Time Periodic Solutions of Some Non-linear Evolution Equations

By

Takao Kakita*

§ 1. Introduction

Considered in this paper are non-linear evolution equations of the form

\[
\frac{\partial^{x}u}{\partial t^{x}} + Au + B(u, \frac{\partial u}{\partial t}) = f(x, t) \quad \text{in} \ \Omega \times (-\infty, \infty)
\]

together with periodicity conditions

\[
u(x, t) = v(x, t + \tau), \quad u_t(x, t) = u_t(x, t + \tau)
\]

and Dirichlet boundary conditions

\[
D^\alpha u(x, t) = 0 \quad \text{on} \ \partial \Omega \quad \text{for} \ |\alpha| \leq m - 1.
\]

Each \(A\) in (1) is a non-linear elliptic operator of order \(2m\) in \(\Omega\), a fixed bounded domain in \(\mathbb{R}^N\) (which is similar to the one defined by F.E. Browder ([1])), and

\[
B(u, u_t) = \beta'(|u|^2)u_t - 4u_t, \quad \text{or more generally}
\]

\[
\sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} D^\alpha \beta'(D^\alpha u_t)^2 D^\alpha u_t
\]

where each \(\beta'(s^2)\) is a non-negative function on \(\mathbb{R}^1\), of polynomial growth. Each function \(f(x, t)\) on \(\Omega \times \mathbb{R}^1\) is periodic in \(t\) (of period \(\tau > 0\)) with values in an appropriate Sobolev space. The purpose of this paper is to prove...
an existence theorem of weak solutions for the equation (1) with conditions (2)–(3), subsequently to [3], where the theorem was proved for A, semi-linear elliptic operators, and $B(u, u_t) = (1 + \beta(|u|^2))u_t$. In case A is a quasi-linear elliptic operator of the second order and $B(u, u_t) = \sum_{i=1}^{N} \frac{\partial^2 u}{\partial x_i^2} + u^p - 1$, initial-boundary value problems for (1) have been solved by M. Tsutsumi ([7]), J.C. Clements ([2]), also boundary value problems with periodic conditions for (1) by Clements ([2]). W.A. Strauss has obtained (in unpublished work) weak solutions periodic in t of the equation

$$\frac{\partial^2 u}{\partial t^2} - \Delta u + |u|^{p-1} u + |u|^{q-1} \frac{\partial u}{\partial t} = f(x, t)$$

where $f(x, t)$ is a function periodic in t, $p \geq q \geq 1$ (cf. [6]).

An example of our theorem gives the existence of periodic solutions in t for the equation

$$\frac{\partial^2 u}{\partial t^2} - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(|\frac{\partial u}{\partial x_i}|^{p-2} \frac{\partial u}{\partial x_i} \right) - \Delta \frac{\partial u}{\partial t} + |u|^{q-1} \frac{\partial u}{\partial t} = f(x, t)$$

where $f(x, t)$ is as above and $p/2 \geq q \geq 2$.

§ 2. Definitions and Main Theorem

Let $W^{m,r}(\Omega)$ be the Sobolev space

$$\{ u(x) | D^\alpha u(x) \in L^r(\Omega), |\alpha| \leq m \}$$

with norm

$$\|u\|_{m,r} = \left(\sum_{|\alpha| \leq m} \int_{\Omega} |D^\alpha u(x)|^r \, dx \right)^{1/r}$$

where $D_j = \frac{\partial}{\partial x_j}$, $D_\alpha = D_1^{\alpha_1} \cdots D_N^{\alpha_N}$ for $\alpha = (\alpha_1, \ldots, \alpha_N)$ and $|\alpha| = \sum_{i=1}^{N} \alpha_i$. $W^{m,r}(\Omega)$ is a separable Banach space for $1 < p < \infty$. $W_0^{m,r}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ (the space of all C^∞-functions in Ω with compact support) in $W^{m,r}(\Omega)$. $C^1(\mathbb{R}^1)$ is defined as the set of all periodic functions in $C^1(\mathbb{R}^1)$ of

1) This result was informed to the author by Professor Strauss.
2) Throughout the paper we assume all functions considered are real valued.
period \(\tau \). By \(<u^*, u> \) we denote the value of \(u^* \in X^* \) at \(u \in X \) for a Banach space \(X \) and its dual \(X^* \). We denote by \(L^p(\tau; X) \) the Banach space of functions \(f \) which are in \(L^p \) over any \(I_\tau = [t, t+\tau] \) with values in \(X \) and

\[
f(t) = f(t+\tau) \quad \text{in } X \text{ for all } t \in \mathbb{R}^1,
\]

provided with the norm \((1 \leq p < \infty) \)

\[
\|f\|_{L^p(\tau; X)} = \left\{ \int_I |f(t)|^p \, dt \right\}^{1/p}.
\]

As for \(L^\infty(\tau; X) \), the usual modification is needed. The \(L^p(\Omega) \) norm is denoted by \(\|\cdot\|_p \), especially by \(\|\cdot\| \) for \(p = 2 \).

Assumption A. Let \(A \) be a (non-linear) differential operator in \(\Omega \), given in divergence form

\[
Au(x) = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha A_\alpha(x, u, \ldots, D^\alpha u)
\]

where \(D^\alpha u = \{D^\alpha u\}_{|\alpha| = k} \), and the following conditions are imposed on \(A_\alpha \):

i) each \(A_\alpha(x, \xi) \) is a continuous function of \((x, \xi) \) (\(\xi \) is a real vector corresponding to \(\{D^\alpha u\}_{|\alpha| \leq m} \));

ii) there exists a continuous function \(g_0(s) \) on \(\mathbb{R}^1 \) such that

\[
|A_\alpha(x, u(x), \ldots, D^m u(x))| \leq g_0(\|u\|_{m,p}) \left\{ \sum_{|\beta| \leq m} |D^\beta u(x)|^{p-1} + 1 \right\}
\]

for all \(u \in W^{m,p}(\Omega) \) \((p \geq 2) \), all \(\alpha \) with \(|\alpha| \leq m \) and almost all \(x \in \Omega \);

iii) the non-linear Dirichlet form on \(W \),

\[
a(u, v) = \sum_{|\alpha| \leq m} \int_\Omega A_\alpha(x, u(x), \ldots, D^\alpha u(x)) D^\alpha v(x) \, dx
\]

satisfies, for a continuous function \(g_1(s) \geq 0 \) on \(\mathbb{R}^1 \),

\[
|a(u, v)| \leq g_1(\|u\|_{m,p}) \|v\|_{m,p}, \quad u, v \in \overline{W};
\]

iv) for \(u \in \overline{W} \),

\[
a(u, u) \geq c_0(\|u\|_{m,p}) + k_0 \|u\|^2
\]

\[1\) We denote \(W^{2,p}_\Omega \) \((\Omega) \) by \(\overline{W} \) for simplicity.
where \(c_0(s) \) is a continuous function on \(\mathbb{R}^1 \) with \(\lim_{s \to \infty} c_0(s) = \infty \) and \(k_0 \) is a positive constant;

v) \(a(u, u-v) - a(v, u-v) \geq 0, u, v \in W; \)

vi) there exists a functional \(r(u) \) on \(W \) such that

\[
(8) \quad a(\phi(t), \phi'(t)) \geq -\frac{d}{dt} r(\phi(t))
\]

for any \(\phi(t) \), a finite sum of functions \(c(t)w \) for \(c(t) \in C^1(\tau) \) and \(w \in W \), and that for \(u \in W \)

\[
(9) \quad c_1(\|u\|_{m, p}) \leq r(u) \leq k_1 a(u, u) + k_2
\]

where \(c_1(s) \) is a continuous function on \(\mathbb{R}^1 \) with \(\lim_{s \to \infty} c_1(s) = \infty \) and \(k_1, k_2 \) are some constants.

Assumption B. Let \(\beta_0(s) \) be a twice differentiable function on \(\mathbb{R}^1 \) such that for \(|\alpha| \leq m-1 \)

\[
0 \leq \beta'_\alpha(s^2) \leq C |s|^{q-1}, \text{ in particular, } \varepsilon_0 \leq \beta'_\alpha(s^2) (|\alpha| = 1)
\]

\[
|\beta''_\alpha(s^2)| \leq C |s|^{q-3}
\]

where \(2 \leq q \leq p/2, C, \varepsilon_0 \) are constants >0.

Now our theorem is stated as follows.

Theorem. Given \(f(t) \in L^2(\tau; W) \) (not zero), there exists a solution \(u \in L^\infty(\tau; W) \) of the equation (1):

\[
u_{tt} + A u + B(u, u_t) = f,
\]

such that \(u_t \in L^2(\tau; L^2(\Omega)), u_{tt} \in L^p(\tau; W^*) \) and that

\[
B(u, u_t) = \sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} D^\alpha \beta'_\alpha(|D^\alpha u|^2) D^\alpha u_t
\]

where \(1/p + 1/p' = 1 \), \(A \) and \(B \) satisfy Assumption A and Assumption B, respectively.

§3. **Proof of the Theorem**

We shall prove the theorem by means of Faedo-Galerkin's method
combined with the fixed point theorem and the compactness method. Since \(W \) is separable, there exists a countable basis \(\{w_n\} \) in \(W \) which is orthonormal in \(L^2(\Omega) \). Let \(W_n \) be the subspace of \(W \) spanned by \(w_1, \ldots, w_n \).

Consider the ordinary differential system in \(W_n \)

\[
(\mathbf{x}_n(t), \mathbf{y}_n(t)) = (f'(t), f''(t)) \quad (j=1, 2, \ldots, n)
\]

with periodic conditions

\[
\mathbf{u}_1(t) = \mathbf{u}_1(t + \tau), \quad \mathbf{u}_1(t) = \mathbf{u}_1(t + \tau)
\]

where

\[
b(\mathbf{u}_n(t), \mathbf{y}_n(t); \mathbf{w}_j) = (\mathbf{B}(\mathbf{u}_n(t), \mathbf{y}_n(t)), \mathbf{w}_j)
\]

\[
= (\beta'(\mathbf{u}_n(t)) u_n(t), \mathbf{w}_j) + (u_n(t), \mathbf{w}_j).
\]

The solutions will be of the form

\[
\mathbf{u}_n(t) = \sum_{k=1}^{n} c_{n,k}(t) w_k, \quad c_{n,k}(t) \in C^1(\tau)
\]

if they exist. Now the substitution of the \(\mathbf{u}_n(t) \) into (10), (11) gives the second order differential system of \(\mathbf{C}_n(t) = (c_{n1}(t), \ldots, c_{nn}(t))^* \),

\[
(\mathbf{C}_n(t) + \mathbf{F}(\mathbf{C}_n(t)) + \mathbf{H}(\mathbf{C}_n(t)), \quad \mathbf{C}_n(t)) = \mathbf{H}_0(t)
\]

and the periodic conditions

\[
\mathbf{C}_n(t) = \mathbf{C}_n(t + \tau), \quad \mathbf{C}_n(t) = \mathbf{C}_n(t + \tau),
\]

where

\[
\mathbf{F}(\mathbf{C}_n(t)) = (F_1(\mathbf{C}_n(t)), \ldots, F_n(\mathbf{C}_n(t)))^*,
\]

\[
F_j(\mathbf{C}_n(t)) = a(\mathbf{u}_n(t), \mathbf{w}_j);
\]

\[
\mathbf{H}(\mathbf{C}_n(t), \mathbf{C}_n(t)) = (H_1(\mathbf{C}_n(t)), \ldots, H_n(\mathbf{C}_n(t)))^*,
\]

1) * denotes the transpose operation of \(n \)-vector.
Lemma 1. There exists a solution $C_n(t)$ of (13), (14).

Proof. Consider a system of λ dependence $(0 \leq \lambda \leq 1)$,

$$\begin{equation}
H_j(C_n(t), C'_n(t)) = b(u^a(t), u^a; w_j);
\end{equation}$$

$$\begin{equation}
\mathcal{H}_0(t) = (f_1(t), \ldots, f_n(t))^*, f_j(t) = (f(t), w_j) \quad (j = 1, 2, \ldots, n)
\end{equation}$$

(15) \quad \begin{align*}
C''_n(t) + \delta C'_n(t) + k C_n(t) \\
= \lambda \left\{ - F(C_n(t)) + k C_n(t) - \mathcal{H}(C_n(t), C'_n(t)) + \delta C'_n(t) \right\} \\
+ \mathcal{H}_0(t)
\end{align*}

\[
\text{together with (14). Here } \delta \text{ and } k \text{ are any fixed constants such that } 0 < \delta < \delta_0, 0 < k < k_0 \text{ where } \delta_0 \text{ is a constant satisfying } \delta_0 \|u\| \leq \|u\|_{1,2} \text{ for any } u \in H^1(\Omega), k_0 \text{ a constant in Assumption A-(iv). \ Let } G_n(t, s) \text{ be a unique Green's function of (15) for } \lambda = 0, \mathcal{H}_0 = 0 \text{ with conditions (14), and define the operator } T_n(\lambda) \text{ from a Banach space } X_n \text{ into itself:}
\end{align*}

$$\begin{equation}
T_n(\lambda) = \int_{t_r}^t \left\{ \lambda \left\{ - F(C_n(s)) + k C_n(s) - \mathcal{H}(C_n(s), C'_n(s)) + \delta C'_n(s) \right\} \\
+ \mathcal{H}_0(s) \right\} G_n(t, s) \, ds
\end{equation}$$

where

$$X_n = C^1(\tau) \times \cdots \times C^1(\tau) \quad (n \text{-copies})$$

with norm

$$\|C_n\|_{X_n} = \sup_{t_r} \{|C_n(t)| + |C'_n(t)|\} \quad (|\cdot|: \text{the length of } n\text{-vector}) \text{ for } C_n \in X_n.$$

To prove the lemma it suffices to show that the operator $T_n(1)$ has a fixed point in X_n. So we apply Leray-Schauder's theorem to the family of operators $T_n(\lambda) \ (0 \leq \lambda \leq 1)$ on the space X_n. We observe that

$$\begin{equation}
\|F(C_n^{(i)}) - F(C_n)\|_\infty \to 0
\end{equation}$$

and

$$\begin{equation}
\|H(C_n^{(i)}, C'_n^{(i)}) - H(C_n, C'_n)\| \to 0
\end{equation}$$
when $C_\nu \to C$ in X, as $\nu \to \infty$. In fact, (17) is a direct consequence of Assumption A on A_α by measure theoretical arguments. To show (18) we put

$$u^{(\nu)}(x, t) = \sum_{k=1}^\infty c_k^{(\nu)}(t) w_k(x)$$

$$u(x, t) = \sum_{k=1}^\infty c_k(t) w_k(x),$$

dropping the suffix n for brevity in notation. Assumption B implies

$$|\beta'_\alpha(|u^{(\nu)}(x, t)|^2) - \beta'_\alpha(|u(x, t)|^2)|$$

$$\leq C |u^{(\nu)}(x, t) - u(x, t)||u^{(\nu)}(x, t)| + |u(x, t)||^{q-2}$$

for all t and almost all $x \in \Omega$. Since $||C^{(\nu)}||_w, ||C^{(\nu)}||_m$ are bounded on ν, we obtain by Hölder's inequality

$$|(u_t^{(\nu)}(x, t) - \beta'_\alpha(|u^{(\nu)}(x, t)|^2)) w_j)|$$

$$\leq C ||u_t^{(\nu)}(x, t)|| w_j$$

$$\leq C ||u^{(\nu)}(t)|| w_j$$

for some constant K. Similarly we have

$$|((u_t(x, t) - u_t^{(\nu)}(x, t)) \beta'(|u(x, t)|^2), w_j)| \leq K ||C^{(\nu)} - C||_{X_n}.$$

Hence $(u_t^{(\nu)}(t) \beta'_\alpha(|u^{(\nu)}(t)|^2), w_j) \to (u_t(t) \beta'_\alpha(|u(t)|^2), w_j)$ uniformly on t as $\nu \to \infty$, which implies (18). Thus the continuity of $T_n(\lambda)$ on X follows immediately from (16), (17) and (18).

Next, let $S = \{C \in X_n \mid ||C|| \leq 1\}$. Then the properties of $G_n(t, s)$ imply that for each λ, $T_n(\lambda) S$ is bounded in X and is a set of equi-continuous functions, and that

$$||(T_n(\lambda_2) - T_n(\lambda_1))/X|| \leq K |\lambda_2 - \lambda_1|$$

for a suitable constant K. Therefore each $T_n(\lambda)$ is a compact operator from X into X and the family \{ $T_n(\lambda) \mid 0 \leq \lambda \leq 1$ \} is homotopic. We note that the topological degree of $T_n(0)$ is $+1$ since the system (15) for $\lambda = 0$ has a unique solution in X. In order to see that the topological degree
of \(T_n(\lambda) \) is +1 (positive) it only remains to show that for each \(\lambda \)

\[
C(t) = T_n(\lambda)C(t) \Rightarrow \|C\|_{X_n} \leq L
\]

where \(L \) is a constant independent of \(\lambda \). The proof of (19) is a variant of that of the following lemma, and is omitted. Q.E.D.

Lemma 2. The solutions \(u^n \) of (10), (11) have the following estimates:

\[
\sum_{|\alpha| \leq 1} \int_{I_{\tau}} \|D^\alpha u^n(t)\|^2 dt \leq K_1, \tag{20}
\]

\[
\|u^n(t)\|, \|u^n(t)\|_{m,p} \leq K_2 \tag{21}
\]

where \(K_1, K_2 \) are constants independent of \(n \) and \(t \).

Proof. Since both sides of (10) are linear on \(w_j \), we have, replacing \(w_j \) by \(u^n \),

\[
(u^n(t), u^n(t)) + a(u^n(t), u^n(t)) + b(u^n(t), u^n(t)) = (f(t), u^n(t)).
\]

Integrating both sides over \(I_{\tau} \) with respect to \(t \) and using Assumptions A-(vi), B we obtain

\[
\sum_{|\alpha| \leq 1} \int_{I_{\tau}} \|D^\alpha u^n(t)\|^2 dt \leq \left(\int_{I_{\tau}} \|f(t)\|^2 dt \right)^{1/2} \left(\int_{I_{\tau}} \|u^n(t)\|^2 dt \right)^{1/2},
\]

from which the estimates (20) follows immediately.

Replacing \(w_j \) by \(u^n \) in (10) gives

\[
(u^n(t), u^n(t)) + a(u^n(t), u^n(t)) + b(u^n(t), u^n(t); u^n(t)) = (f(t), u^n(t)). \tag{22}
\]

We remark that

\[
\int_{I_{\tau}} b(u^n(t), u^n(t); u^n(t)) dt = 0
\]

because of the periodicity of \(u^n(t) \). Then, integrating (22) over \(I_{\tau} \) with respect to \(t \) and using Assumption A-(iv) we have
\[(23) \quad k_0 \int_{I_\varepsilon} \|u^n(t)\|^2 \, dt + \int_{I_\varepsilon} c_0(\|u^n(t)\|_{m,p}) \, dt \leq \int_{I_\varepsilon} \|u^n(t)\|^2 \, dt + \left(\int_{I_\varepsilon} \|f(t)\|^2 \, dt \right)^{1/2} \left(\int_{I_\varepsilon} \|u^n(t)\|^2 \, dt \right)^{1/2}.
\]

This yields that
\[(24) \quad \int_{I_\varepsilon} \|u^n(t)\|^2 \, dt, \quad \int_{I_\varepsilon} a(u^n(t), u^n(t)) \, dt
\]

have a bound independent of \(n\), because \(\int_{I_\varepsilon} c_0(\|u^n(t)\|_{m,p}) \, dt\) is bounded from below on \(n\).

Finally substituting \(u^n\) for \(w_j\) in (10) and integrating both sides from \(s\) to \(t\) (\(s < t\)), we obtain by Assumption A-(vi),
\[(25) \quad \frac{1}{2} \|u^n(t)\|^2 + c_1(\|u^n(t)\|_{m,p}) \leq K + \frac{1}{2} \|u^n(s)\|^2 + k_1 a(u^n(s), u^n(s)) + k_2
\]

where \(K\) is a constant dependent on \(f\) and \(K_1\) in (20). Further, integrating both sides of (25) with respect to \(s\) from \(t - \tau\) to \(t\) and noting that the right hand side is bounded by virtue of (24), we know that
\[\|u^n(t)\|, \quad c_1(\|u^n(t)\|_{m,p}) \leq K \quad \text{(independent of \(n\) and \(t\)).}
\]

Since \(\lim_{s \to \infty} c_1(s) = \infty\), this proves the lemma. Q.E.D.

Now we may infer that
\[\{u^n\} \text{ is bounded in } L^\infty(\tau; W),
\]
\[\{u^n\} \text{ is bounded in } L^2(\tau; H^1(\Omega)) \cap L^\infty(\tau; L^2(\Omega)).
\]

Then we may extract a subsequence \(\{u^\nu\}\) such that
\[u^\nu \to u \quad \text{(an element of } L^\infty(\tau; W)) \text{ weakly in } L^\infty(\tau; W),
\]
\[u^\nu \to u \quad \text{strongly in } L^2(\tau; L^2(\Omega));
\]
in addition,
$u^* \to u$ strongly in $L^p(\Omega \times I_\tau)$

where we have used that the injection mappings

\[i: W^{k,p}(\Omega) \to W^{k-1,p}(\Omega) \]

\[j: H^1(\Omega) \to L^2(\Omega) \]

are compact.

Making use of these results, we shall prove:

Lemma 3. For any $v \in L^2(\tau; W)$

\[
\int_{I_\tau} b(u^*, u_t^*; v) dt \to \int_{I_\tau} b(u, u_t; v) dt.
\]

Proof. By definition, we have

\[
b(u^*, u_t^*; v) - b(u, u_t; v)
\]

\[
= (u_t^* - u_t, \beta_0'(\|u\|^2)v) + (u_t^*, (\beta_0'(\|u^*\|^2) - \beta_0'(\|u\|^2))v)
\]

Assumption B implies

\[
\|\beta_0'(\|u(t)\|^2)v(t)\| \leq C\|u(t)\|^{q-1}|v(t)|.
\]

Therefore we obtain

\[
\int_\Omega |u(t)|^{2(q-1)}|v(t)|^2 dx \leq \|u(t)\|_{L^{2(q-1)}} \|v(t)\|_{L^q},
\]

which means

\[
\beta_0'(\|u(t)\|^2)v(t) \in L^2(\tau; L^2(\Omega)).
\]

As $u_t^* \to u_t$ strongly in $L^2(\tau; L^2(\Omega))$, we know that

\[
\int_{I_\tau} (u_t^* - u_t, \beta_0'(\|u\|^2)v) dt \to 0.
\]

For the second term of the right hand side of (26), since

\[
|\beta_0'(|u^*|^2) - \beta_0'(|u|^2)| \leq |u^* - u|(|u^*|^{q-2} + |u|^{q-2}),
\]

we obtain
\[
| (u_t^*, \beta_0'(|u|^2) - \beta_0(|u|^2))v |
\leq C \|u_t^*(t)\| \|u_t^*(t) - u(t)\|_{L^q} \left(\|u^*(t)\|_{L^q}^{2^{-1}} + \|u(t)\|_{L^q}^{2^{-1}} \right) \|v(t)\|_{L^q},
\]

taking boundedness of \(\|u^*(t)\|_{L^q}^{2^{-1}}, \|u_t^*(t)\| \) into consideration,
\[
\leq K \|u^*(t) - u(t)\|_{L^q} \|v(t)\|_{L^q},
\]
where \(K \) is a constant independent of \(n \) and \(t \). Therefore we have
\[
\left| \int_{I_r} (u_t^*, \beta_0'(|u|^2) - \beta_0(|u|^2))v \right| dt
\leq K \left(\int_{I_r} \|u^*(t) - u(t)\|_{L^q} \right)^{1/2} \left(\int_{I_r} \|v(t)\|_{L^q} \right)^{1/2}
\]
\[
\leq K_1 \|u^* - u\|_{L^q(I_r)} \|v\|_{L^q(I_r)},
\]
\(K_1 \) being another constant independent of \(n \). Since \(u^* \to u \) strongly in \(L^p(Q \times I_r) \), the last member in the above inequalities tends to zero. Thus we proved the lemma. Q.E.D.

Finally, to establish the remaining part of our theorem, we need the following assertion.

Lemma 4. There exists a subsequence \(\{\mu\} \) of \(\{v\} \) such that
\[
\int_{I_r} a(u^*(t), v(t)) dt \to \int_{I_r} a(u(t), v(t)) dt \quad (\mu \to \infty)
\]
for any \(v \in L^2(\tau; W) \).

Proof. Consider a linear form on \(L^2(\tau; W) \):
\[
v \to \int_{I_r} a(u(t), v(t)) dt.
\]
Since \(u \in L^\infty(\tau; W) \), Assumption A-(iii) implies that
\[
\left| \int_{I_r} a(u(t), v(t)) dt \right| \leq \int_{I_r} g_1(\|u(t)\|_{m,p}) \|v(t)\|_{m,p} dt
\]
\[
\leq K \|v\|_{L^2(\tau; W)}.
\]
Hence the linear form is continuous on \(L^2(\tau; W) \), so that there is an
element \(\mathcal{A} u \in L^2(\tau; W^*) \) such that
\[
\int_{I_t} a(u(t), v(t)) \, dt = \langle \mathcal{A} u, v \rangle.
\]

Here \(\langle \; , \; \rangle \) denotes the pairing between \(L^2(\tau; W) \) and \(L^2(\tau; W^*) \). The operator \(\mathcal{A} \) sending \(L^2(\tau; W) \) into \(L^2(\tau; W^*) \) satisfies
\[
\| \mathcal{A} u \|_{L^2(\tau; W)} = \sup_v \left| \int_{I_t} a(u^*(t), v(t)) \, dt \right| \leq K
\]
where \(v \) in the second member runs through the set \(\{ ||v||_{L^2(\tau; W)} : 1 \} \). Thus there exist a subsequence \(\{ u_j \} \subseteq \{ v \} \) and an element \(\xi \in L^2(\tau; W^*) \) such that for \(v \in L^2(\tau; W) \)
\[
\int_{I_t} a(u^*(t), v(t)) \, dt \rightarrow \langle \xi, v \rangle
\]
where \(\xi \) is an element of \(L^2(\tau; W^*) \). We assert \(\mathcal{A} u = \xi \). Take any \(\varphi \), a finite sum of \(c_k(t)w_k(x) \) where \(c_k \in C^1(\tau), w_k \in W \). Then for large \(n \) hold the equalities:
\[
- \int_{I_t} (u^*(t), \varphi(t)) \, dt + \int_{I_t} a(u^*(t), \varphi(t)) \, dt
\]
\[
+ \int_{I_t} b(u^*(t), u(t); \varphi(t)) \, dt = \int_{I_t} (f(t), \varphi(t)) \, dt.
\]

Letting \(\mu \rightarrow \infty \), we have
\[
(27) \quad - \int_{I_t} (u(t), \varphi(t)) \, dt + \langle \xi, \varphi \rangle + \int_{I_t} b(u(t), u(t); \varphi(t)) \, dt
\]
\[
= \int_{I_t} (f(t), \varphi(t)) \, dt.
\]

Let
\[
V(\tau; W) = \{ v \in L^2(\tau; W) \mid v_t \in L^2(\tau; L^2(\Omega)) \}
\]
with norm
\[
\| v \|_{V(\tau; W)} = \| v \|_{L^2(\tau; W)} + \| v_t \|_{L^2(\tau; L^2(\Omega))}.
\]
Since the set of the φ defined above is dense in $V(\tau; W)$, (27) is valid for any $\varphi \in V(\tau; W)$, in particular, for $\varphi = u$. Hence,

$$-\int_{\tau} \|u_\tau(t)\|^2 \, dt + \langle \xi, u \rangle + \int_{\tau} b(u(t), u_\tau(t); u(t)) \, dt = \int_{\tau} (f(t), u(t)) \, dt.$$

However, we observe that

$$\int_{\tau} (u, \beta_0^\tau(|u|^2), u) \, dt = \lim_{\tau \to 0} \int_{\tau} (\tau^\gamma \beta_0^\tau(|u|^2), u^\tau) \, dt = 0,$$

from which follows

$$-\int_{\tau} \|u_\tau\|^2 \, dt + \langle \xi, u \rangle = \int_{\tau} (f, u) \, dt. \quad (28)$$

Since

$$-\int_{\tau} \|u_\tau^\tau\|^2 \, dt + \int_{\tau} a(u^\tau, u^\tau) \, dt = \int_{\tau} (f, u^\tau) \, dt,$$

taking the limit inferior of both sides, and recalling that $u_\tau^\tau \to u_\tau$ strongly in $L^2(\tau; L^2(\Omega))$ we obtain that

$$-\int_{\tau} \|u_\tau\|^2 \, dt + \lim_{\tau \to 0} \langle \mathcal{A} u^\tau, u^\tau \rangle \leq \int_{\tau} (f, u) \, dt. \quad (29)$$

Comparing (29) with (28) yields

$$\langle \xi, u \rangle \geq \lim_{\tau \to 0} \langle \mathcal{A} u^\tau, u^\tau \rangle$$

from which we can conclude in the same way as in [5] that $\hat{\xi} = \mathcal{A} u$. Q.E.D.

Now we observe in the proof of Lemma 3 that $B(u, u_\tau) \in L^2(\tau; W^*)$, so that for any smooth function $\varphi(x, t)$ periodic in t, we have in the distributional sense that
\[
\int_{I_t} (u_{tt}, \varphi) dt + \int_{I_t} (A u, \varphi) dt + \int_{I_t} (B(u, u_t), \varphi) dt
\]
\[
= \int_{I_t} (f, \varphi) dt,
\]
\[
u_{tt} = -A u - B(u, u_t) + f \in L^2(\tau; \mathcal{W}^*),
\]
which completes the proof of our theorem, for
\[
B(u, u_t) = \sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} D^{\alpha} \beta'_\alpha(|D^{\alpha} u|^2) D^{\alpha} u_t,
\]
we need some modifications. Consider the system (15) for \(\varepsilon_0\delta\) instead of \(\delta\) and for
\[
b(u^n, u^n_t, w_j) = \sum_{|\alpha| \leq m-1} (\beta'_\alpha(|D^{\alpha} u^n|^2) D^{\alpha} u^n, D^{\alpha} w_j).
\]
Then we can obtain the estimates
\[
\sum_{|\alpha| \leq m-1} \int_{I_t} ||D^{\alpha} u^n||^2 dt \leq K_1
\]
as in the proof of Lemma 2. Also we know by (20)
\[
\sum_{|\alpha| \leq m-1} \int_{I_t} ||D^{\alpha} u^n||^2 dt \leq K_2.
\]
Therefore we may choose a further subsequence \(\{\sigma\}\) of \(\{\mu\}\) such that when \(\sigma \to \infty\),
\[
D^{\alpha} u^n \to D^{\alpha} u_t \quad \text{weakly in } L^2(\Omega \times I_t),
\]
and
\[
D^{\alpha} u^n \to D^{\alpha} u \quad \text{strongly in } L^p(\Omega \times I_t),
\]
both for \(|\alpha| \leq m-1\). Since, for \(v \in L^p(\tau; \mathcal{W})\),
\[
b(u^n, u^n_t; v) - b(u, u_t; v)
\]
\[
= \sum_{|\alpha| \leq m-1} (D^{\alpha} u^n t - D^{\alpha} u, \beta'_\alpha(|D^{\alpha} u|^2) D^{\alpha} v)
\]
\[
+ \sum_{|\alpha| \leq m-1} (D^{\alpha} u^n t (\beta'_\alpha(|D^{\alpha} u^n|^2) - \beta'_\alpha(|D^{\alpha} u|^2)), D^{\alpha} v),
\]
to prove Lemma 3 for \(v \in L^p(\tau; \mathcal{W})\) it is enough to show that for each \(\alpha\)
as \(\sigma \to \infty \).

The first assertion is obvious because of (32) and \(\beta_a'(\|D^a u\|^2)D^a v \in L^2(\Omega \times I_r) \).

For the second one, we can show as in the proof of Lemma 3 that

\[
\left| \int_{I_r} (D^a u_i^r(\beta_a'(\|D^a u\|^2) - \beta_a'(\|D^a u\|^2), D^a v) dt \right|
\]

\[
\leq C \|D^a u_i^r\|_{L^2(\Omega \times I_r)} \|D^a u\|_{L^2(\Omega \times I_r)}
\]

\[
\times \{ \|D^a u\|_{L^2(\Omega \times I_r)}^2 + \|D^a v\|_{L^2(\Omega \times I_r)}^2 \} \|D^a v\|_{L^2(\Omega \times I_r)}.
\]

from which (34) follows by virtue of (31), (33). Since Lemma 4 holds for \(v \in L^p(\tau; W) \) we have completed the proof of the theorem.

Example 1. Define \(A_\alpha, a(u, v) \) by

\[
A_\alpha(x, u, \ldots, D^m u) = |D^a u|^{p-2} D^a u
\]

and

\[
a(u, v) = \int_{\Omega} \sum_{|\alpha| \leq m} |D^a u|^{p-2} D^a u D^a v dx,
\]

respectively. It can be easily seen that \(A_\alpha \) and \(a(u, v) \), then, satisfy Assumption A. Hence an evolution equation

\[
\frac{\partial^2 u}{\partial t^2} + \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha (|D^a u|^{p-2} D^a u) - \bar{A} \frac{\partial u}{\partial t} + |u|^{q-1} \frac{\partial u}{\partial t} = f(x, t)
\]

has a solution \(u(x, t) \) in \(L^\infty(\tau; W_{0}^{m, p}(\Omega)) \) provided \(2 \leq q \leq p/2 \) and \(f(x, t) \in L^2(\tau; L^2(\Omega)) \).

Example 2. Let \(A \) be the operator defined in Example 1. Then an evolution equation

\[
\frac{\partial^2 u}{\partial t^2} + Au + \sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} |D^a u|^{q-1} D^a \frac{\partial u}{\partial t} - \bar{A} \frac{\partial u}{\partial t} = f(x, t)
\]
has a solution $u(x, t)$ in $L^\infty(\tau; W^{q,p}_2(\mathcal{O}))$ provided $2 \leq q \leq p/2$ and $f(x, t) \in L^2(\tau; L^2(\mathcal{O}))$.

References