both sides of (2.2) and integrate over \([0, \infty)\). Then we have

\[(2.9) \quad \frac{1}{2} |\kappa|^2 \int_{R^*} (1 + r)^{-1-\delta} |u|^2 dx \leq \frac{1}{2} \int_{R^*} r^{-1+\delta} |\theta_\pm|^2 dx + C(\kappa) \int_{R^*} |f i\kappa u|^2 dx. \]

On the other hand, noting that \(n \neq 2, 0 < \delta \leq 1\) and \(|\zeta_\pm| \geq |\theta_\pm|\), we have from (2.4)

\[(2.10) \quad \int_{R^n} r^{-1+\delta} |\theta_\pm|^2 dx \leq \left(\frac{2}{\delta} \right)^2 \int_{R^n} r^{-1+\delta} |f|^2 dx. \]

Inequality (2.8) then follows if we note \((1 + r)^{-1-\delta} \leq (1 + r)^{-2\delta} r^{-1+\delta}\).

§ 3. Proof of Theorem 1

(a) Let \(f = \{f_1, f_2\} \in \mathcal{H}\). Then \(u(t) = U(t, 0) f\) satisfies (1.4) and the initial condition \(u(0) = f\). Since \(A_0\) is skew-selfadjoint, we have from (1.4)

\[(3.1) \quad U_0(-t) U(t, 0) f = f - \int_0^t U_0(-\tau) V(\tau) U(\tau, 0) f d\tau \]

and

\[(3.2) \quad \|U(t, 0) f\|_{\mathcal{B}}^2 + 2 \int_0^t \|V(\tau) U(\tau, 0) f\|_{\mathcal{B}}^2 d\tau = \|f\|_{\mathcal{B}}^2. \]

We put

\[(3.3) \quad A = \begin{pmatrix} 0 & 0 \\ 0 & a(x) \end{pmatrix}, \quad a(x) = \sqrt{C_1 (1 + |x|)^{-(1+\delta)/\delta}}. \]
Note that $A \geq \sqrt{V(t)}$. Then for any $g \in \mathcal{H}$

\begin{equation}
\int_0^t |(U_0(-\tau)V(\tau) U(\tau,0)f, g)_{\mathcal{H}}| d\tau \\
\leq \left(\int_0^t |\sqrt{V(\tau)} U(\tau,0) f|_{\mathcal{H}}^2 d\tau \right)^{1/2} \left(\int_0^t |AU_0(\tau) g|_{\mathcal{H}}^2 d\tau \right)^{1/2},
\end{equation}

where $(\cdot, \cdot)_{\mathcal{H}}$ denotes the inner product in \mathcal{H}. Thus, to see the existence of the strong limit of (3.1) as $t \to \infty$, it is sufficient to prove that there exists a constant $C > 0$ such that

\begin{equation}
\int_0^\infty \|AU_0(t)g\|_{\mathcal{H}}^2 dt \leq C \|g\|_{\mathcal{H}}^2
\end{equation}

for any $g \in \mathcal{H}$.

The following result is due to Kato [3].

Proposition 3.1. There exists a $C > 0$ satisfying (3.5) if the operator A satisfies the condition

\begin{equation}
\sup_{\epsilon \in \mathbb{C} - \mathbb{R}} \|A(A_0 - i\epsilon I)^{-1}A\|_{\mathcal{H}} < \infty.
\end{equation}

For $g = \{g_1, g_2\} \in \mathcal{H}$ put

\begin{equation}
u = \{u_1, u_2\} = (A_0 - i\epsilon I)^{-1}Ag.
\end{equation}

Then, as is easily seen, the second component u_2 satisfies equation (2.1) with $f = -i\alpha(x)g_2$. Thus, by Proposition 2.1 we have

\begin{equation}
|\nu|^2 \int_{\mathbb{R}^n} (1 + r)^{-1-\xi}|u_2|^2 dx \leq C \int_{\mathbb{R}^n} (1 + r)^{1+\xi}|i\alpha(x)g_2|^2 dx
\end{equation}

\begin{equation}
\leq C_1 C_2 |\nu|^2 \int_{\mathbb{R}^n} |g_2|^2 dx.
\end{equation}

Since $A(A_0 - i\epsilon I)^{-1}Ag = \{0, \alpha(x)u_2\}$, it follows from (3.8) that

\begin{equation}
\|A(A_0 - i\epsilon I)^{-1}Ag\|_{\mathcal{H}}^2 = \int_{\mathbb{R}^n} |\alpha(x)u_2|^2 dx
\end{equation}

\begin{equation}
\leq C_1^2 C_2 \int_{\mathbb{R}^n} |g_2|^2 dx \leq C_1 C_2 \|g\|_{\mathcal{H}}^2.
\end{equation}

This proves that A satisfies condition (3.6). Hence, (3.5) holds and the wave operator Z exists.

(b) To show the existence of $f \in \mathcal{H}$ such that $Zf \neq 0$, we assume
contrary, i.e., for any $f \in \mathcal{H}$ \(\|U(t, 0)f\|_E \to 0\) as $t \to \infty$. Then we have from (3.2)

\[(3.10) \quad \|f\|_E^2 = 2 \int_0^\infty \|\sqrt{V(t)} U(t, 0) f\|_E^2 \, dt.\]

Further, by (3.1) and (3.4)

\[(3.11) \quad \|f\|_E^2 \leq \left(\int_0^\infty \|\sqrt{V(t)} U(t, 0) f\|_E^2 \, dt \right)^{1/2} \left(\int_0^\infty \|A U_0(t) f\|_E^2 \, dt \right)^{1/2}.\]

Hence, it follows that

\[(3.12) \quad \|f\|_E^2 \leq \frac{1}{2} \int_0^\infty \|A U_0(t) f\|_E^2 \, dt.\]

Put $f = U_0(s) g$, where $\|g\|_E = 1$. Then by (3.12)

\[(3.13) \quad \|U_0(s) g\|_E^2 = \frac{1}{2} \int_0^\infty \|A U_0(t) g\|_E^2 \, dt \to 0, \quad \text{as} \quad s \to \infty\]

(cf., (3.5)). This is a contradiction and (b) is proved.

(c) It follows from (3.5) that in (3.4)

\[(3.14) \quad \int_s^t \|A U_0(\tau) g\|_E^2 d\tau \to 0 \quad \text{as} \quad s, t \to \infty.\]

On the other hand, we have from (3.2)

\[(3.15) \quad \int_0^\infty \|\sqrt{V(t)} U(t, 0) f\|_E^2 \, dt \leq \frac{1}{2} \|f\|_E^2 \quad \text{for any} \quad f \in \mathcal{H}.\]

Thus, $U(t, 0) * U_0(t) g$ converges in \mathcal{H} as $t \to \infty$ and (c) is proved.

\section*{§ 4. Proof of Theorem 2}

The assertions (a) and (b) for the operator W can be proved by the same argument as in the proof of Theorem 1 if we note that the adjoint semigroup $U(t)^*$ has generator

\[(3.16) \quad A^* = -A_0 - V \quad \text{with domain} \quad \mathcal{D}(A^*) = \mathcal{D}(A_0).\]

(e) and (d) are obvious from the definition of W and Z.

\section*{References}

Added in Proof. Recently, Mr. A. Matsumura (Dept. Appl. Math. Phys., Fac. Engi., Kyoto U.) obtained the following result: If $b(x, t)$ in (1-1) satisfies $t \geq 0$

$$b_r(x, t) \leq 0 \quad \text{and} \quad \min_{|x| \leq R + t} b(x, t) \geq \frac{1}{K + \varepsilon t},$$

where R, K, ε are positive constants, and if the initial data $f = \{f_1, f_2\}$ has support contained in $\{x; |x| \leq R\}$, then the total energy of solution of (1-1) decays like

$$\|U(t, 0)f\|_\infty = O(t^{-1/2(1+\varepsilon)}) \quad \text{as} \quad t \to \infty.$$

By this result we can say that our assumption (A1) is settled in a sense.