Actions on Invariant Spheres around Isolated Fixed Points of Actions of Cyclic Groups

By
Masayoshi KAMATA*

§ 1. Introduction

Fix a prime number \(p \) and let \(\mathbb{Z}_p \) be a cyclic group of order \(p \). We consider a pair \((M, \phi)\) consisting of a compact simply connected almost complex manifold \(M \) without boundary and a smooth \(\mathbb{Z}_p \)-action \(\phi: \mathbb{Z}_p \times M \rightarrow M \) preserving the almost complex structure of \(M \). We suppose that \(M \) is given an invariant Riemannian metric. If \(a \in M \) is an isolated fixed point, then the induced action of \(\mathbb{Z}_p \) on the tangent space at \(a \) gives a complex \(\mathbb{Z}_p \)-module \(V_a \) which has no trivial irreducible factor. Let \(\xi: E\mathbb{Z}_p \rightarrow \mathbb{BZ}_p \) be a universal principal \(\mathbb{Z}_p \)-bundle and let \(\xi(V_a): E\mathbb{Z}_p \times_{\mathbb{Z}_p} V_a \rightarrow \mathbb{BZ}_p \) be the \(V_a \)-bundle associated with \(\xi \). If \(a \) and \(b \) are isolated fixed points, we compare the cobordism Euler classes \(e(\xi(V_a)) \) and \(e(\xi(V_b)) \) which belong to the complex cobordism group \(\text{MU}^*(\mathbb{BZ}_p) \) of the classifying space \(\mathbb{BZ}_p \) of \(\mathbb{Z}_p \). Let \(F_U \) be the universal formal group law over \(\text{MU}^* \), and write

\[x \circ_f y = F_U(x, y). \]

For a positive integer \(n \), \([n]_f(x) \) is inductively defined by

\[[1]_f(x) = x \]

and

\[[n]_f(x) = [n-1]_f(x) +_f x. \]

It is known that the cobordism ring \(\text{MU}^*(\mathbb{BZ}_p) \) is formal power series algebra \(\text{MU}^*[[x]] \) over \(\text{MU}^* \) modulo an ideal generated by \([p]_f(x)\)

Communicated by N. Shimada, August 3, 1981.

* Department of Mathematics, College of General Education, Kyushu University, Fukuoka 810, Japan.
Let us write

\[[p]_F(x) = px + a_1^{(p)} x^2 + a_2^{(p)} x^3 + \cdots, \]

where \(a_i^{(p)} \in MU^{-i} \), and

\[\langle p \rangle_F(x) = p + a_1^{(p)} x + a_2^{(p)} x^2 + \cdots. \]

Let \(S \) denote the multiplicative set in \(MU^*(BZ_p) \) consisting of cobordism Euler classes \(e(\xi(V)) \), \(V \) the nontrivial complex \(Z_p \)-module, and let \(\lambda: MU^*(BZ_p) \to S^{-1}MU^*(BZ_p) \) be the canonical map [9]. In this paper we show the following

Theorem A. Assume that \(H^i(BZ_p; \{\pi_i(M)\}) \cong 0 \) for \(1 \leq i \leq 2n - 1 \) (cf. [4, p. 355]), and \(\lambda(\alpha) = e(\xi(V_a))/e(\xi(V_b)) \). Then for any Landweber-Novikov operation \(S_\alpha^w \), \(\omega \neq (0) \) [14], [17], \(S_\alpha^w(\alpha) \) belongs to an ideal generated by \(x^e \) and \(\langle p \rangle_F(x) \) in \(MU^*(BZ_p) \), where \(x = e(\xi(L)) \) and \(L \) is the canonical one dimensional complex \(Z_p \)-module with an action of \(Z_p \) given by multiplication by \(\rho = \exp(2\pi i/p) \) on \(C^1 \).

The action of \(Z_p \) on \(M \) induces a natural action on a unit sphere \(S(V_a) \) in a tangent space \(V_a \) at an isolated fixed point \(a \) which is equivalent to the action of \(Z_p \) on a sphere around the fixed point. The action \(\phi_a: Z_p \times S(V_a) \to S(V_a) \) determines a weakly complex bordism class \([S(V_a), \phi_a] \) of the bordism group \(MU_*(Z_p) \) of fixed point free \(Z_p \) actions preserving a weakly complex structure, which is generated as an \(MU_* \)-module by the set of \(Z_p \)-manifolds \(\{[S^{2n+1}, \widehat{\phi}]\} \), where the action \(\widehat{\phi} \) of \(Z_p \) on a sphere \(S^{2n+1} \subset C^{n+1} \) is defined by \(\widehat{\phi}(g, z) = g \cdot z \), \(g \) a generator of \(Z_p \) [6], [11]. Kasparov in [13] showed that the weakly complex bordism class \([S(V_a), \phi_a] \) is computable. By making use the Kasparov theorem and Theorem A, we obtain the following

Theorem B. Assume that \(H^i(BZ_p; \{\pi_i(M)\}) \cong 0 \) for \(1 \leq i \leq 2n - 1 \).

If \(V_a = L^1 \oplus \cdots \oplus L^k \) and \(V_b = L^m_1 \oplus \cdots \oplus L^m_k \), then

\[
\ell_1 \cdots \ell_k [S(V_a), \phi_a] - m_1 \cdots m_k [S(V_b), \phi_b] = \bar{\beta}_1 [S^{2n-3}, \widehat{\phi}] + \bar{\beta}_2 [S^{2n-5}, \widehat{\phi}] + \cdots + \bar{\beta}_{n-1} [S^1, \widehat{\phi}],
\]

where \(\bar{\beta}_1, \bar{\beta}_2, \ldots, \bar{\beta}_{n-1} \) belong to an ideal generated by \(p, a_1^{(p)}, a_2^{(p)}, \ldots, \).
In Section 2 we investigate S^1-actions on a product space $S^{2m+1} \times S^{2n+1}$ of spheres and equivariant maps between the S^1-spaces. In Section 3 the Umkehr homomorphism of some map between the orbit spaces $(S^{2m+1} \times S^{2n+1})/S^1$ is computed to give a slightly different proof of the Kasparov theorem [13] in Section 4. In Section 5 we discuss about relations among cobordism characteristic classes [7] of $\xi(V_0)$ and $\xi(V_B)$ and give a proof of Theorem A. Section 6 is devoted to prove Theorem B. In Section 7 we study the isolated fixed point set of Z_r-actions.

Bredon in Section 10 of Chapter VI of [4] compared representations at two fixed points of a smooth action, by using equivariant K-theory.

§ 2. On Orbit Spaces of $S^{2m+1} \times S^{2n+1}$ with Respect to S^1

We define $\phi(l_0, l_1, \cdots, l_n) : S^1 \times S^{2m+1} \times S^{2n+1} \rightarrow S^{2m+1} \times S^{2n+1}$ by

$$\phi(l_0, l_1, \cdots, l_n)(z, (u_0, u_1, \cdots, u_m), (v_0, v_1, \cdots, v_n)) = ((zu_0, zu_1, \cdots, zu_m), (z^1v_0, z^1v_1, \cdots, z^1v_n)).$$

This is differentiable and the orbit space $(S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n)$ is an orientable smooth manifold. Let S^1 act on $S^{2m+1} \times C^1$ by

$$z \cdot ((u_0, \cdots, u_m), v) = ((zu_0, \cdots, zu_m), zv).$$

The orbit space induces a complex line bundle over the complex projective space

$$\pi : S^{2m+1} \times S^1 \times S^{2n+1} / S^1 = CP^m,$$

which is denoted by η. The total space $S(\eta^1 \oplus \cdots \oplus \eta^r)$ of the sphere bundle associated with $\eta^1 \oplus \cdots \oplus \eta^r$ is diffeomorphic to $(S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n)$. The structure of the integral cohomology group $H^*(S(\eta^1 \oplus \cdots \oplus \eta^r))$ is determined as follows in [18].

Proposition 2.1. (1) If $m \leq n$, then $H^j(S(\eta^1 \oplus \cdots \oplus \eta^r)) \cong H^j(CP^m)$ and $H^{j-1}(S(\eta^1 \oplus \cdots \oplus \eta^r)) \cong H^{j-1}(CP^m)$.

(2) If $m > n$, then
The map $f: S^{2m+1} \times S^{2n-1} \to S^{2m+1} \times S^{2n+1}$ defined by

$$f((u_0, \ldots, u_m), (v_0, \ldots, v_n)) = \left((u_0, \ldots, u_m), \frac{1}{r} (v_0^1, \ldots, v_n^1) \right),$$

induces a map of the orbit spaces

$$\tilde{f}: \left(S^{2m+1} \times S^{2n+1} \right) / \phi (1, \ldots, 1) \to \left(S^{2m+1} \times S^{2n+1} \right) / \phi (l_0, \ldots, l_n).$$

Denote by $[M]$ the fundamental class of a compact orientable manifold M. Then we have

Proposition 2.2. $\tilde{f}_* \left[\left(S^{2m+1} \times S^{2n+1} \right) / \phi (1, \ldots, 1) \right] = l_0 l_1 \cdots l_n [\left(S^{2m+1} \times S^{2n+1} \right) / \phi (l_0, \ldots, l_n)].$

Proof. \tilde{f} is a fiber preserving map of sphere bundles $S((n+1)\eta)$ and $S(\eta^1 \oplus \cdots \oplus \eta^n)$, as $\eta^1 \oplus \cdots \oplus \eta^n$ is isomorphic to a bundle of an orbit space of an S^1-action on $S^{2m+1} \times C^{n+1}$ defined by

$$z \cdot (u, (v_0, \ldots, v_n)) = (z^1 u, (z^2 v_0, \ldots, z^n v_n)).$$

Let f_1 be a fiber preserving map from $(n+1)\eta$ to $\eta^1 \oplus \cdots \oplus \eta^n$ defined by

$$f_1 (u, (v_0, \ldots, v_n)) = (u, (v_0^1, \ldots, v_n^1))$$

which induces a map between the Thom complexes

$$\tilde{f}_1: T(1, \ldots, 1) \to T(l_0, \ldots, l_n),$$

where $T(l_0, \ldots, l_n) = E(l_0, \ldots, l_n) / \{E(l_0, \ldots, l_n) - \text{the zero section}\}$, and $E(l_0, \ldots, l_n)$ is the total space of $\eta^1 \oplus \cdots \oplus \eta^n$. $S(\eta^1 \oplus \cdots \oplus \eta^n)$ and $E(l_0, \ldots, l_n) - \{\text{the zero section}\}$ are of the same homotopy type, and the following diagram is homotopy commutative
$E(1, \ldots, 1) \rightarrow \{ \text{the zero section} \} \xrightarrow{f_1} E(l_0, \ldots, l_n) \rightarrow \{ \text{the zero section} \}$

$S((n+1)\eta) \xrightarrow{\tilde{f}} S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})$.

Let $t(l_0, \ldots, l_n)$ be the Thom class of $\eta^{l_0} \oplus \cdots \oplus \eta^{l_n}$. Then we have $\tilde{f}_1^* (t(l_0, \ldots, l_n)) = l_0 l_1 \cdots l_n t(1, \ldots, 1)$. Since the coboundary homomorphism $\delta: H^{2m+2n+1}(S(\eta^{l_0} \oplus \cdots \oplus \eta^{l_n})) \rightarrow \tilde{H}^{2m+2n+2}(T(l_0, \ldots, l_n))$ is isomorphic, the fundamental class of $(S^{2m+1} \times S^{2n+1}) / \phi(l_0, \ldots, l_n)$ is the dual class of $\delta^{-1}\{ \pi^*([CP^m]*) \cup t(l_0, \ldots, l_n) \}$, where $\pi: E(l_0, \ldots, l_n) \rightarrow CP^m$ is the projection and $[CP^m]*$ is the dual of $[CP^m]$. Then the assertion follows.

Suppose that M^m and N^n are orientable manifolds. A continuous map $h: M^m \rightarrow N^n$ determines the Umkehr homomorphism

$$D \xrightarrow{h_*} D^{-1}$$

where D is the Poincaré duality.

Proposition 2.3. Assume that g is an embedding of $(S^{2m+1} \times S^{2n+1}) / \phi(1, \ldots, 1) \rightarrow S^N$ for a large N. Then the Umkehr homomorphism of $F = f \times g: (S^{2m+1} \times S^{2n+1}) / \phi(1, \ldots, 1) \rightarrow (S^{2m+1} \times S^{2n+1}) / \phi(l_0, \ldots, l_n) \times S^y$, $\tilde{f} \times g(x) = (\tilde{f}(x), g(x))$, satisfies

$F_1(\tilde{f}^*(y)) = l_0 \cdots l_n y \times [S^y] *$

where $[S^y]*$ is the dual of $[S^y]$.

Proof. The Umkehr homomorphism satisfies $F_1(F^*(a) \cup b) = a \cup F_1(b)$ [8]. We calculate using Proposition 2.2,

$F_1(\tilde{f}^*(y))$

$= (y \times 1) \cup F_1(1)$

$= (y \times 1) \cup D^{-1}(\tilde{f} \times g)_* [(S^{2m+1} \times S^{2n+1}) / \phi(1, \ldots, 1)]$

$= (y \times 1) \cup D^{-1}((l_0 \cdots l_n) [(S^{2m+1} \times S^{2n+1}) / \phi(l_0, \ldots, l_n)] \times 1)$

$= (y \times 1) \cup l_0 \cdots l_n (1 \times [S^y]*).$ Q.E.D.
If $m \leq n$, then we get a short exact sequence

$$0 \to MU^*(CP^n) \xrightarrow{\pi^*} MU^*(S(\eta^1 \oplus \cdots \oplus \eta^{in}))$$

$$\delta \to \tilde{MU}^*(T(l_0, \cdots, l_n)) \to 0$$

and $\delta : MU^{2n+1}(S(\eta^1 \oplus \cdots \oplus \eta^{is})) \to \tilde{MU}^{2n+1}(T(l_0, \cdots, l_n))$ is isomorphic. In this case we may determine the ring structure of $MU^*((S^{2m+1} \times S^{2n+1}) / \phi(l_0, \cdots, l_n))$ (cf. [18]).

Proposition 2.4. If $m \leq n$, then $MU^*((S^{2m+1} \times S^{2n+1}) / \phi(l_0, \cdots, l_n))$ is $MU^*[x, y]/(x^{m+1}, y^2)$ where x is the first cobordism Chern class $c_b(\pi^*\gamma)$ and y is an element of $MU^{2n+1}(S(\eta^1 \oplus \cdots \oplus \eta^{is}))$ such that dy is the Thom class of $\eta^1 \oplus \cdots \oplus \eta^{is}$.

Proof. $MU^*(S(\eta^1 \oplus \cdots \oplus \eta^{is}))$ is isomorphic to the direct sum of $MU^*(CP^n)$ and $\tilde{MU}^*(T(l_0, \cdots, l_n))$. We have

$$(-1)^{deg a} \delta (\pi^* a \cup b) = \pi^* a \cup \delta b$$

(cf. Chapter 13 of [20]), and $MU^*(S(\eta^1 \oplus \cdots \oplus \eta^{is}))$ is a free MU^*-module generated by $\{(\pi^* x)^i, i = 1, 2, \cdots, m\}$ and $\{(\pi^* x)^i \cup y, i = 1, 2, \cdots, m\}$. It follows from Proposition 2.1 that $MU^{2n+1}(S(\eta^1 \oplus \cdots \oplus \eta^{is}))$ is zero. Q.E.D.

§ 3. On the Umkehr Homomorphism of \tilde{f} with the MU^*-Orientation

For any set $\omega = (i_1, \cdots, i_r)$ of positive integers, let $\sum t_1^{i_1} \cdots t_r^{i_r}$ be the symmetric polynomial of variable $t_i, 1 \leq i \leq n$ to be the smallest symmetric polynomial containing the monomial $t_1^{i_1} \cdots t_r^{i_r}$, which is expressible uniquely as a polynomial with integral coefficients in the elementary symmetric polynomials E_1, E_2, \cdots, E_n of the t's and write

$$P_\omega(E_1, E_2, \cdots, E_n) = \sum t_1^{i_1} \cdots t_r^{i_r}.$$

For an n-dimensional complex vector bundle ζ over X, we define

$$c^H_\omega(\zeta) = P_\omega(c^H_1(\zeta), c^H_2(\zeta), \cdots, c^H_n(\zeta))$$

and $c^H_{(0, \cdots, 0)}(\zeta) = 1$, where $c^H_i(\zeta)$ are the ordinary cohomology Chern classes.
Suppose that \(x \in MU^k(X) \) is represented by
\[
g : S_2^{2N} X^+ \to MU(N).
\]
We define
\[
S^H_\omega(x) = \sigma^{k-2N} \Phi \sigma^H(\gamma_N),
\]
where \(\Phi : H^*(BU(N)) \to \tilde{H}^*(MU(N)) \) is the Thom isomorphism, \(\sigma^{k-2N} \) denotes \((k-2N)\)-fold iterated suspension isomorphism and \(\gamma_N \) is the \(N \)-dimensional universal complex vector bundle. The ring \(H^*_o(MU) \) is isomorphic to \(\mathbb{Z}[t_1, t_2, \ldots] \). Let
\[
\omega = (1, \ldots, 1, 2, \ldots, 2, \ldots, k, \ldots, k)
\]
and we define
\[
|\omega| = i_1 + 2i_2 + \cdots + ki_k
\]
and
\[
t^\omega = t_1^{i_1} t_2^{i_2} \cdots t_k^{i_k}.
\]
There exists a multiplicative natural transformation
\[
\beta^H : MU^*(X) \to (H \wedge MU)^*(X) = H^*(X) [[t_1, t_2, \ldots]]
\]
defined by
\[
\beta^H(x) = \sum_\omega s^H_\omega(x) \ t^\omega
\]
which is called Boardman map (cf. [1]). \(\beta^H : MU^*(S^0) \to H^*_o(MU) \) is the Hurewicz homomorphism which is injective [16]. Given \(x \in MU^*(X) \) with \(x = [g : S_2^{2N} X^+ \to MU(N)] \), the Thom homomorphism \(\mu : MU^*(X) \to H^*(X) \) is defined by \(\mu(x) = \sigma^{k-2N} g \Phi(1) = S^H_{(0, \ldots, 0)}(x) \).

Proposition 3.1. Suppose that a finite CW-complex \(X \) has no torsion in its integral cohomology, then the Boardman map \(\beta^H \) is injective.

Proof. Since the cohomology of \(X \) has no torsion, the Thom homomorphism is surjective. Suppose that \(\gamma_1^{(p)}, \gamma_2^{(p)}, \ldots, \gamma_k^{(p)} \) are the basis of \(H^*(X) \), then we can take \(u_{ij}^{(p)} \) with \(\mu(u_{ij}^{(p)}) = \gamma_i^{(p)} \). The correspondence
An isomorphism \(H^*(X) \otimes MU^* \cong MU^*(X) \) (cf. [5]). We see

\[
\beta_H(\sum b_j^{(n)} u_j^{(n)}) = \sum \beta_H(b_j^{(n)}) \{y_j^{(n)} + \sum_{s>0} S^H_s(u_j^{(n)}) t^s\}.
\]

Let \(\beta_H(\sum b_j^{(n)} u_j^{(n)}) = 0 \), and we can derive inductively that \(\beta_H(b_j^{(n)}) = 0 \) and \(b_j^{(n)} = 0 \). Q.E.D.

For an \(n \)-dimensional complex vector bundle \(\zeta \) over \(X \), consider a formal power series of \(t \)'s:

\[
c^H_t(\zeta) = \sum a c^H_a(\zeta) t^a.
\]

This satisfies the naturality and \(c^H(\zeta_1 \oplus \zeta_2) = c^H(\zeta_1) c^H(\zeta_2) \). Suppose that \(X \) and \(M \) are weakly almost complex manifolds. An embedding \(h: M \to X \) with the normal vector bundle \(\nu \) equipped with the complex structure induces the Umkehr homomorphisms:

\[
h_!: MU^*(M) \to MU^*(X),
\]

and

\[
h^H_!: H^*(M) [[t_1, t_2, \ldots]] \to H^*(X) [[t_1, t_2, \ldots]].
\]

Now we recall the following (cf. [19])

Theorem 3.2. \(\beta_H(h_!(1)) = h^H_!(c^H_t(\nu)) \).

Proof. A composition of a collapsing map \(c \) of the Thom construction and a classifying map \(g_\nu \) for \(\nu \)

\[
\bar{g}_\nu: X \xrightarrow{c} T(\nu) \xrightarrow{g_\nu} MU(k)
\]

represents \(h_!(1) \in MU^*(X) \). By making use of the following commutative diagram:

\[
\begin{array}{ccc}
D & \cong & 0 \\
\downarrow h_! & & \downarrow \cong \\
H^*(X) & \xleftarrow{\cong} & H^*(X) \xleftarrow{c^*} H^*(T(\nu)) \\
\end{array}
\]

\[
\begin{array}{ccc}
D & \cong & 0 \\
\downarrow h_! & & \downarrow \cong \\
H^*(M) & \xleftarrow{\cong} & H^*(M)
\end{array}
\]
we calculate
\[\beta_H(h_i(1)) = \sum_n S_n^R[g_c] t^n \]
\[= \sum_n c^* \phi H c^H(\nu) t^n \]
\[= h_i^H \left(\sum_n c^H(\nu) t^n \right). \]
Q.E.D.

\(MU^*(BU(1)) \) is isomorphic to \(MU^*[[x_{MU}]] \), \(x_{MU} = c^V(\nu) \). The first cobordism Chern class \(c_V(\nu) \) of the \(k \)-fold tensor product of \(\nu \) is described as
\[c_V(\nu^k) = [k] \cdot (x_{MU}) \]
\[= kx_{MU} + a^{(k)}_1 x_{MU}^2 + \cdots. \]

Let \(g: X \to BU(1) \) be a classifying map for a complex line bundle \(\zeta \) over \(X \). We see
\[\langle k \rangle \cdot (c_V(\zeta)) = g^* \{ k + a^{(k)}_1 x_{MU} + a^{(k)}_2 x_{MU}^2 + \cdots \}. \]

The map \(\tilde{f}: (S^{2m+1} \times S^{2m+1})/\phi(1, \cdots, 1) \to (S^{2m+1} \times S^{2m+1})/\phi(l_0, \cdots, l_n) \) defined by
\[\tilde{f}([u_0, \cdots, u_m], [v_0, \cdots, v_n]) \]
\[= \left[(u_0, \cdots, u_m), \frac{1}{r} (v_0^1, \cdots, v_n^m) \right], \]
\[r = \sqrt{|u_0|^{2m} + \cdots + |u_n|^{2m}}, \]
and an embedding \(h: (S^{2m+1} \times S^{2m+1})/\phi(1, \cdots, 1) \to S^{2k} \) for a large \(N \) determine a bordism class \([(S^{2m+1} \times S^{2m+1})/\phi(1, \cdots, 1), \tilde{f} \times h] \) of \(MU_4((S^{2m+1} \times S^{2m+1})/\phi(l_0, \cdots, l_n) \times S^{2k}) \). The projection \(\pi: (S^{2m+1} \times S^{2m+1})/\phi(l_0, \cdots, l_n) \to CP^m \) is defined by \(\pi[u, v] = [u] \). Then we have

Theorem 3.3. Suppose that \(m \leq n \). Then it follows that
\[[(S^{2m+1} \times S^{2m+1})/\phi(1, \cdots, 1), \tilde{f} \times h] \]
\[= D_{MU}(\langle \nu \rangle \cdot (c_V(\eta)) \langle \nu \rangle \cdot (c_V(\eta)) \cdots \langle \nu \rangle \cdot (c_V(\eta))) \times [P \subset S^{2k}] \]
where \(P = \{ \text{a point} \} \) and \(D_{MU} \) is the Atiyah-Poincare isomorphism \([3]\).
Proof. If \(m \leq n \), then \(H^* \left(\left(S^{2m+1} \times S^{2n+1} \right) / \phi (l_0, \ldots, l_n) \right) \) has no torsion from Propositions 2.1 and 3.1 implies that

\[
\beta_H : MU^* \left(\left(S^{2m+1} \times S^{2n+1} \right) / \phi (l_0, \ldots, l_n) \times S^{2n} \right) \to H^* \left(\left(S^{2m+1} \times S^{2n+1} \right) / \phi (l_0, \ldots, l_n) \times S^{2n} \right) [t_1, t_2, \ldots]
\]

is injective. The tangent bundle of \(\left(S^{2m+1} \times S^{2n+1} \right) / \phi (l_0, \ldots, l_n) \) is stably isomorphic to \(\pi' (\tau (CP^m) \oplus \eta^2 \oplus \cdots \oplus \eta^4) \) where \(\eta \) is the Hopf bundle over \(CP^m \) and \(\tau (M) \) denotes the tangent bundle of \(M \) [18]. The normal vector bundle \(\nu \) for \(\bar{f} \times h \) satisfies that \(\nu \oplus \nu \left(\left(S^{2m+1} \times S^{2n+1} \right) / \phi (1, \ldots, 1) \right) \)

is isomorphic to \(\pi' \left(\left(S^{m+1} \times S^{n+1} \right) / \phi (l_0, \ldots, l_n) \right) \oplus 2N \), where \(\varepsilon \) is a trivial real line bundle. It follows directly from the definition that

\[
c^H_i (\eta) = 1 + xt_1 + x^2 t_2 + \cdots + x^m t_m, \quad x = c^H_i (\eta)
\]

and

\[
c^H_i (\nu) = \pi^* \left\{ \frac{c^H_i (\eta^k) \cdots c^H_i (\eta^n)}{\left\{ c^H_i (\eta) \right\}^{n+1}} \right\},
\]

since the following diagram is commutative

\[
\begin{array}{ccc}
(S^{2m+1} \times S^{2n+1}) / \phi (1, \ldots, 1) & \xrightarrow{\bar{f} \times h} & (S^{2m+1} \times S^{2n+1}) / \phi (l_0, \ldots, l_n) \\
\Downarrow & & \Downarrow \\
CP^m & & CP^m
\end{array}
\]

By using Theorem 3.2 and Proposition 2.3 we have

\[
\beta_H (\left(\bar{f} \times h \right) (1)) = (\bar{f} \times h)^H c^H_i (\nu)
\]

\[
= \pi^* \left\{ \frac{l_0 \cdots l_n c^H_i (\eta^k) \cdots c^H_i (\eta^n)}{\left\{ c^H_i (\eta) \right\}^{n+1}} \right\} \times [S^{2n}]^*.
\]

On the other hand, we see that

\[
\beta_H (c^H_i (\eta^k)) = c^H_i (\eta^k) c^H_i (\eta^k) = kc^H_i (\eta) c^H_i (\eta^k)
\]

and

\[
\beta_H (\langle k \rangle_F (c^H_i (\eta))) = \beta_H (\langle k \rangle_F (c^H_i (\eta))) \cdot c^H_i (\eta) = \beta_H (\langle k \rangle_F (c^H_i (\eta))) \beta_H (c^H_i (\eta)).
\]

Therefore we have

\[
\beta_H (\langle k \rangle_F (c^H_i (\eta))) = \frac{kc^H_i (\eta)}{c^H_i (\eta)}.
\]
Noting that β_H maps $D_{\mathbb{R}^2}([P \subset S^{2n}])$ to $[S^{2n}]^*$, we obtain
\[
\beta_H(\pi^*\langle c_{v}(\eta) \rangle \cdots \langle c_{v}(\eta) \rangle) \times D_{\mathbb{R}^2}([P \subset S^{2n}]) = \beta_H((\bar{f} \times h); 1)).
\]
This completes the proof.

§ 4. Another Proof of the Kasparov Theorem

Let l_0, l_1, \ldots, l_n be integers prime to p. An action of Z_p on $S^{2m+1} \times S^{2n+1}$ is defined by
\[
\phi_p(l_0, \ldots, l_n) (g, ((u_0, \ldots, u_m), (v_0, \ldots, v_n))) = ((\rho u_0, \ldots, \rho u_m), (\rho^j v_0, \ldots, \rho^j v_n)),
\]
where $\rho = \exp(2\pi i/p)$ and g is a generator of Z_p. The map $f: S^{2m+1} \times S^{2n+1} \to S^{2m+1} \times S^{2n+1}$ with
\[
f((u_0, \ldots, u_m), (v_0, \ldots, v_n)) = (u_0, \ldots, u_m), \frac{1}{r}(v_0^l, \ldots, v_n^l),
\]
induces a map of orbit spaces:
\[
\bar{f}_p: (S^{2m+1} \times S^{2n+1})/\phi_p(1, \ldots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \ldots, l_n).
\]
Let $\pi: (S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \ldots, l_n) \to (S^{2m+1} \times S^{2n+1})/\phi(l_0, \ldots, l_n)$ be the natural projection. We take up a differentiable embedding
\[
h: (S^{2m+1} \times S^{2n+1})/\phi(1, \ldots, 1) \to S^{2n}
\]
for a sufficiently large N.

Proposition 4.1. In the following commutative diagram
\[
(S^{2m+1} \times S^{2n+1})/\phi_p(1, \ldots, 1) \xrightarrow{\pi} (S^{2m+1} \times S^{2n+1})/\phi(1, \ldots, 1) \\
\downarrow f_p \times h \pi \quad \quad \quad \downarrow \bar{f} \times h \\
(S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \ldots, l_n) \times S^{2n} \xrightarrow{\pi \times id} (S^{2m+1} \times S^{2n+1})/\phi(l_0, \ldots, l_n) \times S^{2n}
\]
(1) $\bar{f}_p \times h \pi$ and $\bar{f} \times h$ are embeddings
(2) $\pi \times id$ is transverse regular to $(\bar{f} \times h)((S^{2m+1} \times S^{2n+1})/\phi(1,
\[(\pi \times \text{id})^{-1}(\tilde{f} \times h) \left((S^{2m+1} \times S^{2n+1})/\phi(1, \cdots, 1) \right) = (\tilde{f}_p \times h\pi) \left((S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1) \right). \]

Proof. A tangent vector at a point of \((S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1)\) is described as \(\tilde{v} + \tilde{w}\) with \(\tilde{v} \in \{\text{the tangent space along the base space of the smooth fiber bundle } \pi: (S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi(1, \cdots, 1)\}\) and \(\tilde{w} \in \{\text{the tangent space along the fiber}\}\). Let \(d(\tilde{f}_p \times h\pi)(\tilde{v} + \tilde{w}) = 0\), then \(d(\tilde{f} \times h)(\tilde{v}) = 0\). Since \(\tilde{f} \times h\) is an embedding, \(\tilde{v} = 0\). On the other hand, \(d\tilde{f}_p\) is injective on each tangent space along the fiber, and \(\tilde{w} = 0\). This implies that \(\tilde{f}_p \times h\pi\) is embedding, because \(\tilde{f}_p \times h\pi\) is injective. The differentiable fibration \(\pi \times \text{id}\) is transversely regular to any submanifold of \((S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n) \times S^{2n}\). Q.E.D.

Considering the geometric interpretation of the cobordism group [19], we can see that Proposition 4.1 implies

Proposition 4.2. The induced homomorphism \((\pi \times \text{id})^*\): \(MU^*((S^{2m+1} \times S^{2n+1})/\phi(l_0, \cdots, l_n) \times S^{2n}) \to MU^*((S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \times S^{2n})\) sends \(D^{\nu}_W[(S^{2m+1} \times S^{2n+1})/\phi(1, \cdots, 1), \tilde{f} \times h]\) to \(D^{\nu}_W[(S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1), \tilde{f}_p \times h\pi]\).

Let \(\psi_p(l_0, \cdots, l_n) : Z_p \times S^{2n+1} \to S^{2n+1}\) be an action of \(Z_p\) on \(S^{2n+1}\) defined by

\[\psi_p(l_0, \cdots, l_n) (g, (v_0, \cdots, v_n)) = (\rho^{l_0}v_0, \cdots, \rho^{l_n}v_n). \]

We have a complex line bundle \(\tilde{\xi}(L) : S^{2n+1} \times \mathbb{C}^1 \to S^{2n+1}/\psi_p(l_0, \cdots, l_n)\) by taking the orbit space of an action of \(Z_p\) on \(S^{2n+1} \times \mathbb{C}^1\)

\[g \cdot ((u_0, \cdots, u_n), z) = ((\rho^{l_0}u_0, \cdots, \rho^{l_n}u_n), \rho z) \]

where \(g\) is a generator of \(Z_p\). Denote by

\(\tilde{\xi}(L) : S^{2n+1} \times \mathbb{C}^1 \to S^{2n+1}/Z_p\)

a line bundle over a standard lens space which is the orbit space of an action of \(Z_p\) on \(S^{2n+1} \times \mathbb{C}^1\) defined by \(g \cdot ((u_0, \cdots, u_n), z) = ((\rho u_0, \cdots, \rho u_n), \rho z)\). The bordism class of \(\tilde{f}_p \times h : (S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1) \to (S^{2m+1} \times S^{2n+1})/\phi_p(1, \cdots, 1)\).
$S^{2n+1})/\phi_p(l_0, \cdots, l_n) \times S^{2N}$ with the embedding \tilde{h} for a large N is described as follows.

Proposition 4.3. Suppose that $m \leq n$. Then

$$\left(S^{2m+1} \times S^{2n+1} \right)/\phi_p(1, \cdots, 1), \tilde{f}_p \times \tilde{h}$$

$$= D_{hN} \{ \pi^* \langle l_0 \rangle_F (c_B (\xi (L))) \cdots \langle l_n \rangle_F (c_B (\xi (L))) \} \times \{ P \subset S^{2N} \},$$

in $MU_* \left((S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \right)$, where $P = \{ \text{a point} \}$ and π: $(S^{2m+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \rightarrow S^{2m+1}/\psi_p(1, \cdots, 1)$ is the natural projection.

Proof. Theorem 3.3 and Proposition 4.2 imply that

$$\left(S^{2m+1} \times S^{2n+1} \right)/\phi_p(1, \cdots, 1), \tilde{f}_p \times h \pi$$

$$= D_{hN} \{ \pi^* \langle l_0 \rangle_F (c_B (\xi (L))) \cdots \langle l_n \rangle_F (c_B (\xi (L))) \} \times \{ P \subset S^{2N} \}.$$

But $h \pi$ is homotopic to \tilde{h}, and the bordism class is homotopy invariant, and hence the proposition follows.

The map $f: S^{2n+1} \rightarrow S^{2n+1}$ with $f(v_0, \cdots, v_n) = \frac{1}{r}(v_0^r, \cdots, v_n^r)$, r the norm of (v_0^r, \cdots, v_n^r), induces a map of orbit spaces

$$\tilde{f}_p: S^{2n+1}/\psi_p(1, \cdots, 1) \rightarrow S^{2n+1}/\psi_p(l_0, \cdots, l_n).$$

Theorem 4.4. In $MU_* \left(S^{2n+1}/\psi_p(l_0, \cdots, l_n) \right)$, $[S^{2n+1}/\psi_p(1, \cdots, 1), \tilde{f}_p]$ $= D_{hN} \langle l_0 \rangle_F (c_B (\xi (L))) \cdots \langle l_n \rangle_F (c_B (\xi (L))) \rangle.$

Proof. Define π_2: $(S^{2n+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \rightarrow S^{2n+1}/\psi_p(l_0, \cdots, l_n)$ by $\pi_2[u, v] = [v]$ and take a differentiable embedding $h: S^{2n+1}/\psi_p(l_0, \cdots, l_n) \rightarrow S^{2N}$ for a sufficiently large N. In the commutative diagram

\[
\begin{array}{ccc}
(S^{2n+1} \times S^{2n+1})/\phi_p(1, \cdots, 1) & \xrightarrow{\pi_2} & S^{2n+1}/\psi_p(1, \cdots, 1) \\
\tilde{f}_p \times h \pi_2 & \downarrow & \tilde{f}_p \times h \\
(S^{2n+1} \times S^{2n+1})/\phi_p(l_0, \cdots, l_n) \times S^{2N} & \xrightarrow{\pi_2 \times id} & S^{2n+1}/\psi_p(l_0, \cdots, l_n) \times S^{2N} \\
\tilde{f}_p \times h \pi_2 is an embedding and $\pi_2 \times id$ is transverse regular to $(\tilde{f}_p \times h)$ $(S^{2n+1}/\psi_p(1, \cdots, 1))$. Thus it follows that
We now note that the induced bundle $\pi_2^!\xi(L)$ by the projection $\pi: (S^{2n+1} \times S^{2n+1})/\phi_p(l_0, \ldots, l_n) \to S^{2n+1}/\phi_p(1, \ldots, 1)$ is isomorphic to the induced bundle $\pi_2^!\xi(L)$ by the natural projection $\pi_2: (S^{2n+1} \times S^{2n+1})/\phi_p(l_0, \ldots, l_n) \to S^{2n+1}/\phi_p(l_0, \ldots, l_n)$. Proposition 4.3 implies that

$$(\pi_2 \times id)^*D_{\mathbb{H}}[S^{2n+1}/\phi_p(1, \ldots, 1), \tilde{f}_p \times h] = D_{\mathbb{H}}[\phi_p(1, \ldots, 1), \tilde{f}_p \times h] = \phi_p(1, \ldots, 1), \tilde{f}_p \times h] .$$

Since $(\pi_2 \times id)^*$ is injective, it follows that

$$[S^{2n+1}/\phi_p(1, \ldots, 1), \tilde{f}_p \times h] = D_{\mathbb{H}}[\phi_p(1, \ldots, 1), \tilde{f}_p \times h] \subset S^{2n+1}/\phi_p(p, \ldots, 4).$$

Applying the homomorphism $MU_* (S^{2n+1}/\phi_p(l_0, \ldots, l_n) \times S^{2n}) \to MU_* (S^{2n+1}/\phi_p(l_0, \ldots, l_n))$ induced by the projection, we obtain the assertion.

Theorem 4.5. Let $\tilde{g}_p: S^{2n+1}/\phi_p(l_0, \ldots, l_n) \to S^{2n+1}/\phi_p(1, \ldots, 1)$ be the map of orbit spaces defined by

$$\tilde{g}_p[v_{l_0}, \ldots, v_{l_n}] = \left[\frac{1}{r} (v_{l_0}^{l'_0}, \ldots, v_{l_n}^{l'_n}) \right]$$

where $l_jl'_j=1$ modulo p and r is the norm of $(v_{l_0}^{l'_0}, \ldots, v_{l_n}^{l'_n})$. Then

$$D_{\mathbb{H}}[S^{2n+1}/\phi_p(l_0, \ldots, l_n), \tilde{g}_p] = \langle l'_0 \rangle \ast \langle l'_1 \rangle \ast \cdots \ast \langle l'_n \rangle = \langle p \rangle \ast \langle x \rangle \mod (\langle p \rangle \ast \langle x \rangle)$$

where $\langle p \rangle \ast \langle x \rangle \in MU_* (S^{2n+1}/\phi_p(1, \ldots, 1))$ and $x = c_{l_0}^! (\xi(L))$.

Proof. Consider the natural injection $j: S^{2n+1}/\phi_p(1, \ldots, 1) \to S^{2n+2}/\phi_p(1, \ldots, 1)$. We can see that $j\tilde{g}_p \tilde{f}_p = j$ and $\tilde{g}_p^! (\xi(L)) = \xi(L)$. We note that the Atiyah-Poincare isomorphism $D_{\mathbb{H}}: MU_* (X) \to MU_* (X), X$ a weakly almost complex manifold, is given by

$$D_{\mathbb{H}}(z) = z \cap [X, identity].$$

We put $U = [S^{2n+1}/\phi_p(1, \ldots, 1), identity] \in MU_{2n+1}(S^{2n+1}/\phi_p(1, \ldots, 1))$ and $\tilde{U} = [S^{2n+1}/\phi_p(l_0, \ldots, l_n), identity] \in MU_{2n+1}(S^{2n+1}/\phi_p(l_0, \ldots, l_n))$. Let
us compute with Theorem 4.4

\[j_\#(U) = j_\# \tilde{p}_* \tilde{f}_\#(U) \]

\[= j_\# \tilde{p}_* \{ [S^{n+1}/\psi_p(1, \ldots, 1), \tilde{f}_\#] \} \]

\[= j_\# \tilde{p}_* \{ \tilde{g}_\# \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \} \cap \tilde{U} \} \]

\[= j_\# \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cap \tilde{g}_\#(\tilde{U}) \} \]

\[= j_\# \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cup D_{MU} (\tilde{g}_\#(\tilde{U})) \} \cap U \} \]

Hence \(\langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cup D_{MU} (\tilde{g}_\#(\tilde{U})) \) \(-1\) belongs to \(D_{MU} (j_\#^{-1}(0)) \).

We recall the following commutative diagram:

\[
\begin{array}{ccc}
MU_*(S^{n+1}/\psi_p(1, \ldots, 1)) & \xrightarrow{D_{MU}} & MU_*(S^{n+1}/\psi_p(1, \ldots, 1)) \\
\uparrow j_\# & & \uparrow \phi_U \\
MU_*(S^{n+1}/\psi_p(1, \ldots, 1)) & \xrightarrow{c^*} & \widetilde{MU}*(T(\xi(L)))
\end{array}
\]

where \(\phi_U \) is the Thom isomorphism and \(c \) is the canonical collapsing map. Since \(\phi_U^{-1}c^{-1}(0) \) is generated by \(\langle p \rangle_F(x) \) (cf. [12]), \(\langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \cup D_{MU} (\tilde{g}_\#(\tilde{U})) \) \(-1\) belongs to the ideal generated by \(\langle p \rangle_F(x) \) in \(MU_*(S^{n+1}/\psi_p(1, \ldots, 1)) \). On the other hand, since \(\{ \xi(L)^{1j} \} \tilde{\xi}(L) \), we get

\[\langle [l_j]_F(x) \rangle \langle [l_j]_F(x) \rangle = x \]

and it follows from Lemma 5 of [9] that \(\{ \langle l_j \rangle_F([l_j]_F(x)) \} \langle l_j \rangle_F(x) \) \(-1\) belongs to an ideal generated by \(\langle p \rangle_F(x) \). Then we have

\[D_{MU} \tilde{g}_\#(\tilde{U}) \]

\[= \{ \langle l_0 \rangle_F(x) \cdots \langle l_n \rangle_F(x) \} \langle [l_0]_F(x) \rangle \cdots \]

\[\langle [l_n]_F(x) \rangle \cup D_{MU} (\tilde{g}_\#(\tilde{U})) \} \] modulo \(\langle p \rangle_F(x) \),

and

\[D_{MU} (\tilde{g}_\#(\tilde{U})) \equiv \langle [l_0]_F(x) \rangle \cdots \langle [l_n]_F(x) \rangle \] modulo \(\langle p \rangle_F(x) \).

Q.E.D.

Let us consider the composite
where i_* is the MU_*-homomorphism induced from the natural injection and ϑ is the natural isomorphism given in [5]. Now we shall prove the Kasparov theorem.

Theorem 4.6. Assume that $ljl' = 1$ modulo p. Then

$$[S^{2n+1}, \varphi_p(l_0, \ldots, l_n)]$$

$$= j_*(D_{MU} \{\langle l'_0 \rangle_F ([l_0]_F (x)) \cdots \langle l'_n \rangle_F ([l_n]_F (x)) \},$$

where $x = c_2 (\xi (L)) \in MU^3 (S^{2n+1}/\varphi_p(1, \ldots, 1))$.

Proof. From Theorem 4.5 there exists $h (x) \in MU^3 (S^{2n+1}/\varphi_p(1, \ldots, 1))$ such that

$$D_{MU}^{-1} [S^{2n+1}/\varphi_p(l_0, \ldots, l_n), \vartheta]$$

$$= \{\langle l'_0 \rangle_F ([l_0]_F (x)) \cdots \langle l'_n \rangle_F ([l_n]_F (x)) + \langle p \rangle_F (x) h (x) \} \cap U$$

and

$$[S^{2n+1}/\varphi_p(l_0, \ldots, l_n), \vartheta]$$

$$= \{\langle l'_0 \rangle_F ([l_0]_F (x)) \cdots \langle l'_n \rangle_F ([l_n]_F (x)) + \langle p \rangle_F (x) h (x) \} \cap i_* (U)$$

where $U = [S^{2n+1}/\varphi_p(1, \ldots, 1), identity]$. Let \bar{x} be the first cobordism Chern class of the canonical line bundle $\xi (L)$ over $S^{2n+1}/\varphi_p(1, \ldots, 1)$ and let

$$\bar{U} = [S^{2n+1}/\varphi_p(1, \ldots, 1), identity]$$

which belongs to $MU_{2n+2} (S^{2n+1}/\varphi_p(1, \ldots, 1))$. Then we have

$$\bar{x} \cap \bar{U} = i_* U \quad (cf. [11]).$$

Noting that $[p]_F (\bar{x}) = 0$, we calculate

$$i_* [S^{2n+1}/\varphi_p(l_0, \ldots, l_n), \vartheta]$$

$$= i_* \{i_* \{\langle l'_0 \rangle_F ([l_0]_F (\bar{x})) \cdots \langle l'_n \rangle_F ([l_n]_F (\bar{x})) + \langle p \rangle_F (\bar{x}) h (\bar{x}) \} \cap i_* (U) \}

$$= \{\langle l'_0 \rangle_F ([l_0]_F (\bar{x})) \cdots \langle l'_n \rangle_F ([l_n]_F (\bar{x})) + \langle p \rangle_F (\bar{x}) h (\bar{x}) \} \cap i_* (U)

$$= \langle l'_0 \rangle_F ([l_0]_F (\bar{x})) \cdots \langle l'_n \rangle_F ([l_n]_F (\bar{x})) \cap i_* (U)
§ 5. Characteristic Classes of $\xi(V_a)$

The product space $I \times X$ of a Z_p-space X and an interval $I = [0, 1]$ has a Z_p-action with $g \cdot (t, x) = (t, g \cdot x)$, and we have Z_p-spaces

$S(X):$ the usual suspension of X

$C^+(X) = X \times [1/2, 1] / X \times \{1\}$

$C^-(X) = X \times [0, 1/2] / X \times \{0\}.$

Denote by p_0 and p_1 vertices obtained by the identification of $X \times 0$ and $X \times 1$ in these spaces. A map $\varepsilon_i: EZ_p \times_{Z_p} \{p\} \to EZ_p \times_{Z_p} S(X)$ is defined to be $\varepsilon_i(x, p) = (x, p_i)$, and a map $\pi: EZ_p \times_{Z_p} X \to EZ_p \times_{Z_p} \{p\} = BZ_p$ is defined to be $\pi(y, x) = (y, p)$. We can derive the following propositions after the fashion of Proposition 10.1 and Theorem 10.2 of [4].

Proposition 5.1. Suppose that X is a compact Z_p-space. Then there exists an exact sequence:

$$MU^*(EZ_p \times_{Z_p} S(X)) \xrightarrow{\varepsilon^*_0 - \varepsilon^*_1} MU^*(BZ_p) \xrightarrow{\pi^*} MU^*(EZ_p \times_{Z_p} X).$$

Proof. $\tilde{MU}^*((EZ_p)^+ \wedge_{Z_p} -)$ is an equivariant cohomology theory described in [10]. Consider the Mayer-Vietoris exact sequence for a triple $(\{S(X)\}^+; \{C^+(X)\}^+, \{C^-(X)\}^+)$

$$\longrightarrow MU^*(EZ_p \times_{Z_p} S(X)) \xrightarrow{j^*} MU^*(EZ_p \times_{Z_p} C^+(X)) \oplus MU^*(EZ_p \times_{Z_p} C^-(X)) \xrightarrow{k^*} MU^*(EZ_p \times_{Z_p} X) \longrightarrow$$

where $j^*(x) = (j^*_0(x), j^*_1(x))$ and $k^*(x_1, x_0) = i^*_1(x_1) - i^*_0(x_0)$, and j_i and i_i are natural inclusions. The isomorphisms $MU^*(EZ_p \times_{Z_p} C^+(X)) \cong MU^*(BZ_p)$ and $MU^*(EZ_p \times_{Z_p} C^-(X)) \cong MU^*(BZ_p)$ yield the proposition.
Let $\Psi : \text{Vect}_c(-) \to MU^*(-)$ be a natural transformation assigning a complex vector bundle over X to an element of $MU^*(X)$ which satisfies

$$\Psi(f^*\zeta) = f^*\Psi(\zeta).$$

Consider complex vector bundles

$$\xi(V_a) : EZ_p \times_{Z_p} V_a \to BZ_p$$

where V_a is the complex Z_p-module obtained by the tangent space at an isolated fixed point a of an almost complex Z_p-manifold M. Then we have

Proposition 5.2. Suppose that a and b are isolated fixed points of a simply connected almost complex Z_p-manifold. If $H^i(BZ_p; \{\pi_1(M)\}) = 0$ for $1 \leq i \leq 2n-1$, then $\Psi(\xi(V_a)) - \Psi(\xi(V_b))$ belongs to an ideal generated by x^n in $MU^*(BZ_p) \cong MU^*[x]/([p^r(x)])$, where $x = c_1(\xi(L))$, L the canonical one dimensional complex Z_p-module.

Proof. The $(2n-1)$-skeleton of EZ_p can be taken to be S^{2n-1} with the action given by the complex n-dimensional Z_p-module nL. We take an invariant subspace $EZ_p \times \{0, 1\}$ is a Z_p-space $EZ_p \times I$ with $g \cdot (e, t) = (g \cdot e, t)$. Consider the constant maps

$$h_0 : EZ_p \to \{b\} \quad \text{and} \quad h_1 : EZ_p \to \{a\}$$

which induce maps

$$\tilde{h}_0 : S^{2n-1} \subset EZ_p \to \{b\} \quad \text{and} \quad \tilde{h}_1 : S^{2n-1} \subset EZ_p \to \{a\}.$$

We can construct an equivariant homotopy $h : S^{2n-1} \times I \to M$ between \tilde{h}_0 and \tilde{h}_1, by using the condition for the cohomology $H^i(BZ_p; \{\pi_1(M)\})$, and an equivariant map $\tilde{h} : S(S^{2n-1}) \to M$ (cf. [4, p. 355]). Since

$$\xi(V_a) = c_1(id \times_{Z_p} \tilde{h})^* \xi \quad \text{and} \quad \xi(V_b) = c_1(id \times_{Z_p} \tilde{h})^* \xi,$$

where ξ denotes a vector bundle $EZ_p \times_{Z_p} E(\pi(M)) \to EZ_p \times_{Z_p} M$, it follows from Proposition 5.1 that $\pi^* (\Psi(\xi(V_a)) - \Psi(\xi(V_b))) = 0$. By using the Gysin exact sequence

$$MU^*(BZ_p) \xrightarrow{x^n} MU^{*+2n}(BZ_p) \xrightarrow{\pi^*} MU^{*+2n}(EZ_p \times_{Z_p} S^{2n-1}) \to$$

we complete the proof.
We consider the symmetric polynomial $P_\omega (\xi_1, \ldots, \xi_n)$ discussed in Section 3, and put $c^\omega_i (\tau_n) = P_\omega (c^\omega (\tau_n), \ldots, c^\omega (\tau_n))$, where $c^\omega_i (\tau_n)$ is the i-th cobordism Chern class [7]. The Landweber-Novikov operation

$$S^\omega_u : MU^* (X) \to MU^{*+2\omega} (X)$$

is defined as follows: for $x = [f]$, $f : S^{n+k} \to MU(n)$,

$$S^\omega_u (x) = \sigma^{n+k} f^* \Phi_u (c^\omega_i (\tau_n)) \quad (\text{cf. } [14], [17]).$$

The Boardman map $\beta_v : MU^* (X) \to (MU \wedge MU)^* (X) \cong MU^* (X) [[t_1, t_2, \ldots]]$ is defined by

$$\beta_v (x) = \sum_S S^\omega_u (x) t^e \quad (\text{cf. } [2], [19]),$$

which is natural and multiplicative. Let $J(G)$ be the set of isomorphism classes of non trivial irreducible complex \mathbb{Z}_p-modules, and let $G^V = \{ V_1^k \oplus \cdots \oplus V_k^k : |V_i| \in J(G) \text{ and } k \text{'s are non negative integers} \}$. We consider the multiplicative system S consisting of cobordism Euler classes $\{ e(EZ_p \times \mathbb{Z}_p V) \mid V \in G^V \}$ in $MU^* (BZ_p)$. For a Z_p-space X, $MU^* (EZ_p \times \mathbb{Z}_p X)$ is a $MU^* (BZ_p)$-module by a map $EZ_p \times \mathbb{Z}_p X \to BZ_p \times (EZ_p \times \mathbb{Z}_p X)$ sending $[e, x]$ to $([e], [e, x])$. The localized module $S^{-1}MU^* (EZ_p \times \mathbb{Z}_p X)$ is the $MU^* (BZ_p)$-module $MU^* (EZ_p \times \mathbb{Z}_p X)$ consists of all fractions $\{ x/e : x \in MU^* (EZ_p \times \mathbb{Z}_p X), e \in S \}$. For a complex vector bundle ζ over X, we put

$$c^\omega_i (\zeta) = 1 + \sum u c^\omega_u (\zeta) t^u$$

which is an invertible element of $MU^* [[t_1, t_2, \ldots]]$. We define $\tilde{\beta}_v : S^{-1}MU^* (EZ_p \times \mathbb{Z}_p X) \to S^{-1}MU^* (EZ_p \times \mathbb{Z}_p X) [[t_1, t_2, \ldots]]$ by

$$\tilde{\beta}_v (y/e (\xi (V))) = \left(\beta_v (y) \cdot \frac{1}{c^\omega_i (\xi (V))} \right) e (\xi (V))$$

which is multiplicative and natural. Moreover, we define

$$\tilde{S}^\omega_u : S^{-1}MU^* (EZ_p \times \mathbb{Z}_p X) \to S^{-1}MU^* (EZ_p \times \mathbb{Z}_p X)$$

by $\tilde{\beta}_v (x/e) = \sum_S \tilde{S}^\omega_u (x/e) t^e$.

Proposition 5.3. The operation \tilde{S}^ω_u on $S^{-1}MU^* (EZ_p \times \mathbb{Z}_p X)$ have the following properties:

1. \tilde{S}^ω_u is natural.
2. $\tilde{S}^\omega_u ((x_1/e_1) \cdot (x_2/e_2)) = \sum_{u=(w,w')} \tilde{S}^\omega_u (x_1/e_1) \tilde{S}^\omega_u (x_2/e_2)$, where for
\(\omega' = (j'_1, \ldots, j'_r)\) and \(\omega^* = (j''_1, \ldots, j''_r)\), \((\omega' \omega^*)\) denotes \((j'_1, \ldots, j'_r, j''_1, \ldots, j''_r)\).

(3) \(\tilde{S}^\omega_u(x/1) = S^\omega_u(x)/1\), where \(S^\omega_u\) is the ordinary Landweber-Novikov operation, i.e. \(\lambda S^\omega_u = \tilde{S}^\omega_u \lambda,\) where \(\lambda: MU^*(EZ_p \times Z_p) \rightarrow S^{-1}MU^*(EZ_p \times Z_p)\) is the canonical map.

(4) For \(\omega = \left(\frac{1}{i_1}, \frac{1}{i_2}, \ldots, \frac{1}{i_k}\right),\)

\[
\tilde{S}^\omega_u(1/e(\xi(L))) = (-1)^{i_1 + \cdots + i_k} \left\{ \frac{(i_1 + \cdots + i_k)!}{i_1! \cdots i_k!} e(\xi(L))^{i_1 + \cdots + i_k}\right\}/1.
\]

Proof. By making use of the multiplicativity and the naturality of \(\beta^u\), we derive (1) and (2). For a zero dimensional complex \(Z_p\)-module 0, we have \(e(\xi(0)) = 1\) and \(c_i^u(\xi(0)) = 1\), and

\[
\tilde{\beta}^u(x/1) = \frac{\beta^u(x) \cdot 1}{c_i^u(\xi(0))} e(\xi(0))
\]

which implies (3). To prove (4), we calculate

\[
\tilde{\beta}^u(1/e(\xi(L)))
= \left\{ \frac{1}{1 + e(\xi(L)) t_1 + e(\xi(L)) t_2 + \cdots} \right\}/e(\xi(L))
= \{ \sum (-1)^{t_1 + \cdots + t_2 + \cdots} \}/e(\xi(L)).
\]

This completes the proof.

We see easily the following

Proposition 5.4. \(S^\omega_u(e(\xi(V))) = e(\xi(V)) c_i^u(\xi(V))\).

Taking two complex \(Z_p\)-modules \(V_a\) and \(V_b\) obtained from tangent spaces at isolated fixed points \(a\) and \(b\) of an almost complex \(Z_p\)-manifold, a fraction \(e(\xi(V_a))/e(\xi(V_b))\) is an integral element from the following
Proposition 5.5. Suppose that L is a canonical complex one dimensional \mathbb{Z}_p-module. Take k_i and l_j such that $(k_i, p) = 1$ and $(l_j, p) = 1$. Then for $n \geq m$, $e(\xi (L^{k_1} \oplus \cdots \oplus L^{k_n})) / e(\xi (L^{l_1} \oplus \cdots \oplus L^{l_m}))$ belongs to the image of $\lambda: MU^* (BZ_p) \to S^{-1}MU^* (BZ_p)$ which sends x to $x/1$.

Proof. For $x = c_b(\xi (L))$,

$$e(\xi (L^k)) = \lfloor k \rfloor_F (x) = kx + a^{(k)} x^3 + a^{(k)} x^5 + \cdots$$

and

$$e(\xi (L^k)) / x = \langle k \rangle_F (x) / 1.$$

Assume that $(l, p) = 1$, then there is an integer l' such that $l' l \equiv 1$ modulo p and

$$x = \langle l' \rangle_F ([l]_F (x)) \cdot [l]_F (x).$$

Therefore we have

$$\frac{e(\xi (L^{k_1} \oplus \cdots \oplus L^{k_n}))}{e(\xi (L^{l_1} \oplus \cdots \oplus L^{l_m}))} = \langle l'_1 \rangle_F ([l_1]_F (x)) \cdots \langle l'_m \rangle_F ([l_m]_F (x)) \langle k_i \rangle_F (x) \cdots \langle k_n \rangle_F (x) [k_{m+1}]_F (x) \cdots [k_n]_F (x) / 1.$$

where $l' l \equiv 1$ modulo p. Q.E.D.

Proof of Theorem A. For brevity, we put $e_a = e(\xi (V_a))$ and $e_b = e(\xi (V_b))$. We show by induction with respect to the length of the partition ω that

$$\bar{S}_\omega \left(\frac{e_a}{e_b} \right) = e_a \cdot \frac{a_x (x) \cdot x^n}{e_b}$$

where $a_x (x) \in MU^* (BZ_p)$. By using (2) of Proposition 5.3 we obtain

$$\bar{S}_{(t)} \left(\frac{e_a}{1} \right) = \bar{S}_{(t)} \left(\frac{e_a}{e_b} \cdot \frac{e_b}{1} + \frac{e_a}{e_b} \cdot \bar{S}_{(t)} \left(\frac{e_b}{1} \right) \right).$$

Hence it follows from (3) of Propositions 5.3 and 5.4 that
Proposition 5.2 implies that there is an element \(h(x) \in MU^*(BZ_p) \) such that \(c^U_0(\xi) = h(x) x^n \), and

\[
\bar{S}^U_0 \left(\begin{array}{c} e_a \\ e_b \\ \end{array} \right) = \frac{e_a \cdot c^U_0(\xi)}{e_b}.
\]

Suppose the result is proved for \(\omega' \) whose length is less than the length of \(\omega \). By using (2) of Proposition 5.3 with the inductive hypothesis we calculate

\[
\bar{S}^U_0 \left(\begin{array}{c} e_a \\ e_b \\ \end{array} \right) = \frac{e_a \cdot h(x) x^n}{1}.
\]

where \(h(x) \in MU^*(BZ_p) \). Moreover it follows from Propositions 5.4 and 5.2 that there exists an element \(h'_0(x) \in MU^*(BZ_p) \) such that

\[
\bar{S}^U_0 \left(\begin{array}{c} e_a \\ e_b \\ \end{array} \right) = \frac{e_a h'_0(x) x^n}{1} - \sum_{\omega \in \omega' \omega''} \frac{e_a}{e_b} \{ h'_0(x) x^n c^U_0(\xi) \}/1,
\]

and there is an element \(h(x) \in MU^*(BZ_p) \) such that

\[
\bar{S}^U_0 \left(\begin{array}{c} e_a \\ e_b \\ \end{array} \right) = \frac{e_a h(x) x^n}{1}.
\]

It is pointed out by [9] that the canonical map \(\lambda: MU^*(BZ_p) \to S^1 MU^*(BZ_p) \) with \(\lambda(x) = x/1 \) has the kernel which is an ideal generated by \(\langle p \rangle \) for \(x \). We then complete the proof.

\section*{§ 6. On the Bordism Classes of Actions on Invariant Spheres around the Isolated Fixed Points}

The Thom homomorphism \(\mu: MU^*(-) \to H^*(-) \) is the multiplicative natural transformation with the following properties.

\textbf{Proposition 6.1.} Let \(\xi \) be a complex vector bundle over \(X \).

Then
(1) \(\mu c_w^n(\xi) = c^n_w(\xi) \)

(2) \(\Phi_f(x) = \Phi(\mu(x)) \), where \(\Phi_f : MU^*(X) \to MU^*(T(\xi)) \) and \(\Phi : H^*(X) \to H^*(T(\xi)) \) are the Thom homomorphisms.

Recall the following property of the Umkehr homomorphism [8].

Proposition 6.2. \(g_1(g^*(x) \cup y) = x \cup g_1(y) \).

We observe \(S^n_w : MU^*(X) \to H^*(X) \) for a weakly complex manifold \(X \).

Proposition 6.3. Take an element \(x = [M \to X] \in MU_*(X) \), where \(X \) is a weakly complex manifold and \(g \) is a differentiable map. Then,

\[S^n_w D_{MU}^1(x) = \sum_{w = (w', w'')} c^n_w(\bar{\tau}(X)) g_1(c^n_w(\nu)) \]

where \(\nu \) is the normal bundle of \(M \) in a Euclidean space with the complex structure and \(\bar{\tau}(X) \) is the Whitney sum of \(\tau(X) \) and some trivial bundle which is a complex bundle.

Proof. Let \(\tilde{g} : M \to X \times R^i \) be an embedding with the normal bundle \(\bar{\nu} \) equipped with a complex structure and \(\tilde{g} = g \cdot D_{MU}^1(x) \) is represented by the composition

\[S^i \wedge X^* \xrightarrow{c} T(\bar{\nu}) \xrightarrow{\tilde{g}} MU(k) \]

which \(c \) is the collapsing map and \(\tilde{g} \) is the map induced by the classifying map for \(\nu \). The Whitney sum \(\bar{\nu} \circlearrowleft \tau(M) \) is stably equivalent to \(g^* \tau(X) \) and

\[c^n_t(\bar{\nu}) \cdot c^n_t(\bar{\tau}(M)) = g^* c^n_t(\bar{\tau}(X)) \cdot c^n_t(\nu) . \]

Hence we have that \(c^n_t(\bar{\nu}) = g^* c^n_t(\bar{\tau}(X)) \cdot c^n_t(\nu) \). We calculate with Propositions 6.1 and 6.2

\[S^n_w D_{MU}^1(x) = \mu S^n_w D_{MU}^1(x) = \sigma^{-1} c^* \{ \Phi(c^n_w(\bar{\nu})) \} \]

\[= g_1(c^n_w(\bar{\nu})) \]

\[= g_1 \left(\sum_{w = (w', w'')} g^* (c^n_w(\bar{\tau}(X)) c^n_w(\nu)) \right) \]
MU^k is isomorphic to MU_{-k} and a bordism class [M] of a weakly almost complex manifold can be regarded to be in MU^*. Directly Proposition 6.3 implies

Corollary 6.4. \(\mu S^v_\ast [M] = \langle c^H_{\omega} (\nu), [M] \rangle \), where \(\nu \) is the normal vector bundle of \(M \) in a Euclidean space which is equipped with the complex structure, where \(c^H_{(i_1, \ldots, i_l)} \) is the Chern class for \(\sum t_1^i \cdots t_l^i \).

We consider the ideal \(\mathcal{J}_p \) in \(MU^* \) which is generated by \(p, a_{i}^{(p)}, a_{i}^{(p)}, \ldots, a_{i}^{(p)}, \ldots \) which are coefficients of

\[
[p]_F (x) = px + a_{i}^{(p)} x^i + a_{i}^{(p)} x^i + \cdots.
\]

We recall the following property of \(\mathcal{J}_p \).

Proposition 6.5 (cf. [9]). \([M] \) belongs to \(\mathcal{J}_p \) if and only if \(c^H_\omega [M] = \langle c^H_\omega (\tau(M)), [M] \rangle \equiv 0 \) modulo \(p \), for any \(\omega \), where \(p \) is prime.

Proof. Let \(y = c^H_0 (\gamma) \) be the cobordism first Chern class of the Hopf bundle \(\gamma \) over \(CP^n \). It is known (cf. [14], [17]) that

\[
S^v_\ast ([p]_F(y)) = \begin{cases}
\{ [p]_F (y) \}^{i+1} & \text{if } \omega = (i) \\
0 & \text{otherwise.}
\end{cases}
\]

We see \(S^v_\ast ([p]_F(y)) \equiv 0 \) modulo \(p \), and

\[
S^v_\ast (py + a_{i}^{(p)} y^i + a_{i}^{(p)} y^i + \cdots) \equiv 0 \pmod{p}.
\]

Then we can deduce that \(S^v_\ast (a_i^{(p)}) \equiv 0 \pmod{p} \). Therefore we have that the Chern numbers of \([N] \) are zero modulo \(p \) if \([N] \) belongs to \(\mathcal{J}_p \). The Hopf bundle \(\tilde{\gamma} \) over \(CP^n \) satisfies that

\[
D_{MU} (c^H_0 (\tilde{\gamma})) = q [CP^{n-1} \subset CP^n] + a_{i}^{(p)} [CP^{n-2} \subset CP^n] + \cdots + a_{n-1}^{(p)} [P \subset CP^n], \text{ in } MU_\ast (CP^n).
\]

Let \(D_{MU} (c^H_0 (\tilde{\gamma})) = [V_{0}^{n-1} \subset CP^n] \), then

\[
(V_{0}^{n-1}) = q [CP^{n-1}] + a_{i}^{(p)} [CP^{n-2}] + \cdots + a_{n-1}^{(p)}.
\]

We note that \(V_{0}^{n-1} \) is a \(U \)-submanifold dual to \(c^H_0 (\tilde{\gamma}) \) (cf. [7, p. 81]),

\[
= \sum_{\omega = (x^s)} c^H_\omega (\tau(X)) \tilde{g}_\omega (c^H_\omega (\nu)).
\]

Q.E.D.
and the fundamental classes of V_{\otimes}^{n-1} and CP^n satisfy that $i_*[V_{\otimes}^{n-1}] = c^f(\bar{\eta}) \cap [CP^n]$, $i: V_{\otimes}^{n-1} \subset CP^n$. Noting that the normal bundle ν of V_{\otimes}^{n-1} in CP^n is isomorphic to $c^f(\bar{\eta})$, we have that $c^f_{k(n-1)}(\tau(V_{\otimes}^{n-1})) = i^* \{(n+1) - q^n\}$ $\bar{\eta}^{n-1}$, where $\bar{\eta} = c^f(\bar{\eta})$. Therefore it follows that the Chern number $c^f_{k(n-1)}[V_{\otimes}^{n-1}] = q(n+1) - q^n$. Using (*) and $c^f_{k(n-1)}[CP^n] = n$, we have $c^f_{k(n-1)}[a_{\otimes}^{n-1}] = q - q^n$. For prime q, we take

$$[W_{q^{k-1}}] = a_{\otimes}^{q-1} + q^b[CP^n], \ b = q^k - k \ \text{and} \ u = q^k - 1$$

whose Chern number $c^f_{(q-1)}[W_{q^{k-1}}]$ equals to q. Take a $2i$-dimensional weakly almost complex manifold W_i, $i \neq q^k - 1$ for any prime q, such that $c^f_{q}[W_i] = 1$. According to [16], $MU_* = \mathbb{Z}[[W_i], [w_2], \cdots]$. Assume that $c^f_{q}[M] \equiv 0$ modulo p for any ω and

$$[M] = \sum a_{i-t} [W_i]^{t_1} \cdots [W_n]^{t_n}.$$

Noting that

$$S_{t_1, \cdots, t_n} \left[\frac{c^f_{q}[W_i]}{t_1} \frac{c^f_{q}[W_2]}{t_2} \cdots \frac{c^f_{q}[W_n]}{t_n}\right]^{t_1}$$

$$= (c^f_{q}[W_i])^{t_1} (c^f_{q}[W_2])^{t_2} \cdots (c^f_{q}[W_n])^{t_n},$$

we inductively deduce that if $i_s = 0$ for $s = p^k - 1$, then $a_{t_i, t_2, \cdots, t_n} \equiv 0$ modulo p, and $[M] \in \mathcal{F}_p$. Q.E.D.

We now go back to consider the cobordism Euler class of complex vector bundle $\xi(V_a): EZ_p \times_{Z_p} V_a \to BZ_p$, V_a the complex Z_p-module given by the tangent space at the isolated fixed points of a Z_p-manifold.

Proposition 6.6. Suppose that V_a and V_b are complex Z_p-modules given by tangent spaces at isolated fixed points a and b of a simply connected almost complex Z_p-manifold M, and $\lambda(\alpha) = e(\xi(V_a)) / e(\xi(V_b))$, where $\lambda: MU^*(BZ_p) \to S^{-1}MU^*(BZ_p)$ is the canonical homomorphism. If $H^i(BZ_p; \{\pi_i(M)\}) \cong 0$ for $1 \leq i \leq 2n-1$, then

$$\alpha = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \cdots$$

where $\lambda_0, \lambda_1, \cdots, \lambda_{n-1}$ belong to \mathcal{F}_p.

Proof. Suppose that $|\omega| = 2i$, $1 \leq i \leq n-1$. Then $S_{\omega}^i \lambda \in MU^{2i-2k}$.

Note that \(\mu: MU^k(P) \to H^k(P), \ P = \{ \text{a point} \} \), is the zero homomorphism for \(k > 0 \), and \(S_\ell^0(\lambda_0) = 0 \) if \(\omega \neq (0) \). Suppose that \(\lambda, j = 1, 2, \ldots, i-1 \), belong to \(J_\ell \). Then

\[
\mu S_\ell^0(\alpha) = \mu S_\ell^0(\lambda_0) \cdot x_H^j = c^H_\alpha[\lambda_i] x_H^j,
\]

where \(x_H^j = c^H_\alpha(\xi(L)) \). Since \(S_\ell^0(\alpha) \) belongs to an ideal generated by \(x^n \) and \(\langle p \rangle_F(c^F_\alpha(\xi(L))) \) from Theorem A, \(c^H_\alpha[\lambda_i] x_H^j = 0 \) in \(H^*(BZ_p) \). Proposition 6.5 implies that \(\lambda_i \in J_\ell \). Q.E.D.

Proof of Theorem B. Let \(\xi(V) \) be a complex vector bundle \(S^{2k-1} \times_{Z_p} V \to S^{2k-1}/Z_p \), where \(V \) is a complex \(Z_p \)-module and \(S^{2k-1} \) has the \(Z_p \)-action \(\psi_p(1, \ldots, 1) \). Let \(i: S^{2k-1}/\psi_p(1, \ldots, 1) \to BZ_p \) be the natural injection. Put \(x = c^F_\alpha(\xi(L)) \) and \(\bar{x} = c^F_\alpha(\xi(L)). \) Then, \(i_\ell \xi(L) \cong \xi(L) \).

We see that in \(S^{-1}MU^*(BZ_p) \),

\[
\begin{align*}
& l_1 \cdots l_k \frac{x^k}{e(\xi(V_a))} - m_1 \cdots m_k \frac{x^k}{e(\xi(V_b))} \\
= & l_1 \cdots l_k \frac{x^k}{e(\xi(V_a))} - m_1 \cdots m_k \frac{x^k}{e(\xi(V_a))} \cdot \frac{e(\xi(V_a))}{e(\xi(V_b))},
\end{align*}
\]

On the other hand it follows from Proposition 6.6 that

\[
m_1 \cdots m_k \langle l_1 \rangle_F(x) \langle m'_1 \rangle_F([m_1]_F(x)) \cdots \langle l_k \rangle_F(x) \langle m'_k \rangle_F([m_k]_F(x)) \equiv l_1 \cdots l_k + h(x) x^n \text{ modulo } J_\ell
\]

where \(m_i m'_i \equiv 1 \) modulo \(p \). Therefore we get

\[
l_1 \cdots l_k \langle l'_1 \rangle_F([l_1]_F(x)) \cdots \langle l'_k \rangle_F([l_k]_F(x)) \\
- m_1 \cdots m_k \langle m'_1 \rangle_F([m_1]_F(x)) \cdots \langle m'_k \rangle_F([m_k]_F(x)) \\
\equiv \tilde{h}(x) x^n \text{ modulo } J_\ell, \ l_1 l'_1 \equiv 1 \text{ modulo } p, \text{ where } \tilde{h}(x) \in MU^*(BZ_p).
\]

Applying \(i^* \) to the above, we have

\[
l_1 \cdots l_k \langle l'_1 \rangle_F([l_1]_F(x)) \cdots \langle l'_k \rangle_F([l_k]_F(x)) \\
- m_1 \cdots m_k \langle m'_1 \rangle_F([m_1]_F(x)) \cdots \langle m'_k \rangle_F([m_k]_F(x)) \\
\equiv \tilde{h}(x) x^n \text{ modulo } J_\ell \ (\text{cf. [12]}).
\]

Since \(j_\ast D_{MU} x^n = [S^{2k-1}, \phi] \) (cf. [11]), Theorems 4.5 and 4.6 imply the theorem.
§ 7. The Isolated Fixed Points of Z_3-Actions

In this section, we will consider a complex structure preserving smooth Z_3-action (M^{2k}, θ) on a simply connected closed almost complex manifold M^{2k}. Let a and b be isolated fixed points. We describe the induced actions of Z_3 on the tangent spaces at a and b as complex Z_3-modules

$$V_a = sL^3 \oplus (k-s)L$$

and

$$V_b = (s+t) L^3 \oplus (k-s-t)L.$$

Recall that

$$\langle 2 \rangle_F(x) = a_0^{(2)} + a_1^{(2)}x + a_2^{(2)}x^2 + \cdots, \ a_0^{(2)} \in MU^{-2i}$$

and

$$c_{(n)}^H(a_n^{(2)}) = 2 - 2^{n+1}.$$

In this situation, we shall first indicate a lemma which is derived as proof of Theorem B.

Lemma 7.1. Suppose that $H^i(BZ_3; \pi_1(M^{2k})) = 0$ for $1 \leq i \leq 2n-1$. Then for $1 \leq j \leq n-1$

$$\sum_{l_1 + \cdots + l_j = j} a_1^{(j)} \cdots a_j^{(j)} \in J_3.$$

Proof: In $S^{-1}MU^*(BZ_3)$, $MU^*(BZ_3) \cong MU^*[[x]]/[3]_F(x)$, we have

$$\frac{e(V_a)}{e(V_b)} = \mu_0 + \mu_1 x + \cdots + \mu_k x^k + \cdots, \ \mu_1, \cdots, \mu_{n-1} \in J_3,$$

from Proposition 6.6 and

$$\frac{2^r x^k}{e(V_a)} - \frac{2^{r+1} x^k}{e(V_b)} = \overline{\mu}_1 x + \overline{\mu}_2 x^2 + \cdots + \overline{\mu}_k x^k + \cdots,$$

$$\overline{\mu}_1, \cdots, \overline{\mu}_{n-1} \in J_3.$$

Noting the fact that the kernel of the canonical map $\lambda: MU^*(BZ_3) \to$
$S^{-1}MU^*(BZ_0)$ is the ideal generated by $\langle 3 \rangle_F(x)$, we obtain

$$2^i x^i e(V_0) - 2^{i+1} x^i e(V_a)$$

$$= e(V_a) e(V_b) \{ \bar{\mu}_1 x + \bar{\mu}_2 x^2 + \cdots + \bar{\mu}_k x^k + \cdots \}$$

and

$$2^i (\langle 2 \rangle_F(x))^i - 2^i$$

$$= \bar{\mu}_1 x + \bar{\mu}_2 x^2 + \cdots + \bar{\mu}_k x^k + \cdots, \bar{\mu}_1, \cdots, \bar{\mu}_{n-i} \in \mathcal{J}_1. \quad \text{Q.E.D.}$$

Then we obtain the following

Lemma 7.2. Suppose that $H^i(BZ_0; \{ \pi_i(M^n) \}) \cong 0$ for $1 \leq i \leq 2n - 1$. Then, for $1 \leq m \leq n - 1$ the binomial coefficients $\binom{t}{m}$ are divisible by 3.

Proof. We take a partition

$$\omega = (k, \ldots, k, \ldots, 2, \ldots, 2, 1, \ldots, 1, 0, \ldots, 0)$$

of k, where

$$|\omega| = 1 \cdot j_1 + 2 \cdot j_2 + \cdots + k \cdot j_k = k$$

and

$$j_0 + j_1 + \cdots + j_k = t.$$

We define now

$$a_\omega^{(2)} = \{ a_k^{(2)} \} j_1 \cdots \{ a_1^{(2)} \} j_1 \{ a_0^{(2)} \} j_0$$

and

$$\lambda_\omega = \frac{t!}{j_k! \cdots j_2! j_1! j_0!}.$$

Then we have the following

$$\sum_{t_1 + \cdots + t_k = j} a_1^{(2)} \cdots a_k^{(2)} = \sum_{|\omega| = j} \lambda_\omega a_\omega^{(2)}.$$

We take up the case $k = 1$. Since from Lemma 7.1 $2^{i-1} \cdot a_1^{(2)} = \sum_{t_1 + \cdots + t_k = i}$
ACTIONS OF CYCLIC GROUPS

\(a_i^{(2)} \cdots a_i^{(2)} \) belongs to \(F_3 \), and \(c(0)(a_i^{(2)}) = -2 \). \(t \) is divisible by 3. Assume that \(m < n \) and \(\binom{t}{j} \), \(j = 1, \ldots, m-1 \), are divisible by 3. From Lemma 7.1 \(\sum_{\omega = m} \omega a_i^{(2)} \) belongs to \(F_3 \), and for \(\| \omega \| \leq m-1 \)
\[
\lambda_\omega = \frac{\| \omega \| !}{j_k! \cdots j_1! \cdots j_1!} \left(\binom{t}{j} \right) \equiv 0 \pmod{3}.
\]
By induction we complete the proof.

We shall give some information on isolated fixed points of \(Z_3 \)-actions.

Theorem 7.3. Let \(a \) and \(b \) be isolated fixed points of a complex structure preserving smooth action of \(Z_3 \) on the simply connected closed almost complex manifold \(M^{2k} \). Suppose that
\[
k = \lambda_u 3^n + \lambda_{u-1} 3^{n-1} + \cdots + \lambda_3 3 + \lambda_0, \quad 0 \leq \lambda_j \leq 2 \quad \text{and} \quad \lambda_u \neq 0
\]
and
\[
H_i^k(BZ_3; \{ \pi_i(L^{2k}) \}) \cong 0 \quad \text{for} \quad 1 \leq i \leq 2 \cdot 3^n + 1.
\]
Then \(V_a \) is equivalent to \(V_b \).

Proof: Let \(V_a = sL^2 \oplus (k-s) \) \(\) \(L \) and \(V_b = (s+t) L^2 \oplus (k-s-t) L \).
Suppose that \(t = \lambda_u 3^n + \lambda_{u-1} 3^{n-1} + \cdots + \lambda_3 3 + \lambda_0 \leq k \).
It follows from Lemma 7.2 that
\[
\lambda'_t = \binom{t}{3} \equiv 0 \pmod{3}.
\]
Hence \(\lambda'_t = 0 \) and \(t = 0 \).

Q.E.D.

Corollary 7.4. Suppose that \(Z_3 \) acts on a simply connected almost complex closed \(2k \)-dimensional manifold \(M \) as a complex structure preserving diffeomorphism with isolated fixed points only. Let
\[
k = \lambda_u 3^n + \cdots + \lambda_3 3 + \lambda_0, \quad 0 \leq \lambda_j \leq 2, \quad \text{and} \quad \lambda_u \neq 0.
\]
If \(H_i^k(BZ_3; \{ \pi_i(L^{2k}) \}) \cong 0 \) for \(1 \leq i \leq 2 \cdot 3^n + 1 \), then the number of fixed points is divisible by \(2^{(n+1)/2} - 1 \).

Proof: Let \(n \) be the number of the fixed points. Theorem 7.3
implies that
\[n[S(V_a), \phi_a] = 0 \text{ in } MU_*(Z) \]
where \(V_a = sL^2 + (k-s)L \). The Kasparov theorem (Theorem 4.6) implies that
\[n(l + 3m)[S^{2k-1}, \tilde{\phi}] + \mu_l[S^{2k-3}, \tilde{\phi}] + \cdots + \mu_{l-1}[S^1, \tilde{\phi}] = 0 \]
where \(l \equiv 0 \) modulo 3 and \(\mu_l \in \Gamma(3), \Gamma(3)[[CP^2]] = MU_* \) (cf. [6], [11]).

From the result of [6] and [11] we can derive the assertion.

References

