A Characterization for Fourier Hyperfunctions

By

Jaeyoung CHUNG*, Soon-Yeong CHUNG** and Dohan KIM***

Abstract

The space of test functions for Fourier hyperfunctions is characterized by two conditions \(\sup_{\varphi(x)} |\exp k |x| < \infty \) and \(\sup_{\hat{\varphi}(\xi)} |\exp h |\xi| < \infty \) for some \(k, h > 0 \). Combining this result and the new characterization of Schwartz space in [1] we can easily compare two important spaces \(\mathcal{F} \) and \(\mathcal{S} \) which are both invariant under Fourier transformations.

§ 0. Introduction

The purpose of this paper is to give new characterization of the space \(\mathcal{F} \) of test functions for the Fourier hyperfunctions.

In [6], K. W. Kim, S. Y. Chung and D. Kim introduce the real version of the space \(\mathcal{F} \) of test functions for the Fourier hyperfunctions as follows,

\[
\mathcal{F} = \left\{ \varphi \in C^\omega : \sup_{a, \xi} \frac{|\partial^a \varphi(x)| \exp_{a} |x|}{h^{a_{1}}!} < \infty \text{ for some } k, h \right\}.
\]

They also show the equivalence of the above definition and Sato-Kawai’s original definition in complex form.

Also, in [1] J. Chung, S. Y. Chung and D. Kim give new characterization of the Schwartz space \(\mathcal{S} \), i.e., show that for \(\varphi \in C^\omega \) the following are equivalent:

1. \(\varphi \in \mathcal{S} \);
2. \(\sup_{x} |x^{a} \varphi(x)| < \infty \), \(\sup_{x} |\partial^{\alpha} \varphi(x)| < \infty \) for all multi-indices \(\alpha \) and \(\beta \);
3. \(\sup_{x} |x^{a} \varphi(x)| < \infty \), \(\sup_{\xi} |\xi^{\beta} \hat{\varphi}(\xi)| < \infty \) for all multi-indices \(\alpha \) and \(\beta \).

In a similar fashion as above we will give new characterization of the space \(\mathcal{F} \) of test functions for the Fourier hyperfunctions as the main theorem in this paper which says that for \(\varphi \in C^\omega \) the following are equivalent:

1. \(\varphi \in \mathcal{F} \);
2. \(\sup_{x} |\varphi(x)| \exp_{a} |x| < \infty \), \(\sup_{\xi} |\hat{\varphi}(\xi)| \exp_{h} |\xi| < \infty \) for some \(h, k > 0 \).

Observing the above growth conditions we can easily see that the space \(\mathcal{F} \) which is invariant under the Fourier transformation is much smaller than...
Since an element in the strong dual \mathcal{S}' of the space \mathcal{S} is called a Fourier hyperfunction, the space \mathcal{S}' of Fourier hyperfunctions which is also invariant under the Fourier transformation is much bigger than the space \mathcal{S}' of tempered distributions.

Section 1 is devoted to providing the necessary definitions and preliminaries. We prove the main theorem in Section 2.

§ 1. Preliminaries

We use the multi-index notations; for $x = (x_1, \ldots, x_n), \xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$ and a multi-index $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{N}_0^n, \partial^\alpha = \partial_{\xi_1}^{\alpha_1} \cdots \partial_{\xi_n}^{\alpha_n}, |\alpha| = \alpha_1 + \cdots + \alpha_n$ with $\partial_j = \partial / \partial x_j,$ and \mathbb{N}_0 the set of non-negative integers.

For $f \in L^1(\mathbb{R}^n)$ the Fourier transform \hat{f} is the bounded continuous function in \mathbb{R}^n defined by

\begin{equation}
\hat{f}(\xi) = \int e^{-ix \cdot \xi} f(x) dx, \quad \xi \in \mathbb{R}^n
\end{equation}

Definition 1.1. We denote by \mathcal{S} or $\mathcal{S}(\mathbb{R}^n)$ the Schwartz space of all $\varphi \in C^\infty(\mathbb{R}^n)$ such that

\begin{equation}
\sup_x |x^\alpha \partial^\beta \varphi(x)| < \infty
\end{equation}

for all multi-indices α and β.

We need the following characterization to compare the space \mathcal{F} of test functions for the Fourier hyperfunctions with the above space.

Theorem 1.2 [1]. (i) The Schwartz space \mathcal{S} consists of all $\varphi \in C^\infty(\mathbb{R}^n)$ satisfying the conditions

\begin{equation}
\sup_x |x^\alpha \varphi(x)| < \infty, \\
\sup_x |\partial^\beta \varphi(x)| < \infty
\end{equation}

for all multi-indices α and β.

(ii) Also, the Schwartz space can be characterized by the following two conditions

\begin{equation}
\sup_x |x^\alpha \varphi(x)| < \infty, \\
\sup_x |\xi^\beta \hat{\varphi}(\xi)| < \infty
\end{equation}

for all multi-indices α and β.

Now, we are going to introduce the original complex version and new real definition of test functions for the Fourier hyperfunctions as in [6], and state their equivalence.
Definition 1.3 [6]. A real valued function φ is in \mathcal{S} if $\varphi \in C^\infty(\mathbb{R}^n)$ and if there are positive constants h and k such that

$$|\varphi|_{k,h} = \sup_{x,z} \frac{\partial^a \varphi(x)}{h^{\alpha} \alpha!} \exp k|x| < \infty.$$

Definition 1.4 [5]. A complex valued function $\varphi(z)$ is in \mathcal{S}^\ast if $\varphi(z)$ is holomorphic in a tubular neighborhood $\mathbb{R}^n + i\{|y| \leq r\}$, for some r, of \mathbb{R}^n and if for some $k > 0$

$$\sup_{z \in \mathbb{R}^n + i\{|y| \leq r\}} |\varphi(z)| \exp k|z| < \infty.$$

Theorem 1.5 [6]. The space \mathcal{S} is isomorphic to the space \mathcal{S}^\ast.

Definition 1.6. We denote by \mathcal{S}' the strong dual space of \mathcal{S} and call its elements Fourier hyperfunctions.

Thus the global theory of the Fourier hyperfunctions is nothing but the duality theory for the space \mathcal{S}.

§2. Main Theorem

Now we shall give new characterization of the space \mathcal{S} of test functions for the Fourier hyperfunctions which is the main result in this paper. First, we prove

Theorem 2.1. The following conditions for $\varphi \in C^\infty$ are equivalent:

(i) There are positive constants k and h such that

$$\sup_{x} \frac{\partial^a \varphi(x) \exp k|x|}{h^{\alpha} \alpha!} < \infty. \tag{2.1}$$

(ii) There are positive constants C, k and h such that

$$\sup_{x} |\varphi(x)| \exp k|x| < \infty, \tag{2.2}$$

$$\sup_{x} |\partial^a \varphi(x)| \leq C h^{\alpha} \alpha!. \tag{2.3}$$

(iii) There are positive constants k and h such that

$$\sup_{x} |\varphi(x)| \exp k|x| < \infty, \tag{2.4}$$

$$\sup_{\xi} |\hat{\varphi}(\xi)| \exp h|\xi| < \infty. \tag{2.5}$$

Proof. The implications (i) \Rightarrow (ii), (i) \Rightarrow (iii) are trivial. So it suffices to prove the implications (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) in order.

(iii) \Rightarrow (ii): By the inequality (2.5) we have
for some positive constants M, A and C. Thus, we obtain the condition (2.3) which completes the proof of the implication (iii)\Rightarrow(ii).

(ii)\Rightarrow(i): First, we can assume that φ is real valued. By integration by parts we obtain that

$$\|x^\beta \varphi(x)\|_2 = \left|\int_{\mathbb{R}^n} \partial^\alpha \varphi(x) \varphi(x) dx\right|.$$

Note that the boundary terms tend to zero by Theorem 1.2. Therefore, applying the Leibniz formula we have, for some constant A,

$$\|x^\beta \varphi(x)\|_2 \leq \sum_{\gamma \leq \beta \alpha} \left(\begin{array}{c} \beta \\ \gamma \end{array}\right) \gamma! \|x^{\beta - \gamma} \varphi(x)\| \varphi(x) \int dx.$$

Thus we obtain that for some positive constants C_0, C_1 and C_2 such that

$$\frac{\|x^\beta \varphi(x)\|_2}{C_2^{\beta !} \beta !} \leq C_0 C_1^{\alpha !} \alpha !.$$

Therefore, summing up with respect to β we can choose a positive constant
\[k \text{ such that } \| \partial^a \phi(x) \exp k \cdot x \|_{L^2} \leq C_s C_4^{a1} \alpha !. \]

By the Cauchy-Schwarz inequality there exists a positive constant \(C_s \) such that
\[
\left\| \partial^a \phi(x) \exp k \cdot x \right\|_{L^1} \leq \left\| \partial^a \phi(x) \exp \left\| \exp \left(-k \cdot x \right) \right\|_{L^2} \right\| \left[\int \exp(-k \cdot x) \, dx \right]^{1/2} \leq C_s C_4^{a1} \alpha !.
\]

Also, there exist positive constants \(k \) and \(C_1 \) such that
\[
\| \partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2} \|_{L^1} \leq C_s C_4^{a1} \alpha !.
\]

Hence
\[
| \partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2} | = \left| \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} \partial_1 \cdots \partial_n (\partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2}) \, dx \right|
\]
\[
= \left| \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} \partial_n \cdots \partial_1 [\partial_n \partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2}] \, dx \right|
\]
\[
+ \partial^a \phi(x) \cdot \partial_1 \left(\exp k \sqrt{1 + \left| x \right|^2} \right) \, dx \right|
\]
\[
\leq \left| \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} \sum | \partial_{j_1} \cdots \partial_{j_r} \partial^a \phi(x) \partial_{j_{r+1}} \cdots \partial_{j_n} (\partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2}) \, dx \right|
\]
where the summation is taken over all \(r = 0, 1, \ldots, n \) and \(\{j_1, \ldots, j_n\} \) is a permutation of \(\{1, \ldots, n\} \).

We can prove by induction
\[
| (\partial_{j_1} \cdots \partial_{j_r}) \partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2} | \leq P_r(k) \exp k \sqrt{1 + \left| x \right|^2}
\]
where \(P_r(k) \) is a polynomial of \(k \) of \(r \)-th degree. Hence we derive that
\[
| \partial^a \phi(x) \exp k \sqrt{1 + \left| x \right|^2} | \leq \int C \Sigma | P_{n-r}(k) | | (\partial_{j_1} \cdots \partial_{j_r}) \partial^a \phi | \exp k \sqrt{1 + \left| x \right|^2} \, dx
\]
\[
\leq C \Sigma | P_{n-r}(k) | C_s C_4^{a1+r} (\alpha + \beta) !
\]
\[
\leq C(k, n) C_4^{a1} \alpha !
\]
where \(\beta \) is a multi-index with \(| \beta | = r \). Therefore, using the relation
\[
\exp k | x | \leq \exp k \sqrt{1 + \left| x \right|^2} \leq e^k \exp k | x | \]
we obtain
\[
\sup_x | \partial^a \phi(x) | \exp k | x | \leq C(k, n) C_4^{a1} \alpha !
\]
which completes the proof.

Now we can rephrase Theorem 2.1 as follows.
Theorem 2.2. The space \mathcal{S} of test functions for the Fourier hyperfunctions consists of all locally integrable functions such that for some $h, k > 0$

$$\sup_x |\phi(x)| \exp k|x| < \infty,$$

$$\sup_\xi |\hat{\phi}(\xi)| \exp h|\xi| < \infty.$$

Remark. Combining Theorem 1.2 on the Schwartz space S and Theorem 2.2 on the space \mathcal{S} we can easily compare the spaces S and \mathcal{S} which are both invariant under the Fourier transformations as follows:

(i) The space S consists of all C^∞ functions ϕ such that ϕ itself and its Fourier transform $\hat{\phi}$ are both rapidly decreasing.

(ii) The space \mathcal{S} consists of all C^∞ functions ϕ such that ϕ itself and its Fourier transform $\hat{\phi}$ are both exponentially decreasing.

Acknowledgement

The authors are grateful to Professor A. Kaneko for suggesting the problem and to the referee for the helpful suggestions.

References

