Holonomic Quantum Fields. V

By

Mikio Sato*, Tetsuji Miwa*† and Michio Jimbo*

Introduction

The present chapter V of our series is an application of the theory of rotation ([1]) to the lattice models. Included here are the two-dimensional Ising model ([5], [6]), a bosonic counterpart of it, the one-dimensional XY model ([12]) and the free fermion model ([14] [15] [16]). In each case we shall compute exactly the norm representation of spin operators, and hence their n-point correlation functions. The materials in this article are “time-ordered” according to the development, but we could have unified the treatment by using the path integral formalism exposed in Section 5.4 (symplectic case) and in Section 5.7 (orthogonal case). Since the first announcement of our result on the Ising model ([2] [4]), there have appeared several independent papers [9] [10] [11] that deal with the exact computation of n-point functions. We emphasize that these results are made most transparent by considering directly the explicit form of spin operators. (For instance the arbitrariness in the infinite series expression of n-point functions for \(T > T_c \) is neatly described in this way. See p. 548.)

The plan of this paper is as follows. The first three sections 5.1–5.3 are devoted to the Ising model. We shall see that a systematic application of the original method of Onsager ([5]) enables one to express explicitly not only the free energy but also the spin operator itself. We first review the diagonalization procedure of the Hamiltonian (see [5] [7]) in Section 5.1, and compute the norm representation of spin operators in Section 5.2. Using these results we derive in Section 5.3 infinite series expressions for n-point correlation functions (an application of the product formula in [1]). We also verify their convergence and several symmetry properties. In Section 5.4 we present a two-
Chapter V. Spin Operators in Various Lattice Models

§5.1. Diagonalization of the Hamiltonian

We shall review here the diagonalization procedure of the Hamiltonian of the 2-dimensional rectangular Ising lattice. The content of this section is well known (see [5], [7]), but we have included it here so as to make this paper accessible to non-specialists, and also to fix the notations.

We consider a rectangular lattice of size $M \times N$, where a spin variable $\sigma_{mn} = \pm 1$ is attached to each site (m, n) ($0 \leq m \leq M - 1, 0 \leq n \leq N - 1$). The total energy of this system is given by

\begin{equation}
E(\sigma) = -E_1 \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sigma_{mn} \sigma_{m+1n} - E_2 \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sigma_{mn} \sigma_{mn+1}
\end{equation}

where $E_1, E_2 > 0$ are interaction strengths. We have chosen the cyclic convention $\sigma_{m+M, n+N} = \sigma_{mn}$, $k, l \in \mathbb{Z}$ (i.e. the lattice is wrapped on a torus). Our main objectives are the grand partition function.
(5.1.2) \[Z_{MN} = \sum_{(\sigma)} e^{-\beta E(\sigma)} \]
and the correlation functions for arbitrary lattice points \((m_j, n_j)\) \((j = 1, \ldots, k)\):

(5.1.3) \[\rho_k((m_1, n_1), \ldots, (m_k, n_k)) = Z_{MN}^{-1} \sum_{(\sigma)} \sigma_{m_1 n_1} \cdots \sigma_{m_k n_k} e^{-\beta E(\sigma)}. \]

In (5.1.2) and (5.1.3) the sum is taken over \(2^{MN}\) possible spin configurations \(\sigma_{00} = \pm 1, \ldots, \sigma_{M-1,N-1} = \pm 1\), and \(\beta = 1/kT > 0\) \((k: \text{the Boltzmann constant, } T: \text{temperature})\).

We shall follow the method of transfer matrix. For an \(M\)-vector \(\sigma = (\sigma_0, \sigma_1, \ldots, \sigma_{M-1})\) with entries \(\sigma_i = \pm 1\), we set

(5.1.4) \[e_{\sigma} = e_{\sigma_0} \otimes \cdots \otimes e_{\sigma_{M-1}}, \quad e_{+1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad e_{-1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]

These \(2^M\) vectors \(\{e_\sigma\}\) constitute a basis of \((\mathbb{C}^2)^\otimes M\). We introduce matrices \(V_1, V_2\) whose \((e_\sigma, e_{\sigma'})\)-elements are given by

(5.1.5) \[(V_1)_{\sigma\sigma'} = \delta_{\sigma\sigma'} \exp \left(K_1 \sum_{m=0}^{M-1} \sigma_m \sigma_{m+1} \right), \]

(5.1.6) \[(V_2)_{\sigma\sigma'} = \exp \left(K_2 \sum_{m=0}^{M-1} \sigma_m \sigma'_m \right) \]

where \(\delta_{\sigma\sigma'} = \delta_{\sigma_0 \sigma_0} \cdots \delta_{\sigma_{M-1} \sigma_{M-1}}\) and

(5.1.7) \[K_1 = \beta E_1, \quad K_2 = \beta E_2. \]

The definition (5.1.2) then reads

\[Z_{MN} = \sum_{\sigma_0} \cdots \sum_{\sigma_{N-1}} (V_1)_{\sigma_0 \sigma_0} (V_2)_{\sigma_0 \sigma_1} \cdots (V_1)_{\sigma_{N-1} \sigma_{N-1}} (V_2)_{\sigma_{N-1} \sigma_0} \]

\[= \text{trace } (V_1 V_2)^N \]

where \(\sigma_n = (\sigma_{0n}, \ldots, \sigma_{M-1n})\) \((n = 0, 1, \ldots, N-1)\). If we set

(5.1.8) \[s_m = I_2 \otimes \cdots \otimes \begin{pmatrix} 1 & \ 0 \\ 0 & -1 \end{pmatrix} \otimes \cdots \otimes I_2 \]

\[C_m = I_2 \otimes \cdots \otimes \begin{pmatrix} 1 & \ 0 \\ 0 & -1 \end{pmatrix} \otimes \cdots \otimes I_2 \]

\((m = 0, 1, \ldots, M-1)\)

\(V_1, V_2\) are written as

(5.1.9) \[V_1 = \exp \left(K_1 (s_0 s_1 + s_1 s_2 + \cdots + s_{M-1} s_0) \right) \]

\[V_2 = (2 \sinh 2K_2)^{M/2} \exp \left(K_2^* (C_0 + C_1 + \cdots + C_{M-1}) \right). \]

Here for \(K > 0\), \(K^* = K^*(K) > 0\) is determined by the formula
The operators \(\{ s_m, C_m \} \) satisfy the following relations.

\[
\begin{align*}
\tag{5.1.10}
s_m s_{m'} &= s_m s_{m'} , \quad s_m^2 = 1 \\
C_m C_{m'} &= C_{m'} C_m , \quad C_m^2 = 1 \\
s_m C_{m'} &= C_{m'} s_m \ (m \neq m'), \quad s_m C_m = -C_m s_m \\
(m, m' = 0, 1, \ldots, M-1).
\end{align*}
\]

Making use of the symmetrized transfer matrix

\[
\tag{5.1.11}
V = V_1^{1/2} V_2 V_1^{1/2} = V_1^{-1/2} (V_1 V_2) V_1^{1/2}
\]

the partition function is given by

\[
\tag{5.1.12}
Z_{MN} = \text{trace } V^N.
\]

Similar reasoning yields the following expression for correlation functions.

\[
\tag{5.1.13}
\rho_k((m_1, n_1), \ldots, (m_k, n_k)) = \frac{\text{trace } (s_{m_1 n_1} \cdots s_{m_k n_k} V^N)}{\text{trace } V^N} \quad (n_1 \leq \cdots \leq n_k)
\]

where

\[
\tag{5.1.14}
s_{mn} = V_1^{-1/2} (V_1 V_2)^n s_m (V_1 V_2)^{-n} V_1^{1/2} \\
= V^n s_m V^{-n} \\
(0 \leq m \leq M-1, \ 0 \leq n \leq N-1).
\]

The key point of Onsager's ingenious method is his observation that the transfer matrix \(V \) and the spin operator \(s_{mn} \) both belong to the Clifford group \(G(W) \) over an orthogonal vector space \(W \), which we shall now describe. We introduce operators \(p_m, q_m \) as follows.

\[
\tag{5.1.15}
p_m = C_0 C_1 \cdots C_{m-1} s_m , \quad p_0 = s_0 \\
q_m = C_0 C_1 \cdots C_{m-1} s_m = C_m p_m \\
(m = 0, 1, \ldots, M-1).
\]

By virtue of (5.1.10) we have, for \(m, m' = 0, 1, \ldots, M-1, \)

\[
\tag{5.1.16}
p_m p_{m'} + p_{m'} p_m = 2 \delta_{mm'}.
\]
In terms of \(p_m, q_m, s_m \) and \(C_m \) are given by

\[
(5.1.17) \quad s_m = p_m t_m, \quad t_m = q_{m-1} p_{m-1} \cdots q_0 p_0 \\
C_m = q_m p_m.
\]

Now (5.1.16) shows that \(W = \bigoplus_{m=0}^{M-1} (C_p \oplus C_q) \) is equipped with an orthogonal structure, with respect to which the basis \(\{p_m, i q_m\}_{m=0,1,\ldots,M-1} \) is orthonormal. Since \(\text{nr}(p_m), \text{nr}(q_m) \neq 0 \), (5.1.17) implies that \(s_m, t_m \in G(W) \). Moreover we have from (5.1.8) and (5.1.17)

\[
(5.1.18) \quad V_1 = \exp \left(K_1 (p_1 q_0 + p_2 q_1 + \cdots + p_{M-1} q_{M-2} + p_0 \varepsilon_w q_{M-1}) \right)
\]

\[
V_2 = (2 \sinh 2K_2)^{M/2} \exp \left(K_2^2 (q_0 p_0 + q_1 p_1 + \cdots + q_{M-1} p_{M-1}) \right)
\]

where \(\varepsilon_w = q_{M-1} p_{M-1} \cdots q_0 p_0 \) denotes an orientation of \(W \) (Chapter I, p. 242).

In the sequel we shall modify the definition of \(V_1 \) as

\[
(5.1.18)' \quad V_1 = \exp \left(K_1 (p_1 q_0 + p_2 q_1 + \cdots + p_{M-1} q_{M-2} + p_0 q_{M-1}) \right)
\]

to avoid complexity, without altering the essence of calculation. This makes the transfer matrix invariant under the horizontal translation \(p_m \mapsto p_{m+1}, q_m \mapsto q_{m+1} \). From (5.1.18) and (5.1.18)' it is clear that \(V \in G(W) \).

We fix an expectation value on \(A(W) \) given by \(\langle a \rangle = Z_M^N \text{trace} (a V^N) = \text{trace} (a g) \), where \(g = V^N/\text{trace} V^N \in G(W) \) (Chapter I, pp. 261 ~ 262).

In order to obtain the norms of \(s_m, t_m \) and \(V \), let us compute their induced rotations (cf. [8]). We have

\[
(5.1.19) \quad T_{t_m} p_m = \begin{cases} -p_{m'} & (0 \leq m' \leq m-1) \\ p_{m'} & (m \leq m' \leq M-1) \end{cases} \\
T_{t_m} q_m = \begin{cases} -q_{m'} & (0 \leq m' \leq m-1) \\ q_{m'} & (m \leq m' \leq M-1) \end{cases}
\]

\[
(5.1.20) \quad T_{V_1^{1/2}} p_m = p_m \cdot \cosh K_1 - q_{m-1} \cdot \sinh K_1 \\
T_{V_1^{1/2}} q_m = -p_{m+1} \cdot \sinh K_1 + q_m \cdot \cosh K_1
\]

\[
(5.1.21) \quad T_{V_2} p_m = p_m \cdot \cosh 2K_2^* + q_m \cdot \sinh 2K_2^* \\
T_{V_2} q_m = p_m \cdot \sinh 2K_2^* + q_m \cdot \cosh 2K_2^*
\]

where \(q_{-1} = q_{M-1} \) and \(p_M = p_0 \) in (5.1.20).

If we introduce the Fourier-transformed basis
(5.1.22) \[\hat{p}(\theta_\mu) = \sum_{m=0}^{M-1} e^{-im\theta_\mu} p_m \]
\[\hat{q}(\theta_\mu) = \sum_{m=0}^{M-1} e^{-im\theta_\mu} q_m \]
\[(\theta_\mu = 2\pi \mu / M, \mu = 0, 1, \ldots, M-1 \mod M) \]

the table of inner product becomes
(5.1.23) \[\langle \hat{p}(\theta_\mu), \hat{p}(\theta_\nu) \rangle = 2M \delta_{\mu,-\nu} \]
\[\langle \hat{p}(\theta_\mu), \hat{q}(\theta_\nu) \rangle = 0 \]
\[\langle \hat{q}(\theta_\mu), \hat{q}(\theta_\nu) \rangle = -2M \delta_{\mu,-\nu} \]

with \(\delta_{\mu,-\nu} = 0 \) \((\mu \neq -\nu \mod M)\), \(-1 \) \((\mu \equiv -\nu \mod M)\), and we have from (5.1.20) and (5.1.21)

(5.1.24) \[T_{\nu_1/2} \hat{p}(\theta_\mu) = \hat{p}(\theta_\mu) \cdot \cosh K_1 - \hat{q}(\theta_\mu) \cdot e^{-i\theta_\mu} \sinh K_1 \]
\[T_{\nu_1/2} \hat{q}(\theta_\mu) = -\hat{p}(\theta_\mu) \cdot e^{i\theta_\mu} \sinh K_1 + \hat{q}(\theta_\mu) \cdot \cosh K_1 \]

(5.1.25) \[T_{\nu_2} \hat{p}(\theta_\mu) = \hat{p}(\theta_\mu) \cdot \cosh 2K_2^\pm + \hat{q}(\theta_\mu) \cdot \sinh 2K_2^\pm \]
\[T_{\nu_2} \hat{q}(\theta_\mu) = \hat{p}(\theta_\mu) \cdot \sinh 2K_2^\pm + \hat{q}(\theta_\mu) \cdot \cosh 2K_2^\pm \]

(5.1.26) \[T_{\nu} \hat{p}(\theta_\mu) = \hat{p}(\theta_\mu) \cdot \cosh \gamma(\theta_\mu) + \hat{q}(\theta_\mu) \cdot a(\theta_\mu)^{-1} \sinh \gamma(\theta_\mu) \]
\[T_{\nu} \hat{q}(\theta_\mu) = \hat{p}(\theta_\mu) \cdot a(\theta_\mu) \sinh \gamma(\theta_\mu) + \hat{q}(\theta_\mu) \cdot \cosh \gamma(\theta_\mu) \]

Here \(\gamma(\theta) = \gamma(-\theta) \geq 0 \) and \(a(\theta) \) are defined by

(5.1.27) \[\cosh \gamma(\theta) = \cosh 2K_1 \cosh 2K_2^\pm - \sinh 2K_1 \sinh 2K_2^\pm \cos \theta \]
\[= \cosh 2(K_1 - K_2^\pm) + 2 \sinh 2K_1 \sinh 2K_2^\pm \sin^2 (\theta/2) \]

(5.1.28) \[a(\theta) = \cosh^2 K_1 \sinh 2K_2^\pm (1 - \alpha_1 e^{\pm i\theta})(1 - \alpha_2 e^{\pm i\theta}) \]
\[a(\theta)^2 = \frac{(1 - \alpha_1 e^{i\theta})(1 - \alpha_2^{-1} e^{i\theta})}{(1 - \alpha_1 e^{-i\theta})(1 - \alpha_2^{-1} e^{-i\theta})} \]

with

(5.1.29) \[\alpha_1 = \tanh K_1 \cdot \tanh K_2^\pm < 1 \]
\[\alpha_2 = (\tanh K_1)^{-1} \tanh K_2^\pm. \]

The critical temperature \(T = T_c \) is defined by the condition

(5.1.30) \[\alpha_2 \equiv 1 \Leftrightarrow T \equiv T_c. \]

Notice that for \(\theta = 0 \), \(\gamma(0) = 2|K_1 - K_2^\pm| \) and \(a(0) = \pm 1 \) \((T \geq T_c)\). For \(T > T_c \),

(5.1.31) \[a_{T \to T_c}(\theta) = a(\theta) = b_{T \to T_c}(\theta) / b_{T \to T_c}(-\theta) \]
is a single-valued function of \(z = e^{i\theta} \) on the unit circle \(S^1 = \{ |z| = 1 \} \), while for \(T < T_c \),

\[
\begin{align*}
(a_{T < T_c}(\theta) &= -e^{-i\theta} a(\theta) = b_{T < T_c}(\theta) / b_{T < T_c}(\theta) \\
b_{T < T_c}(\theta) &= \sqrt{(1 - \alpha_1 e^{i\theta})(1 - \alpha_2 e^{i\theta})}
\end{align*}
\]

enjoys the above property. Here the branch of square root is so chosen that \(b_{T < T_c}(0) > 0 \).

The rotation \(T_\nu \) in (5.1.26) is diagonalized in the following basis for \(T \geq T_c \), respectively.

\[
\begin{align*}
(\text{5.1.32})_{T < T_c} & \quad \begin{bmatrix}
2\hat{\psi}^\dagger_{T > T_c}(\theta) \cdot \sqrt{a_{T > T_c}(\theta)} - \hat{q}(\theta) \\
2\hat{\psi}^\dagger_{T > T_c}(\theta) \cdot \sqrt{a_{T > T_c}(\theta)} + \hat{q}(\theta)
\end{bmatrix} = 0 \\
(\text{5.1.32})_{T < T_c} & \quad \begin{bmatrix}
\hat{p}(\theta) = \hat{\psi}^\dagger_{T < T_c}(\theta) \cdot \sqrt{a_{T < T_c}(\theta)} - \hat{\psi}(\theta) \cdot \sqrt{a_{T < T_c}(\theta)} \\
\hat{q}(\theta) = \hat{\psi}^\dagger_{T < T_c}(\theta) \cdot \sqrt{a_{T < T_c}(\theta)} + \hat{\psi}(\theta) \cdot \sqrt{a_{T < T_c}(\theta)}
\end{bmatrix} = 0
\end{align*}
\]

In either case \(\hat{\psi}^\dagger(\theta) = \hat{\psi}^\dagger_{T \geq T_c}(\theta) \), \(\hat{\psi}(\theta) = \hat{\psi}_{T \geq T_c}(\theta) \) satisfy the canonical anti-commutation relations

\[
(\text{5.1.33}) \quad [\hat{\psi}^\dagger(\theta), \hat{\psi}(\theta)]_+ = 0, \quad [\hat{\psi}(\theta), \hat{\psi}(\theta)]_+ = 0
\]

and we have, using \(\gamma(\theta) = \gamma(-\theta) \),

\[
(\text{5.1.34}) \quad \begin{align*}
T_\nu \hat{\psi}(\theta) &= e^{-\gamma(\theta)} \hat{\psi}(\theta) \\
T_\nu \hat{\psi}(\theta) &= e^{\gamma(\theta)} \hat{\psi}(\theta)
\end{align*}
\]

\(\mu = 0, 1, \ldots, M - 1 \mod M \).

The table \(K \) of the expectation value in this basis is computed by applying the formula (1.5.13), i.e. \(K = (J + H)/2 \), \(H = J(1 - T \nu)(1 + T \nu)^{-1} \). We find

\[
(\text{5.1.35}) \quad \begin{bmatrix}
\langle \hat{\psi}^\dagger(\theta) \hat{\psi}(\theta) \rangle & \langle \hat{\psi}^\dagger(\theta) \hat{\psi}(\theta) \rangle \\
\langle \hat{\psi}(\theta) \hat{\psi}^\dagger(\theta) \rangle & \langle \hat{\psi}(\theta) \hat{\psi}^\dagger(\theta) \rangle
\end{bmatrix} = \frac{1}{1 + e^{\gamma(\theta)}} \begin{bmatrix} 0 & 1 \\
1 & 0\end{bmatrix} M \delta_{\mu \nu}.
Proposition 5.1.1. We have
\[(5.1.36) \quad (2 \sinh 2K_2)^{-M/2} V = \exp (-\mathcal{H})\]
\[\mathcal{H} = \frac{1}{M} \sum_{\mu=0}^{M-1} \gamma(\theta_{\mu}) \left(\psi^{\dagger}(\theta_{\mu}) \hat{\psi}(\theta_{\mu}) - \frac{M}{2} \right).\]

If we set \(V' = \exp (-\mathcal{H}) \), its norm is given by
\[(5.1.37) \quad \langle V' \rangle = \frac{M}{\mu=0} \cosh \left((N+1) \gamma(\theta_{\mu}) \right) \cdot (\cosh N \gamma(\theta_{\mu}))^{-1} \]
\[\rho'/2 = -\frac{1}{M} \sum_{\mu=0}^{M-1} \frac{1 - e^{-\gamma(\theta_{\mu})}(1 + e^{-N \gamma(\theta_{\mu})})}{1 + e^{-N (\gamma(\theta_{\mu}))}} \psi^{\dagger}(\theta_{\mu}) \hat{\psi}(\theta_{\mu}).\]

Proof. By virtue of the anti-commutation relations (5.1.33), \(V' \) induces the same rotation as in (5.1.34). It is also clear that \(n_r(V') = V'V'^{*} = 1 \). On the other hand, by (5.1.18) and (5.1.18)', the spinorial norms of \(V_1^{1/2} \) and of \((2 \sinh 2K_2)^{-M/2} V_2 \) are easily computed to be 1. Therefore we have
\[(2 \sinh 2K_2)^{-M/2} V = \pm V'.\]
In order to determine the sign consider the extreme case \(K_1 = 0 \). In this case \(V_1 = 1, a(\theta) = 1 \), and it is easy to see that the correct choice is the plus sign. This shows (5.1.36). The norm of \(V' \) is computed directly from the formula (1.5.7), (1.5.8).

Corollary 5.1.2.
\[(5.1.38) \quad Z_{MN} = (2 \sinh 2K_2)^{MN} \cdot \prod_{\mu=0}^{M-1} 2(1 + \cosh N \gamma(\theta_{\mu})).\]

Proof. Straightforward from the formula (1.5.18).

In the limit \(M, N \to \infty \) (5.1.38) reproduces the celebrated Onsager’s formula for the free energy per unit site
\[(5.1.39) \quad \frac{1}{MN} \log Z_{MN} \sim \frac{1}{2} \log (2 \sinh 2K_2) + \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} \gamma(\theta).\]

As has been noted by Onsager, it is rewritten into the symmetrical form
\[(5.1.39)' \quad \frac{1}{MN} \log Z_{MN} - \log 2 \sim \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} \frac{d\theta'}{2\pi} \log (C_1 C_2 - S_1 \cos \theta - S_2 \cos \theta')\]
by using the identity
\[\gamma = \int_0^{2\pi} \frac{d\theta}{2\pi} \log (2(\cosh \gamma - \cos \theta)).\]

Here we set
\[(5.1.40) \quad C_i = \cosh 2K_i, \quad S_i = \sinh 2K_i\]
The calculation of $N_r(t_m), N_r(s_m)$ will be carried out in the next section.

§5.2. Spin Operators

Actually the explicit computation of $N_r(s_{mn})$ is performed only in the infinite lattice limit $M, N \to \infty$. For convenience we replace the lattice size M, N by $2M+1, 2N+1$ respectively. A lattice site will now be represented as (m, n) with $-M \leq m \leq M, -N \leq n \leq N$. The spin operators are defined to be $t_m = q_{m-1}p_{m-1} \cdots q_{-M}p_{-M}, s_m = p_{m' m}$ and $t_{mn} = V_n t_m V^{-n}, s_{mn} = V_n s_m V^{-n}$.

In the limit $M, N \to \infty$ the finite lattice and its Fourier image $Z/(2M+1)Z \times Z/(2N+1)Z$ become Z^2 and the torus $(R/2\pi Z)^2$, respectively. First we fix $M, T (\neq T_c)$ and let N tend ∞. The table of expectation values (5.1.35) becomes

\[
(5.2.1) \begin{pmatrix}
\langle \hat{\psi}^\dagger(\theta) \hat{\phi}^\dagger(\theta) \rangle & \langle \hat{\psi}^\dagger(\theta) \hat{\phi}(\theta) \rangle \\
\langle \hat{\psi}(\theta) \hat{\phi}^\dagger(\theta) \rangle & \langle \hat{\psi}(\theta) \hat{\phi}(\theta) \rangle
\end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix} (2M+1)\delta_{\mu\nu}.
\]

In other words the expectation value $\langle \rangle$ is now the one induced by the holonomic decomposition $W = V^\dagger \oplus V, V^\dagger = \bigoplus_{\mu=-M}^{M} C_{\mu}^\dagger(\theta), V = \bigoplus_{\mu=-M}^{M} C_{\mu}(\theta)$.

In view of the simplicity of the rotation T_m in (5.1.19), a convenient basis for the calculation of $N_r(t_m)$ is $\{p_m, q_m\}$ or its Fourier transform $\{\hat{\rho}(\theta), \hat{\lambda}(\theta)\}$. From (5.2.1) and (5.1.32)$_{T \geq T_c}$ we have

\[
(5.2.2)_{T \geq T_c} \begin{pmatrix}
\langle \rho(\theta) \rho(\theta) \rangle & \langle \rho(\theta) \lambda(\theta) \rangle \\
\langle \lambda(\theta) \rho(\theta) \rangle & \langle \lambda(\theta) \lambda(\theta) \rangle
\end{pmatrix} = \begin{pmatrix} 1 & -a_{T \geq T_c}(\theta)^{-1} \end{pmatrix} (2M+1)\delta_{\mu\nu},
\]

\[
\begin{pmatrix}
\langle p_m p_{m'} \rangle & \langle p_m q_{m'} \rangle \\
\langle q_m p_{m'} \rangle & \langle q_m q_{m'} \rangle
\end{pmatrix} = \begin{pmatrix}
\delta_{mm'} & -a^{(M)}_{T \geq T_c, m+m'} \\
a^{(M)}_{T \geq T_c, m-m'} & -\delta_{mm'}
\end{pmatrix}.
\]

\[
(5.2.2)_{T < T_c} \begin{pmatrix}
\langle e^{i\theta} \rho(\theta) e^{i\theta} \rho(\theta) \rangle & \langle e^{i\theta} \rho(\theta) \lambda(\theta) \rangle \\
\langle \lambda(\theta) e^{i\theta} \rho(\theta) \rangle & \langle \lambda(\theta) \lambda(\theta) \rangle
\end{pmatrix} = \begin{pmatrix} 1 & a_{T < T_c}(\theta)^{-1} \end{pmatrix} (2M+1)\delta_{\mu\nu},
\]

\[
\begin{pmatrix}
\langle p_m p_{m'} \rangle & \langle p_m q_{m'} \rangle \\
\langle q_m p_{m'} \rangle & \langle q_m q_{m'} \rangle
\end{pmatrix} = \begin{pmatrix}
\delta_{mm'} & a^{(M)}_{T < T_c, m+m'-1} \\
a^{(M)}_{T < T_c, m-m'} & -\delta_{mm'}
\end{pmatrix}.
\]

(*) In what follows we often drop the subscript $T \geq T_c$ in case there is no fear of confusion.
where we have set \(a^{(M)}_{T \leq T_c, m} = (2M+1)^{-1} \sum_{\mu=-M}^{M} e^{im\theta} a_{T \leq T_c} (\theta) \).

Now we go to the limit \(M \to \infty \). If we set

\[
(5.2.3) \quad P^0 = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \gamma(\theta) \hat{\Psi}^\dagger(\theta) \hat{\Psi}(\theta)
\]

\[
P^1 = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \theta \hat{\Psi}^\dagger(\theta) \hat{\Psi}(\theta)
\]

the auxiliary operators \(p_{mn} = e^{-nP^0 - \text{im} P^1} p_{00} e^{nP^0 + \text{im} P^1}, q_{mn} = e^{-nP^0 - \text{im} P^1} q_{00} \times e^{nP^0 + \text{im} P^1} \) are expressed as

\[
(5.2.4)_{T > T_c} \quad p_{mn} = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} (e^{-n\gamma(\theta) \text{im} \theta} a_{T > T_c} (\theta) \hat{\Psi}^\dagger_{T > T_c}(\theta)
\]

\[
+ e^{n\gamma(\theta) + \text{im} \theta} a_{T > T_c} (\theta) \hat{\Psi}^\dagger_{T > T_c}(\theta)) \hat{\Psi}^\dagger(\theta) + e^{n\gamma(\theta) + \text{im} \theta} a_{T > T_c} (\theta) \hat{\Psi}^\dagger_{T > T_c}(\theta)) \hat{\Psi}^\dagger(\theta)
\]

\[
q_{mn} = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} (e^{-n\gamma(\theta) \text{im} \theta} a_{T > T_c} (\theta) \hat{\Psi}^\dagger_{T > T_c}(\theta)
\]

\[
+ e^{n\gamma(\theta) + \text{im} \theta} a_{T > T_c} (\theta) \hat{\Psi}^\dagger_{T > T_c}(\theta)) \hat{\Psi}^\dagger(\theta) - e^{n\gamma(\theta) + \text{im} \theta} a_{T > T_c} (\theta) \hat{\Psi}^\dagger_{T > T_c}(\theta)) \hat{\Psi}^\dagger(\theta)
\]

\[
(5.2.4)_{T < T_c} \quad p_{mn} = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} (e^{-n\gamma(\theta) \text{im} \theta} a_{T < T_c} (\theta) \hat{\Psi}^\dagger_{T < T_c}(\theta)
\]

\[
+ e^{n\gamma(\theta) + \text{im} \theta} a_{T < T_c} (\theta) \hat{\Psi}^\dagger_{T < T_c}(\theta)) \hat{\Psi}^\dagger(\theta) \]

\[
q_{mn} = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} (e^{-n\gamma(\theta) \text{im} \theta} a_{T < T_c} (\theta) \hat{\Psi}^\dagger_{T < T_c}(\theta)
\]

In this limit (5.2.1) and (5.2.2) \(T \geq T_c \) become respectively

\[
(5.2.5) \quad \begin{pmatrix} \langle \hat{\Psi}^\dagger(\theta) \hat{\Psi}^\dagger(\theta') \rangle \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \\ \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \end{pmatrix} = \begin{pmatrix} 0 & 2\pi \delta(\theta - \theta') \\ 1 & \end{pmatrix}
\]

\[
(5.2.6)_{T > T_c} \quad \begin{pmatrix} \langle \hat{\Psi}^\dagger(\theta) \hat{\Psi}^\dagger(\theta') \rangle \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \\ \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \end{pmatrix} = \begin{pmatrix} 1 & -a_{T > T_c} (\theta)^{-1} & 2\pi \delta(\theta + \theta') \\ a_{T > T_c} (\theta) & -1 & \end{pmatrix}
\]

\[
\begin{pmatrix} \langle p_{mm'} \rangle \langle p_{m'm'} \rangle \\ \langle q_{mm'} \rangle \langle q_{m'm'} \rangle \end{pmatrix} = \begin{pmatrix} \delta_{mm'} & -a_{T > T_c, m + m'} \\ a_{T > T_c, m - m'} & -\delta_{mm'} \end{pmatrix}
\]

\[
(5.2.6)_{T < T_c} \quad \begin{pmatrix} \langle \hat{\Psi}^\dagger(\theta) \hat{\Psi}^\dagger(\theta') \rangle \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \\ \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \langle \hat{\Psi}(\theta) \hat{\Psi}(\theta') \rangle \end{pmatrix} = \begin{pmatrix} 1 & a_{T < T_c} (\theta)^{-1} & 2\pi \delta(\theta + \theta') \\ -a_{T < T_c} (\theta) & -1 & \end{pmatrix}
\]

\[
\begin{pmatrix} \langle p_{mm'} \rangle \langle p_{m'm'} \rangle \\ \langle q_{mm'} \rangle \langle q_{m'm'} \rangle \end{pmatrix} = \begin{pmatrix} \delta_{mm'} & a_{T < T_c, m + m'} \\ -a_{T < T_c, m - m'} & -\delta_{mm'} \end{pmatrix}
\]
where \(a_{T \leq T_c}(\theta) = \sum_{m=-\infty}^{+\infty} e^{-im\theta} a_{T \leq T_c,m} \).

We distinguish the two cases \(T > T_c \) and \(T < T_c \).

(i) The case \(T > T_c \).

We shall first consider the even element \(t_{m0} = t_{m0}^{(M)} \) on the lattice of size \((2M+1) \times \infty\). From the formula (1.5.7) (or directly from (A.26)' of [3]) we have

\[
\langle t_{00}^{(M)} | t_{m0}^{(M)} \rangle = \det \left(\begin{array}{cccc}
\alpha_0^{(M)} & \cdots & \alpha_{-m+1}^{(M)} \\
\vdots & \ddots & \vdots \\
\alpha_{m-1}^{(M)} & \cdots & \alpha_0^{(M)}
\end{array} \right)
\]

where \(\alpha_m^{(M)} = a_{T > T_c,m} \). Now we let \(M \to \infty \) (\(m \) fixed) and obtain in the infinite lattice

\[
\langle t_{00} | t_{m0} \rangle = \det \left(\begin{array}{cccc}
\alpha_0 & \cdots & \alpha_{-m+1} \\
\vdots & \ddots & \vdots \\
\alpha_{m-1} & \cdots & \alpha_0
\end{array} \right).
\]

Finally we take the limit \(m \to \infty \). The right hand side of (5.2.8) in this limit is evaluated by appealing to Szego's theorem ([17]). Using the fact that \(\langle t_{00} t_{m0} \rangle \to \langle t_{00} \rangle^2 \) as \(m \to \infty \) we obtain

\[
\langle t_{00} \rangle = (1 - S_1 S_2) \frac{1}{8} (\cosh K_1)^{-1}
\]

in the infinite lattice, where \(S_1, S_2 \) are given in (5.1.40).

In particular \(t_{00}^{(M)} \neq 0 \) for sufficiently large \(M \). This implies that the norm of \(t_{00}^{(M)} \) has the form

\[
\text{Nr} \left(t_{00}^{(M)} \right) = \langle t_{00}^{(M)} \rangle e^{\beta_{00}^{(M)}/2}
\]

\[
\beta_{00}^{(M)} = \left(\frac{1}{2M+1} \right)^2 \sum_{\mu, \nu = -M}^{M} \langle \hat{\beta}(\theta_\mu) \hat{q}(\theta_\mu) \hat{R}^{(M)}(\theta_\mu, \theta_\nu) \hat{\beta}(\theta_\nu) \hat{q}(\theta_\nu) \rangle
\]

where \(R^{(M)} \in \text{End}_C(W) \) corresponding to \((\hat{R}^{(M)}(\theta_\mu, \theta_\nu))_{\mu, \nu = -M, \ldots, M} \) is related to \(P^{(M)}, E^{(M)} \) through (cf. (1.5.8))

\[
R^{(M)} J^{(M)} = (T^{(M)} - 1)(K^{(M)} + 4 K^{(M)} T^{(M)})^{-1} J^{(M)}
\]

\[
= -2 P^{(M)} ((1 - P^{(M)}) + E^{(M)} P^{(M)})^{-1}.
\]

In the limit \(M \to \infty \) the operators \(P^{(M)}, E^{(M)} \) become

\[
(P \hat{\beta}(\theta'), P \hat{q}(\theta')) = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \langle \hat{\beta}(\theta), \hat{q}(\theta) \rangle P(\theta, \theta')
\]

\[
P(\theta, \theta') = I_2 \cdot \sum_{m=-\infty}^{+\infty} e^{im(\theta-\theta')} = I_2 \cdot \frac{e^{-i(\theta-\theta')}}{1 - e^{-i(\theta-\theta'-i0)}}
\]
Consider the factorization of $E(\theta)$ given by

\[(5.2.14) \]

\[
X_-(\theta) = X_+^e(\theta) E(\theta)
\]

\[
X_+(\theta) = \left(\begin{array}{cc}
 b_{T>T_e}(\theta)^{-1} & b_{T>T_e}(\theta) \\
 b_{T>T_e}(\theta) & b_{T>T_e}(-\theta)^{-1}
\end{array} \right),
\]

\[
X_-(\theta) = -\left(\begin{array}{cc}
 b_{T>T_e}(\theta) & -b_{T>T_e}(\theta) \\
 b_{T>T_e}(\theta) & b_{T>T_e}(-\theta)^{-1}
\end{array} \right).
\]

Clearly $X_\pm(\theta)$ is holomorphic and invertible on $|z|^{\pm 1} \leq 1$ ($z = e^{i\theta}$). This implies that

\[(5.2.15) \]

\[PX_+^\pm(1-P) = 0, \quad (1-P)X_+^\pm P = 0. \]

Therefore by applying (A.18)\textsubscript{p} -- (A.19)\textsubscript{p} in Chapter IV we obtain $R = -2X_+^{-1}PX_+J^{-1}$; namely the corresponding kernel $\tilde{R}'(\theta, \theta')$ in the basis $\{\hat{e}(\theta), \hat{q}(\theta)\}$ is given by

\[(5.2.16) \]

\[
\tilde{R}'(\theta, \theta') = \frac{e^{-i(\theta+\theta')}}{1-e^{-i(\theta+\theta'-i\theta)}} \left(\begin{array}{cc}
 -\frac{b_{T>T_e}(-\theta')}{b_{T>T_e}(\theta)} \\
 \frac{b_{T>T_e}(\theta)}{b_{T>T_e}(-\theta')}
\end{array} \right).
\]

Remark. It is easy to verify that P, E and X_\pm are bounded linear operators on $(L^2(S^1))^2$. Hence $K + ^tKT = J(1-P+EP)$ has a unique inverse $(X_+^{-1}(1-P) + X_-^{-1}P)X_+J^{-1}$ in L^2 according to the Remark below Proposition A.2, Chapter IV.

For general (m, n), the rotation $T_{mn} = 1-2P_{mn}$ induced by t_{mn} is obtained by the replacement $P(\theta, \theta') \rightarrow P_{mn}(\theta, \theta') = U_{mn}(\theta)P(\theta, \theta')U_{mn}(\theta')^{-1}$ with $U_{mn}(\theta) = e^{im\theta}(\cosh n\gamma(\theta) - E(\theta)\sinh n\gamma(\theta))$. Since U_{mn} commutes with E, (5.2.14) and (5.2.15) are valid if we replace X_\pm by $U_{mn}X_\pm U_{mn}^{-1}$. It is easy to see that the expectation value $\langle t_{mn} \rangle$ is not changed. Returning to the basis $\hat{\psi}(\theta)$, $\check{\psi}(\theta)$ we have thus the following result.

\[(5.2.17) \]

\[
\rho_{mn} = \frac{1}{\sqrt{2\pi}} \frac{d\theta}{2\pi} \frac{d\theta'}{2\pi} \langle \hat{\psi}(\theta) \check{\psi}(\theta') \rangle \begin{pmatrix}
 \tilde{R}_{mn}^{-}(\theta, \theta') \\
 \tilde{R}_{mn}^{+}(\theta, \theta')
\end{pmatrix} \begin{pmatrix}
 \hat{\psi}(\theta') \\
 \check{\psi}(\theta')
\end{pmatrix}
\]

where $\langle t_{mn} \rangle = \langle t_{00} \rangle$ is given by (5.2.9), and
Computation of \(N_r(s_{mn}) \) is now a relatively easy task. Since \(s_{mn} = p_{mn} \cdot t_{mn} \), we have from (5.2.17) and (1.4.1)

\[
(5.2.19) \quad N_r(s_{mn}) = \langle t_{mn} \rangle \psi_{0,mn} e^{p_{mn}/2}
\]

Here we have used

\[
(5.2.19) \quad \psi_{0,mn} = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \frac{1}{|b(\theta)|} \left(e^{-i m \theta - n \gamma(\theta)} \psi^+(\theta) + e^{i m \theta + n \gamma(\theta)} \psi(\theta) \right).
\]

Here we have used

\[
\int_{-\pi}^{\pi} \frac{d\theta'}{2\pi} \hat{R}(\theta', \theta') \frac{1}{|a(\theta')|^2} e^{i m \theta' + n \gamma(\theta')} = e^{\mp (i m \theta + n \gamma(\theta))} \left(\frac{1}{|b(\theta)|} \right).
\]

(ii) The case \(T < T_c \)

In this case we shall deal with the operator \(\tilde{s}_{mn} = V_n \tilde{s}_m V^{-n} \), \(\tilde{s}_m = s_{-M}^{\perp} s_m = P_{m \tilde{q}_{m-1}} P_{m-2} \cdots M + 1 \tilde{q}_{M-1} \) instead of \(s_{mn} \) itself. This amounts to setting the boundary condition \(\tilde{s}_{-M} = 1 \) before taking the limit \(M \to \infty \).

More precisely we start with the following:

\[
(5.1.2)' \quad Z'_{MN} = \sum_{(\sigma)} e^{-\beta E(\sigma)}
\]

\[
(5.1.3)' \quad \rho'_k((m_1, n_1), \ldots, (m_k, n_k)) = Z'_{MN}^{-1} \sum_{(\sigma)} \sigma_{m_1 n_1} \cdots \sigma_{m_k n_k} e^{-\beta E(\sigma)}
\]

where \(\sum' \) stands for the sum with the restriction \(\sigma_{0n} = 1 \) \((0 \leq n \leq N - 1) \). Following the procedure of Section 5.1 we find

\[
(5.1.12)' \quad Z'_{MN} = 2^{-1} \text{trace} (V'^N)
\]

\[
(5.1.13)' \quad \rho'_k((m_1, n_1), \ldots, (m_k, n_k)) = (2Z'_{MN})^{-1} \text{trace} (\tilde{s}_{m_1 n_1} \cdots \tilde{s}_{m_k n_k} V'^N)
\]

where

\[
(5.1.11)' \quad V' = V_1^{1/2} V_2^{1/2}
\]

\[
V'_1 = \exp (K_1(p_1 q_0 + p_2 q_1 + \cdots + p_0 \tilde{q}_M - 1))
\]

\[
V'_2 = e^{K_2 (2 \sinh 2K_2) x} \exp (K_2 (q_1 p_1 + \cdots + q_{M-1} P_{M-1}))
\]

\[
(5.1.14)' \quad \tilde{s}_{mn} = V'^n \tilde{s}_m V^{-n}, \quad \tilde{s}_m = P_{m \tilde{q}_{m-1}} \cdots P_1 q_0
\]

and \(p_m, q_m \) satisfy (5.1.16). If we replace \(V'_1, V'_2 \) by those given in (5.1.18) and (5.1.18)' respectively, we return to the situation described above. It is not
difficult to verify that this replacement does not affect the result in the limit \(M, N \to \infty \).

Calculation of \(N_r (\delta_{mn}) \) is quite parallel to the case of \(t_{mn} \) by using the basis \(\{ e^{i\theta} \rho(\theta), \varphi(\theta) \} \). Explicitly the rotation \(T_{so0} = 1 - 2 \overline{P} \) reads

\[
(5.2.20) \quad \overline{P}(\theta, \theta') = I_2 \cdot \frac{e^{-i(\theta-\theta')}}{1 - e^{-i(\theta-\theta'-10)}}.
\]

Accordingly \((5.2.13), (5.2.14) \text{ and } (5.2.16) \) are replaced by

\[
(5.2.21) \quad E(\theta, \theta') = \begin{pmatrix} a & b_{T<T_e}(\theta) \\ b_{T<T_e}(\theta)^{-1} & d \end{pmatrix}
\]

\[
(5.2.22) \quad X_+(\theta) = \begin{pmatrix} b_{T<T_e}(\theta)^{-1} \\ b_{T<T_e}(\theta) \end{pmatrix}
\]

\[
(5.2.23) \quad \overline{R}'(\theta, \theta') = \frac{e^{-i(\theta+\theta')}}{1 - e^{-i(\theta+\theta'-10)}} \begin{pmatrix} b_{T<T_e}(\theta) \\ b_{T<T_e}(\theta') \end{pmatrix}
\]

respectively.

As a result we have

\[
(5.2.24) \quad N_r(\delta_{mn}) = \langle \delta_{mn} \rangle e^{\frac{\varphi^{mn}}{2}}
\]

\[
(5.2.25) \quad \langle \delta_{mn} \rangle = (1 - S_1^2 S_2^2)^{1/8}
\]

\[
(5.2.26) \quad \overline{R}^{\sigma\sigma'}(\theta, \theta') = \left(\sigma \frac{b(\theta)}{b(\theta')} - \sigma' \frac{b'(\theta)}{b(\theta')} \right) \times \frac{e^{i(m-1)\sigma \theta + \sigma' \theta'} + n(\sigma \varphi(\theta) + \sigma' \varphi(\theta'))}{1 - e^{-i(\sigma \theta' + \sigma' \theta' - 10)}}
\]

\[
(b(\theta) = b_{T<T_e}(\theta); \sigma, \sigma' = \pm).
\]

In Chapter 4 we constructed the operator \(\varphi_F(a) \) starting from the 2-dimensional Dirac equation. Likewise we can begin with the following difference equation for \(v = (v_{mn})_{m,n \in \mathbb{Z}}, v_{mn} = (v_{m+}^{(\pm)}, v_{m-}^{(\pm)}) \in \mathbb{C}^2 \).
(5.2.27) \[v_{mn+1}^{(+)} = C_1 C_2 v_{mn}^{(+)} - S_1 S_2 v_{m-1,n}^{(+)} + v_{m+1,n}^{(+)} + C_1 S_2 v_{m-1,n}^{(-)} + C_1 S_2 v_{m-2,n}^{(-)} \]
\[+ C_1 S_2 v_{mn}^{(+) - S_1 C_2 v_{m-1,n}^{(-) + C_1} S_2 v_{m+1,n}^{(-)}} \]
\[v_{mn+1}^{(-)} = \frac{C_1 + 1}{2} S_2 v_{mn}^{(+)} - S_1 C_2 v_{m+1,n}^{(+)} + \frac{C_1 - 1}{2} S_2 v_{m+1,n}^{(-)} \]
\[+ C_1 S_2 v_{m-1,n}^{(-)} + v_{m+1,n}^{(-)} \]

We denote by \(W \) the set of solutions of (5.2.27) satisfying
\[\sum_{m \in \mathbb{Z}} |v_{mn}^{(+)}|^2 + \sum_{m \in \mathbb{Z}} |v_{mn}^{(-)}|^2 < \infty \]
for a fixed \(n \). The inner product in \(W \) is defined by
\[\langle v, v' \rangle = 2 \sum_{m \in \mathbb{Z}} (v_{mn}^{(+) v_{mn}^{(+)}} - v_{mn}^{(-)} v_{mn}^{(-)}) \]

A little computation shows that the right hand side is independent of \(n \). From (5.1.16) and (5.2.28) we know that if we identify \(p_{m_0} \) (resp. \(q_{m_0} \)) \(W \) with the solution \(v \) of (5.2.27) satisfying \(v_{m_0} = t_0(0, -\delta_{m_0}) \) (resp. \(v_{m_0} = t_0(0, -\delta_{m_0}) \)), \(W \) and \(W' \) are isomorphic as orthogonal vector spaces. Moreover, from (5.1.24) and (5.1.25) \(p_{m_0} \) (resp. \(q_{m_0} \)) represents the solution \(v \) such that \(v_{m_0} = (\delta_{m_0}, 0) \) (resp. \(v_{m_0} = (0, -\delta_{m_0}) \)). Let us introduce "the mass shell" for the difference equation (5.2.27).

Denoting by \(z \) and \(w \) the translations
\[(z v^{(+)})_{mn} = v_{m+1,n}^{(+)}, \quad (w v^{(+)}) = v_{mn+1}^{(+)}, \]
respectively, we can rewrite (5.2.27) in the form
\[(5.2.27)' \quad \Gamma v = 0 \]
where
\[\Gamma = \begin{pmatrix}
C_1 C_2 - S_1 S_2 \frac{z + z^{-1}}{2} - w & C_1 + 1 \frac{S_2}{2} - S_1 C_2 z^{-1} + C_1 - 1 \frac{S_2}{2} z^{-2} \\
C_1 + 1 \frac{S_2}{2} - S_1 C_2 z + C_1 - 1 \frac{S_2}{2} z^2 & C_1 C_2 - S_1 S_2 \frac{z + z^{-1}}{2} - w
\end{pmatrix} \]

Noting that \(C_2 S_2 = C_2 \) and \(S_2 S_2 = 1 \), we have
\[\det \Gamma = w^2 - 2 \left(C_1 C_2 - S_1 S_2 \frac{z + z^{-1}}{2} \right) + 1 = -2 S_2^2 w \Delta(z, w) \]
where
\[\Delta(z, w) = C_1 C_2 - S_1 \frac{z + z^{-1}}{2} - S_2 \frac{w + w^{-1}}{2} \]

We denote by \(M^c \) the complex mass shell
(5.2.30) \[M^c = \{(\zeta_0, \zeta_1, \zeta_2) \in \mathbb{P}^2(\mathbb{C}) | \]
\[C_1 C_2 \zeta_0 \zeta_1 \zeta_2 - S_1 \zeta_2, \frac{\zeta_1^3 + \zeta_0^3}{2} - S_2 \zeta_1 \cdot \frac{\zeta_2^3 + \zeta_0^3}{2} = 0 \}. \]

\(M^c \) is a non-singular elliptic curve. The projection \(\pi_1: M^c \rightarrow \mathbb{P}^1(\mathbb{C}) \), \(\pi_1(\zeta_0, \zeta_1, \zeta_2) = (\zeta_0, \zeta_1) \) is a two-sheeted covering with branch points \(\alpha_{1}^{\pm}, \alpha_{2}^{\pm} \) (see (5.1.25) and (5.1.26)). We set

(5.2.31) \[M = \{(z, w) \in M^c | |z| = 1 \}, \]
(5.2.32) \[M_{\pm} = \{(z, w) \in M | |w| \geq 1 \} . \]

An Abelian differential of the first kind on \(M^c \) is given by

(5.2.33) \[\frac{dz}{\pi i z (w - w^{-1})} = \frac{dz}{\pi i S_1 S_2 \sqrt{(z - \alpha_1)(z - \alpha_1^{-1})(z - \alpha_2)(z - \alpha_2^{-1})}} . \]

We choose a uniformizing parameter \(U \) on \(M^c \) so that \(dU = dz/\pi iz(w - w^{-1}) \). We identify \(M_{\pm} \) with \(\mathbb{R}/2\pi \mathbb{Z} \) by

\[z = e^{i\theta}, \quad w = e^{\gamma(\theta)} \quad \text{if} \quad (z, w) \in M_+ , \]
\[z = e^{-i\theta}, \quad w = e^{-\gamma(\theta)} \quad \text{if} \quad (z, w) \in M_- , \]
respectively. Then on the real mass shell \(M \) the 1-form \(dU \) is expressed as

(5.2.34) \[dU = \frac{d\theta}{2\pi \sinh \gamma(\theta)} . \]

For a function \(f(U) \) defined on \(M \) we have the following identities.

\[\int_{M} dU f(U) = \int_{-\pi}^{\pi} d\theta f(U_+(\theta)) + \int_{-\pi}^{\pi} d\theta f(U_-(\theta)) , \]

where \(U_+(\theta) = (e^{\pm i\theta}, e^{\pm \gamma(\theta)}) \) for \(\theta \in \mathbb{R}/2\pi \mathbb{Z} \).

Set for \(T > T_c \)

(5.2.35) \[\psi_+(\theta) = i/\sinh \gamma(\theta) \psi_+^{T \rightarrow T_c}(\theta) \quad U \in M_- , \]
\[\psi(\theta) = \sqrt{\sinh \gamma(\theta)} \psi_{T \rightarrow T_c}(\theta) \quad U \in M_+ , \]

and set for \(T < T_c \)

(5.2.36) \[\psi_+(\theta) = i/\sinh \gamma(\theta) \psi_+^{T \rightarrow T_c}(\theta) \quad U \in M_- , \]
\[\psi(\theta) = -i/\sinh \gamma(\theta) \psi_{T \rightarrow T_c}(\theta) \quad U \in M_+ . \]

We have then

\[\text{(*) We use } z = \zeta_1/\zeta_0 \text{ and } w = \zeta_2/\zeta_0 \text{ as the inhomogeneous coordinates.} \]
where \(\delta(\theta, \theta') = \sinh \gamma(\theta) \cdot 2\pi \delta(\theta - \theta') \). We also set

\[
(5.2.38) \quad \psi(U) = \begin{cases}
\psi^+(\theta) & U \in M_-, \\
\psi(\theta) & U \in M_+.
\end{cases}
\]

From (5.1.28) and (5.1.31) we have the following identities.

\[
(5.2.39) \quad |b_{T > T_c}(\theta)|^2 = \sinh \gamma(\theta) \sinh 2K_2/cosh^2 K_1, \\
|b_{T < T_c}(\theta)|^2 = \tanh K_1/\tanh (\gamma(\theta)/2).
\]

Making use of (5.2.39) we obtain the final form of the spin operators.

Theorem 5.2.1. For \(T > T_c \),

\[
(5.2.40) \quad \rho_{mn} = (1 - S_1^2 S_2^2)^{1/2} \psi_{0, mn} e^{\rho_{mn}/2}.
\]

\[
(5.2.41) \quad \rho_{mn} = \int_{-\pi}^{\pi} d\theta d\theta' (\psi^+(\theta) \psi^+(\theta')) \begin{pmatrix}
R_m^n(-\theta, \theta') & R_m^n(-\theta, \theta') \\
R_m^n(-\theta, \theta') & R_m^n(-\theta, \theta')
\end{pmatrix} \begin{pmatrix}
\psi(\theta') \\
\psi(\theta')
\end{pmatrix}
\]

\[
= \int_{M \times M} dU dU' R_{mn}(U, U') \psi(U) \psi(U'),
\]

\[
R_m^n(\theta, \theta') = -\frac{\sinh \sigma \gamma(\theta) - e^{-i(\sigma \theta + \sigma' \theta')}}{1 - e^{-i(\sigma \theta + \sigma' \theta' - \theta)}} \times e^{i(m-1)(\sigma \theta + \sigma' \theta') + n(\gamma(\theta) + \gamma(\theta'))} \quad (\sigma, \sigma' = \pm),
\]

\[
R_{mn}(U, U') = \frac{w - w'}{1 - z - z' + 1} \frac{1 + w^{-1} w'^{-1}}{2} (zz')^{n-1} (ww')^n.
\]

\[
(5.2.42) \quad \psi_{0, mn} = \frac{1}{\sqrt{S_2}} \int_{-\pi}^{\pi} d\theta (e^{-i m \theta - n \gamma(\theta)} \psi^+(\theta) + e^{i m \theta + n \gamma(\theta)} \psi(\theta))
\]

\[
= \frac{1}{\sqrt{S_2}} \int_{M} dU z^m w^n \psi(U).
\]

Theorem 5.2.2. For \(T < T_c \),

\[
(5.2.43) \quad \rho_{mn} = \langle \tilde{s}_{mn} \rangle e^{\tilde{\rho}_{mn}/2},
\]

\[
\langle \tilde{s}_{mn} \rangle = (1 - S_1^2 S_2^2)^{1/8}.
\]

\[
(5.2.44) \quad \tilde{\rho}_{mn} = \int_{-\pi}^{\pi} d\theta d\theta' (\psi^+(\theta) \psi^+(\theta')) \begin{pmatrix}
\tilde{R}_m^n(-\theta, \theta') & \tilde{R}_m^n(-\theta, \theta') \\
\tilde{R}_m^n(-\theta, \theta') & \tilde{R}_m^n(-\theta, \theta')
\end{pmatrix} \begin{pmatrix}
\psi(\theta') \\
\psi(\theta')
\end{pmatrix}
\]

\[
= \int_{M \times M} dU dU' \tilde{R}_{mn}(U, U') \psi(U) \psi(U'),
\]

\[
\tilde{R}_m^n(\theta, \theta') = \frac{2 \sinh \sigma \gamma(\theta) - e^{-i(\sigma \theta + \sigma' \theta')}}{1 - e^{-i(\sigma \theta + \sigma' \theta' - \theta)}} \times e^{i(m-1)(\sigma \theta + \sigma' \theta') + n(\sigma \gamma(\theta) + \sigma' \gamma(\theta'))} \quad (\sigma, \sigma' = \pm),
\]
For $T > T_c$ we may change ρ_{mn} by $\rho_{mn} + \psi_{1,mn}\psi_{0,mn}$ for any $\psi_{1,mn} \in W$ (see Theorem 1.2.8). The particular choice

$$\psi_{1,mn} = \int_{M} dU \left(\frac{S_1}{S_2} z^{m-1} w^n + z^m w^{n+1} \right) \psi(U)$$

leads to the following.

Theorem 5.2.3. For $T > T_c$,

$$R_{mn}(U, U') = \frac{w - w'}{1 - z^{-1} z'^{-1}} (zz')^{m-1}(ww')^{n-1/2}.$$

Proof. We note that for $(z, w), (z', w') \in M^G$ we have

$$S_2 \frac{m - n'}{1 - z^{-1} z'^{-1}} + S_1 \frac{z - z'}{1 - w^{-1} w'^{-1}} = 0.$$

Without loss of generality we may assume that $m = 1$ and $n = 0$. Using (5.2.47) we have

$$\rho_{10} + \psi_{1,10}\psi_{0,10}$$

$$= \int_{M \times M} dU dU' \left\{ \frac{w - w'}{1 - z^{-1} z'^{-1}} \frac{1 + w^{-1} w'^{-1}}{2}

+ \frac{S_1}{S_2} (z' - z) + zz' (w - w') \right\} \psi(U) \psi(U')$$

$$= \int_{M \times M} dU dU' \left\{ - \frac{S_1}{2S_2} \frac{1 + w^{-1} w'^{-1}}{1 - w^{-1} w'^{-1}} (z' - z) \n
+ \frac{S_1}{S_2} (z' - z) + zz' (w - w') \right\} \psi(U) \psi(U')$$

$$= \int_{M \times M} dU dU' \left\{ \frac{w - w'}{1 - z^{-1} z'^{-1}} + zz' (w - w') \right\} \psi(U) \psi(U')$$

$$= \int_{M \times M} dU dU' \frac{w - w'}{1 - z^{-1} z'^{-1}} zz' \psi(U) \psi(U').$$
Remark. By different choices of $\psi_{1, mn}$ the following kernels are also admissible as $R'_{mn}(U, U')$.

\begin{align*}
(5.2.46)_1 & \quad \frac{w - w'}{1 - z^{-1}z'^{-1}}(zz')^{m-1}(ww')^n. \\
(5.2.46)_2 & \quad \frac{w - w'}{1 - z^{-1}z'^{-1}}(zz')^m(ww')^{n-1}. \\
(5.2.46)_3 & \quad \frac{w - w'}{1 - z^{-1}z'^{-1}}(zz')^{m-1}(ww')^{n-1}.
\end{align*}

Finally we express the auxiliary operators p_{mn} and q_{mn} in terms of $\psi(U)$. For $T > T_c$

\begin{align*}
(5.2.48) & \quad p_{mn} = \sqrt{(C_1 + 1)}S_{\frac{\pi}{2}}/2 \int_M dU \sqrt{(1 - \alpha_1 z^{-1})(1 - \alpha_2^{-1} z^{-1})} z^m w^n \psi(U), \\
q_{mn} = \sqrt{(C_1 + 1)}S_{\frac{\pi}{2}}/2 \int_M dU \sqrt{(1 - \alpha_1 z)(1 - \alpha_2 z)} z^m w^n \epsilon(U) \psi(U),
\end{align*}

where $\epsilon(U) = \pm 1$ for $U \in M_\pm$.

For $T < T_c$

\begin{align*}
(5.2.49) & \quad p_{mn} = i\sqrt{(C_1 + 1)}S_{\frac{\pi}{2}}/(2\alpha_2) \int_M dU \sqrt{(1 - \alpha_1 z^{-1})(1 - \alpha_2 z)} z^{m-1} w^n \epsilon(U) \psi(U), \\
q_{mn} = -i\sqrt{(C_1 + 1)}S_{\frac{\pi}{2}}/(2\alpha_2) \int_M dU \sqrt{(1 - \alpha_1 z)(1 - \alpha_2 z^{-1})} z^m w^n \psi(U).
\end{align*}

§ 5.3. Correlation Functions

In this section, applying the product formulas (Theorems 1.4.3 and 1.4.4) we derive infinite series expressions (cf. [9], [10], [11]) for k-point correlation functions directly from the norm representations of spin operators.

Let C_\pm, C'_\pm denote the 1-cycles on M^c defined by

\begin{align*}
(5.3.1) & \quad C_\pm = \{(z, w) \in M^c \mid z = e^{i\theta}, \ |w| \geq 1, \ \theta \in \mathbb{R}/2\pi\mathbb{Z}\}, \\
(5.3.2) & \quad C'_\pm = \{(z, w) \in M^c \mid w = e^{i\theta}, \ |z| \geq 1, \ \theta \in \mathbb{R}/2\pi\mathbb{Z}\}.
\end{align*}

In Figures 5.3.1 and 5.3.2, we show their locations.
We define the l-form Ω_l on $(M^c)^l$ by

\begin{equation}
\Omega_l = \left(\prod_{j=1}^{l-1} \frac{-w_j + w_{j+1}}{1 - z_j z_{j+1}} \right) dU_1 \wedge \cdots \wedge dU_l,
\end{equation}

where we set $z_{l+1} = z_1$ and $w_{l+1} = w_1$. If we introduce another uniformizing parameter \bar{U} on M^c through

\[d\bar{U} = \frac{dw}{\pi i w(z - z^{-1})} = -\frac{S_1}{S_2} dU. \]

Ω_l is rewritten as

\begin{equation}
\Omega_l = \left(\prod_{j=1}^{l-1} \frac{-z_j + z_{j+1}}{1 - w_j w_{j+1}} \right) d\bar{U}_1 \wedge \cdots \wedge d\bar{U}_l.
\end{equation}

Here we have used (5.2.47) and the following.
(5.3.4) \[S_1 \frac{dz}{z(w-w^{-1})} + S_2 \frac{dw}{w(z-z^{-1})} = 0. \]

\(\Omega_i \) is holomorphic except for simple poles at

(5.3.5) \[\Delta^{(j)} = \{(U_1, \ldots, U_l) \in (M^\mathbb{C})^l | U_j = U_{j+1} \}, \]

\((j = 1, \ldots, l)\) where \(U_{l+1} = U_1 \). The residue at \(\Delta^{(j)} \) is given by

(5.3.6) \[\text{res } \Delta^{(j)} \Omega_i = (-)^j \Omega_{l+1}/\pi i, \]

where we identify \(\Delta^{(j)} \) with \((M^\mathbb{C})^{l-1}\).\(^(*)\)

Let \((m_1, n_1), \ldots, (m_k, n_k)\) be \(k \) distinct lattice points. We choose permutations \(\sigma \) and \(\tau \) so that \(m_{\sigma(1)} \leq \cdots \leq m_{\sigma(k)} \) and \(n_{\tau(1)} \leq \cdots \leq n_{\tau(k)} \), respectively. We denote by \(< \) the ordering by \(\sigma \), namely for \(1 \leq v, v' \leq k \)

\[v < v' \leftrightarrow \sigma^{-1}(v) < \sigma^{-1}(v'). \]

Likewise \(\leq \) is defined. We set

\[m_{vv'} = m_v - m_{v'}, \quad n_{vv'} = n_v - n_{v'}, \]

and denote by \(C_{vv'} \) the 1-cycle defined by

(5.3.7) \[C_{vv'} = \begin{cases} C_+ & \text{if } v > v', \\ 0 & \text{if } v = v', \\ C_- & \text{if } v < v'. \end{cases} \]

We also set

(5.3.8) \[C'_{vv'} = \begin{cases} C'_+ & \text{if } m_v > m_{v'}, \\ 0 & \text{if } v = v', \\ C'_- & \text{if } m_v < m_{v'}. \end{cases} \]

First we assume that \(T < T_c \). From (1.4.12), (5.2.43) and (5.2.44) we have the following ([9]).

Theorem 5.3.1. For \(T < T_c \),

(5.3.9) \[\rho_k((m_1, n_1), \ldots, (m_k, n_k)) = (1 - S_1^2 S_2^2)^k \exp \left(-\sum_{i=2}^\infty \frac{F_k^{(i)}}{2i} \right) \]

where \(F_k^{(i)} = \sum_{v_1, \ldots, v_i=1}^k F_{kv_1, \ldots, v_i}^{(i)} \),

(5.3.10) \[F_{kv_1, v_1, v_1}^{(i)} = \int_{C_{v_1, v_1}^{x \cdots x C_{v_1, v_1}}} z_1^{m_{v_1} v_1} z_2^{n_{v_1} v_1} \cdots z_i^{m_{v_1} v_1} w_1^{n_{v_1} v_1} \cdots z_i^{m_{v_1} v_1} w_1^{n_{v_1} v_1} \Omega_i. \]

\(^(*)\) For a closed form \(\omega \) with a simple pole at \(d = \{f=0\} \), the residue \(\text{res } \omega \) is defined to be

\[\omega/d \log f \bigg|_{d=0} \theta(\omega) \]

where \(\omega = d \log f \wedge \theta + \varphi \) (\(\theta, \varphi \) holomorphic).
In (5.3.10) if \(C_{v_j-1v_j} = C_{v_jv_{j+1}} \) for some \(j \), we deform these cycles so that

\[
|z_{j-1}| > |z_j|.
\]

Let \(D_4 \) denote the dihedral group of order 8, i.e. \(D_4 \) has two generators \(A_1 \) and \(A_2 \) satisfying \(A_1^2 A_2 = A_2 A_1 = 1 \).

By the definition the correlation function satisfies the following invariance with respect to \(D_4 \).

\[
(5.3.12)_{A_1} \quad \rho_k((m_1, n_1), \ldots, (m_k, n_k); K_1, K_2) = \rho_k((m_1, -n_1), \ldots, (m_k, -n_k); K_1, K_2),
\]

\[
(5.3.12)_{A_2} \quad \rho_k((m_1, n_1), \ldots, (m_k, n_k); K_1, K_2) = \rho_k((n_1, m_1), \ldots, (n_k, m_k); K_2, K_1).
\]

For the infinite series (5.3.9), (5.3.12)\(_{A_1}\) is easily checked using the invariance of \(\Omega_i \) under the automorphism \((z, w) \rightarrow (z, w^{-1})\) of \(M^C \). To check (5.3.12)\(_{A_2}\) is equivalent to show that

\[
(5.3.9)' \quad \rho_k((m_1, n_1), \ldots, (m_k, n_k)) = (1 - S_1^2 S_2^2)^k \exp \left(- \sum_{l=2}^{\infty} \frac{F_l^{(i)}}{2l} \right),
\]

where \(F_l^{(i)} = \sum_{v_{i_1}, \ldots, v_{i_l}} F_{k v_{i_1}, \ldots, v_{i_l}}^{(i)} \).

\[
(5.3.10)' \quad F_{k v_{i_1}, \ldots, v_{i_l}}^{(i)} = \int_{C_{v_{i_1}v_{i_2} \cdots v_{i_l}}} \ldots \cdot 1 \ldots \cdot 1 \cdot \Omega_i.
\]

Here we used (5.3.4). In (5.3.10)' if \(C_{v_j-1v_j} = C_{v_jv_{j+1}} \) for some \(j \), we deform these cycles so that

\[
(5.3.12)' \quad |w_{j-1}| > |w_j|.
\]

As mentioned in [9] \(F_k^{(i)} \) is not equal to \(F_k^{(i)} \) in general. When we deform the cycles from \(C_\pm \) into \(C_\pm \) in order to obtain \(F_k^{(i)} \) from \(F_{k v_{i_1}, \ldots, v_{i_l}}^{(i)} \), residual terms arise from (5.3.6). We shall give a sketch of the direct proof of the cancellation in the whole sum \(\sum_{l=2}^{\infty} F_l^{(i)}/2l \).

A residual term in \(F_{k v_{i_1}, \ldots, v_{i_l}}^{(i)} \) appears from \(A_l^{(i)} \) in the following six cases.

Case 1. \(v_j < v_{j+1} < v_{j+2} \) and \(v_{j+1} < v_{j+2} \).

Case 2. \(v_j > v_{j+1} > v_{j+2} \) and \(v_{j+1} < v_{j+2} \).

Case 3. \(v_j < v_{j+1} < v_{j+2} \) and \(v_j < v_{j+1} < v_{j+2} \).

Case 4. \(v_j > v_{j+1} > v_{j+2} \) and \(v_{j+1} > v_{j+2} \).

Case 5. \(v_j < v_{j+2} < v_{j+1} \) and \(v_j < v_{j+1} < v_{j+2} \).
Case 6. \(v_j, v_{j+2} < v_{j+1} \) and \(v_j, v_{j+1} > v_{j+2} \).

In Case 1, at first \(C_{v_j v_{j+1}} \) is located to the right (in Figure 5.3.2) of \(C_{v_j, v_{j+2}} \) because of the condition (5.3.12). Since \(C_{v_j v_{j+1}} \) (resp. \(C_{v_j, v_{j+2}} \)) is deformed into \(C_- \) (resp. \(C_+ \)) in this case, we must reverse their positions. Thus we get \(-2F_{k_1}^{(1)}(v_j, v_{j+2}, \ldots)\) as the residue. Likewise we need to reverse the order of cycles in the above six cases.

After the reversing corresponding to Cases 1 and 2, the sum \(\sum_{l=2}^{\infty} F_k^{(l)}/2l \) changes to \(\sum_{l=2}^{\infty} 1F_k^{(l)}/2l \) where

\[
1F_k^{(l)} = \sum_{v_1, \ldots, v_l=1} F_{v_1, \ldots, v_l}^{(l)},
\]

\[
1F_k^{(l)} = \sum_{v_1, \ldots, v_l=1} F_{v_1, \ldots, v_l}^{(l)},
\]

\[
\sigma_1(v_1, \ldots, v_l) = (-)^{\sigma_1(v_1, \ldots, v_l)},
\]

\[
\sigma_1(v_1, \ldots, v_l) = \text{the cardinal number of the set}
\]

\[
\{ v \mid v_j < v < v_{j+1}, v_j, v_{j+1} < v \} \text{ for some } j
\]

\[
\cup \{ v \mid v_j > v > v_{j+1}, v_j, v_{j+1} < v \} \text{ for some } j
\]

Here \(1F_k^{(l)} \) is given by (5.3.10) with the following prescription for a pair satisfying \(C_{v_j v_{j+1}} = C_{v_j v_{j+1}} \).

(5.3.11) \(|z_{j+1}| < |z_j| \) if \(C_{v_j v_{j+1}} = C_- \) and \(C_{v_j v_{j+1}} = C_+ \),

\(|z_{j+1}| > |z_j| \) otherwise.

Next we perform the reversing for the Cases 3 and 4. The result is \(\sum_{l=2}^{\infty} 2F_k^{(l)}/2l \) where

\[
2F_k^{(l)} = \sum_{v_1, \ldots, v_l=1} F_{v_1, \ldots, v_l}^{(l)} F_{v_1, \ldots, v_l}^{(l)},
\]

\[
2F_k^{(l)} = \sum_{v_1, \ldots, v_l=1} F_{v_1, \ldots, v_l}^{(l)} F_{v_1, \ldots, v_l}^{(l)},
\]

\[
\sigma_2(v_1, \ldots, v_l) = (-)^{\sigma_2(v_1, \ldots, v_l)},
\]

\[
\sigma_2(v_1, \ldots, v_l) = \text{the cardinal number of the set}
\]

\[
\{ v \mid v_j < v < v_{j+1}, v_j, v_{j+1} < v \} \text{ for some } j
\]

\[
\cup \{ v \mid v_j > v > v_{j+1}, v_j, v_{j+1} < v \} \text{ for some } j
\]

Here \(2F_k^{(l)} \) is given by (5.3.10) with the following prescription for a pair satisfying \(C_{v_j v_{j+1}} = C_{v_j v_{j+1}} \).

(5.3.11) \(|z_{j+1}| < |z_j| \) if \(C_{v_j v_{j+1}} = C_- \),

\(|z_{j+1}| > |z_j| \) if \(C_{v_j v_{j+1}} = C_+ \).

Now we deform \(C_\pm \) into \(C_\pm \) and obtain \(\sum_{l=2}^{\infty} 3F_k^{(l)}/2l \) where
554 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

\[3F_k^{(l)} = \sum_{v_1, \ldots, v_l=1}^k e_1(v_1, \ldots, v_l)e_2(v_1, \ldots, v_l)e_3(v_1, \ldots, v_l) \times 3F_{k_1, \ldots, k_l}, \]

\[e_3(v_1, \ldots, v_l) = (-)^3(v_1, \ldots, v_l), \]

\[\#_3(v_1, \ldots, v_l) = \text{the cardinal number of the set} \]
\[\{j|v_j < v_{j+1}, \text{ } v_j < v_{j+1}\} \cup \{j|v_j > v_{j+1}, \text{ } v_j > v_{j+1}\}. \]

Here \(3F_{k_1, \ldots, k_L}^{(l)} \) is given by (5.3.10)' with the following prescription for a pair satisfying \(C'_{v_L-1} = C'_{v_L+1} \):

\[(5.3.11)' |w_j-1| <|w_j| \text{ if } C_{v_j-1} = C_- \text{ and } C_{v_j+1} = C_+, \]
\[|w_j-1| > |w_j| \text{ otherwise.} \]

We can show that

\[e_1(v_1, \ldots, v_l)e_2(v_1, \ldots, v_l)e_3(v_1, \ldots, v_l) = (-)^3(v_1, \ldots, v_l) \]

\[\#_3'(v_1, \ldots, v_l) = \text{the cardinal number of the set} \]
\[\{v|v_m < v_j < v_{j+1}, \text{ } v_j, v_{j+1} < v \text{ for some } j\} \]
\[\cup \{v|v_j > v > v_{j+1}, \text{ } v_j, v_{j+1} < v \text{ for some } j\}. \]

Hence after reversing cycles for the Cases 5 and 6, we obtain the desired sum \(\sum_{l=2}^\infty F_k^{(l)}. \)

If \(|n_v - n_{v'}| > 1 \) for any pair \((v, v')\), the convergence of the sum \(\sum_{l=2}^\infty F_k^{(l)}/2l \) is obvious by the same argument as in Proposition 4.5. Indeed \(|w_j|^{-n_v - n_{v'}}\) is much smaller than 1 on \(C_{v_{v'+1}} \) and serves as a damping factor. Now we shall show that (5.3.9) is convergent if for any pair \((v, v')\) either \(|n_v - n_{v'}| > 1 \) or \(|m_v - m_{v'}| > 1 \). In fact, if \(|m_v - m_{v'}| > 1 \), we deform \(C_{vv'} \) into \(C_{vv''} \). Then \(|z|^{-m_v - m_{v'}} \) is much smaller than 1 on \(C_{vv''} \). Of course we should estimate the residual terms. Let

\[\sum_{s=0}^{\infty} \sum_{\mu_1, \ldots, \mu_s=1}^l e_{\mu_1, \ldots, \mu_s} F_{k_1, \ldots, k_s}^{(s)} \]
\[+ \sum_{s=0}^{\infty} \sum_{\mu_1, \ldots, \mu_s=1}^l e_{\mu_1, \ldots, \mu_s} F_{k_1, \ldots, k_s}^{(s)} \]

be the terms obtained from \(F_{k_1, \ldots, k_l}^{(l)} \). Then it is easy to see the following conditions, which are sufficient for the convergence proof.

\[|e_{\mu_1, \ldots, \mu_s}| < 2^{l-s}, \text{ } |e_{\mu_1, \ldots, \mu_s}| < 2^{l-s}. \]

The cardinal numbers of the sets

\[\{(\mu_1, \ldots, \mu_s) \neq 0\}, \text{ } \{(\mu_1, \ldots, \mu_s) \neq 0\} \]

are less than \(2^l \) for a sufficiently large \(l \). Hence
for a sufficiently large \(L \).

Now we consider the case \(T > T_c \). We set \(\hat{\Omega}_l \) on \((M^c)^l\).

\[
\hat{\Omega}_l = \frac{-1}{S_2} \left(\prod_{j=1}^{l-1} \frac{-w_j + w_{j+1}}{1 - z_j z_{j+1}} \right) dU_1 \wedge \cdots \wedge dU_l
\]

\[
= \frac{1}{S_1} \left(\prod_{j=1}^{l-1} \frac{-z_j + z_{j+1}}{1 - w_j w_{j+1}} \right) d\bar{U}_1 \wedge \cdots \wedge d\bar{U}_l.
\]

\(\hat{\Omega}_l \) is holomorphic except for simple poles at \(A^{(j)} \) \((j=1, \ldots, l-1)\) and \((z_l, w_l) = (\infty, \infty)\) and \((z_l, w_l) = (0, 0)\). The residues are as follows.

\[
\text{res}_{z_l = \infty} \hat{\Omega}_l = (-)^l \hat{\Omega}_{l-1}/\pi i.
\]

\[
\text{res}_{w_l = \infty} \hat{\Omega}_l = \hat{\Omega}_{l-1}/\pi i.
\]

\[
\text{res}_{z_l = 0} \hat{\Omega}_l = (-)^l \hat{\Omega}_{l-1}/\pi i.
\]

From (1.4.12) and Theorem 5.2.3, we have the following ([9]).

Theorem 5.3.2. For \(T > T_c \),

\[
\rho_k((m_1, n_1), \ldots, (m_k, n_k)) = (1 - S_1^2 S_2^2)^{k/8} \cdot \text{Pfaffian } G_k \cdot \exp \left(- \sum_{l=2}^{\infty} \frac{F^{(l)}_k}{2l} \right)
\]

where \(F^{(l)}_k \) is the same as in Theorem 5.2.1, and \(G_k = \sum_{i=1}^{n} G_{k}^{(i)} \) is a skew-symmetric \(k \times k \) matrix given by

\[
G_{k}^{(i)} = \sum_{\nu_1, \ldots, \nu_{i-1}} G_{k \nu^{-1}(\nu)}^{(i)}
\]

where

\[
G_{k \nu^{1}, \ldots, \nu_{i-1}^{1}}^{(i)} = \int_{\mathcal{C}_{\nu_1^{1} \times \cdots \times \mathcal{C}_{\nu_{i-1}^{1}}}} z_1^{-m_{\nu_1^{1}} w_1^{-n_{\nu_1^{1}}} z_2^{-m_{\nu_2^{1}} w_2^{-n_{\nu_2^{1}}} \cdots z_{i-1}^{-m_{\nu_{i-1}^{1}}} w_{i-1}^{-n_{\nu_{i-1}^{1}}}} \hat{\Omega}_l.
\]

The expression (5.3.19) is derived from (5.2.46). We may adopt any one of (5.2.46) \(_1 \sim (5.2.46)_3\). Then the following are substituted for \(G_{k \nu^{1}, \ldots, \nu_{i-1}^{1}}^{(i)} \).

\[
G_{k \nu^{1}, \ldots, \nu_{i-1}^{1}}^{(i)} _1 = \int_{\mathcal{C}_{\nu_1^{1} \times \cdots \times \mathcal{C}_{\nu_{i-1}^{1}}}} z_1^{-m_{\nu_1^{1}} w_1^{-n_{\nu_1^{1}}} \cdots z_{i-1}^{-m_{\nu_{i-1}^{1}}} w_{i-1}^{-n_{\nu_{i-1}^{1}}}} \left(\frac{z_1}{z_2} \right) \hat{\Omega}_l.
\]

This is the choice of [9].
\[G_{k,v_1\ldots v_{l-1}v'}^{(i)} \]
\[= \int_{C_{v_1\ldots v_{l-1}v'}} z_1^{-m_{vv_1}w_1^{-n_{vv_1}}\ldots z_l^{-m_{vv_{l-1}v'}w_l^{-n_{vv_{l-1}v'}}} \left(\frac{w_i}{w_1} \right)^n \tilde{Q}_l. \]

\[G_{k,v_1\ldots v_{l-1}v'}^{(i)} \] is transformed into \(-2G_{k,v_1\ldots v_{l-1}v'}^{(i)} \) under the action of \(A_1 \).

\[G_{k,v_1\ldots v_{l-1}v'}^{(i)}((m_1, -n_1), \ldots, (m_k, -n_k); K_1, K_2) = -2G_{k,v_1\ldots v_{l-1}v'}^{(i)}((m_1, n_1), \ldots, (m_k, n_k); K_1, K_2). \]

Since the \(n \)-ordering is entirely reversed by \(A_1 \), (5.3.20) implies the invariance of \(\rho_k \).

In order to show the invariance of \(\rho_k \) under the action of \(A_2 \), we must prove by deforming cycles from \(C_+ \) into \(C_- \) that

\[(5.3.21) \]
\[Pfaffian G_k = Pfaffian G'_k \]

where \(G'_k = \sum_{i=1}^{\infty} G_k^{(i)} \) is given by

\[(5.3.18)' \]
\[G_{k,v_1\ldots v_{l-1}v'}^{(i)} = \sum_{v_1, \ldots, v_{l-1}} G_{k,v_1\ldots v_{l-1}}^{(i)}(v_1, \ldots, v_{l-1}v') \]

\[(5.3.19)' \]
\[G_{k,v_1\ldots v_{l-1}v'}^{(i)} = -\int_{C_{v_1\ldots v_{l-1}v'}} z_1^{-m_{vv_1}w_1^{-n_{vv_1}}\ldots z_l^{-m_{vv_{l-1}v'}w_l^{-n_{vv_{l-1}v'}}} \left(\frac{w_i}{z_1w_1} \right)^n \tilde{Q}_l. \]

By the same argument as for \(F_k^{(i)} \) we can show that \(G_{k,vv'} \) is equal to \(-\varepsilon(v, v')G_{k,vv'} \) where

\[\varepsilon(v, v') = (-)^{\#_1(v, v') + \#_2(v, v') + \#_3(v, v')} + \#_4(v, v'). \]

It is also easy to see that for any partition

\[\{v_1, v_2\} \cup \{v_3, v_4\} \cup \cdots \cup \{v_{k-1}, v_k\} \]

\[(-)^{\#_2(v_1, v_2)\cdots|\varepsilon(v_{k-1}, v_k)} = \text{sgn } \sigma \cdot \text{sgn } \tau. \]

Hence (5.3.21) is valid.

The convergence of \(G_k \) is similarly shown as for (5.3.9).

\section*{§ 5.4. The Symplectic Model}

Let us now proceed to the construction of a lattice model which constitutes the symplectic counterpart of the Ising model.
This time we start with a rectangular lattice L of size $M \times N$ with cyclic boundary, on which a continuous variable $x_{mn} \in \mathbb{R}$ is attached to each site (m, n) ($0 \leq m \leq M - 1, 0 \leq n \leq N - 1$). The total energy is given by

$$E(x) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (C_1 C_2 x_{mn}^2 - S_1 x_{mn} x_{m+1 n} - S_2 x_{mn} x_{m n+1})$$

where C_i, S_i denote those in (5.1.40). The grand partition function is defined by the integral

$$Z_{MN} = \int_{R^{MN}} dx e^{-E(x)}$$

where $dx = \prod_{m=0}^{M-1} \prod_{n=0}^{N-1} dx_{mn}$. Let Γ be a finite union of open polygons on the dual lattice L^*, and regard it as a simplicial 1-chain with coefficients in Z_2 (Fig. 5.4.1). Given a Γ, the signature of a bond b on L is defined to be -1 if Γ crosses b, and to be 1 otherwise. We denote by $\varepsilon^{(1)}_{mn}(\Gamma)$ (resp. $\varepsilon^{(2)}_{mn}(\Gamma)$) the signature of the horizontal (resp. vertical) bond joining (m, n) and $(m+1, n)$ (resp. (m, n) and $(m, n+1)$).

In the sequel we shall deal with only those Γ's which lie entirely in the interior of L. In this case the homology class of Γ depends only on the boundary $\partial \Gamma$ (=the set of endpoints of Γ). Now set

$$E_\Gamma(x) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (C_1 C_2 x_{mn}^2 - S_1 \varepsilon^{(1)}_{mn}(\Gamma)x_{mn} x_{m+1 n} - S_2 \varepsilon^{(2)}_{mn}(\Gamma)x_{mn} x_{m n+1})$$

and define an analogue of the correlation function (5.1.3) by
The notation \(\rho(\partial \Gamma) \) is justified by the following:

Proposition 5.4.1 The definition (5.4.4) depends only on \(\partial \Gamma \).

Proof. Denote by \(\rho_\Gamma \) the right member of (5.4.4). We are to prove that, if two chains \(\Gamma, \Gamma' \) are homologous, then \(\rho_\Gamma = \rho_{\Gamma'} \). It suffices to consider the case \(\Gamma' = \Gamma + \partial \square \), where \(\square \) denotes a minimal square on the dual lattice \(L^* \) centered at some point \((m_0, n_0) \in L \). Set

\[
\begin{aligned}
\chi_{mn}' &= \left\{ \begin{array}{ll}
\chi_{mn} & ((m, n) \neq (m_0, n_0)) \\
-\chi_{m_0n_0} & ((m, n) = (m_0, n_0))
\end{array} \right.
\end{aligned}
\]

Then it is easy to verify that \(E_\Gamma(x) = E_{\Gamma'}(x') \). Therefore the change of integration variable (5.4.5) proves our assertion.

Calculation of the partition function (5.4.2) is straightforward. More generally we consider the generating function

\[
Z_{MN}[J] = \int_{R^M \times} dx \, e^{J \cdot x} e^{-E(x)}
\]

\[
J = (J_{mn})_{0 \leq m \leq M-1, \ 0 \leq n \leq N-1}, \ J \cdot x = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} J_{mn} \chi_{mn}
\]

In terms of the Fourier transformation

\[
\hat{x}_{\mu} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-i \mu m - i n \nu} \chi_{mn}
\]

\[
\hat{J}_{\mu \nu} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-i \mu m - i n \nu} J_{mn}
\]

\[
(\theta_\mu = \frac{2\pi \mu}{M}, \ \theta_\nu = \frac{2\pi \nu}{N}; \ \mu = 0, 1, \ldots, M-1 \text{ mod } M
\]

\[
(\nu = 0, 1, \ldots, N-1 \text{ mod } N)
\]

we have

\[
E(x) = \frac{1}{MN} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} \Delta(\theta_\mu, \theta_\nu) \hat{x}_{\mu

\[
J \cdot x = \frac{1}{2MN} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} (\hat{J}_{\mu \nu} \hat{x}_{\mu \nu} + \hat{J}_{\mu \nu} \hat{x}_{\mu \nu})
\]

with \(\Delta(\theta_\mu, \theta_\nu) = C_1 C_2 - S_1 \cos \theta_\mu - S_2 \cos \theta_\nu > 0 \). Since \((x_{mn}) \mapsto \sqrt{MN}^{-1}(\hat{x}_{\mu \nu})\) is a unitary transformation, (5.4.8) shows that the eigenvalues of the quadratic form \(E(x) \) are \(\Delta(\theta_\mu, \theta_\nu) (0 \leq \mu \leq M-1, 0 \leq \nu \leq N-1) \). Making use of the formula
we obtain the following.

\(Z_{MN} = \pi^{MN/2} \left(\prod_{\mu = 0}^{M-1} \prod_{\nu = 0}^{N-1} \Delta(\theta_{\mu}, \theta^*_\nu) \right)^{-1/2} \)

\(Z_{MN}[J] = Z_{MN} \exp \left(\frac{1}{2} \sum_{\mu n} \sum_{\nu m} \frac{1}{2} a_{m-m', n-n'} f_{mn} f_{m'n'} \right) \)

\(a_{mn} = \frac{1}{MN} \sum_{\mu = 0}^{M-1} \sum_{\nu = 0}^{N-1} \frac{1}{\Delta(\theta_{\mu}, \theta^*_\nu)} e^{-i m \theta_{\mu} - i n \theta^*_\nu} \).

Here we have used \(\Delta(\theta, \theta') = \Delta(-\theta, \theta') = \Delta(\theta, -\theta') \). In particular (5.4.6) and (5.4.11) imply

\[Z_{MN}^{-1} \int_{R^{MN}} dx \ x_{mn} x_{m'n'} e^{-E(x)} = \frac{1}{2} a_{m-m', n-n'} . \]

In order to obtain the “correlation functions” \(\rho(\partial \Gamma) \), we use the transfer matrix formalism. In the sequel we identify an integral operator on \(R^M \): \(f(x) \rightarrow \int_{R^M} dx' F(x, x') f(x') \) (\(x = (x_0, x_1, \ldots, x_{M-1}) \in R^M, dx = dx_0 dx_1 \cdots dx_{M-1} \)) with the kernel function \(F(x, x') \).

Let \(V_1, V_2 \) be given by

\[V_1(x, x') = \exp \left(- \sum_{m=0}^{M-1} (C_1 C_2 x^2_m - S_1 x_m x_{m+1}) \delta^M(x-x') \right) \]

\[V_2(x, x') = \exp \left(\sum_{m=0}^{M-1} S_2 x_m x_m' \right) \]

\[(\delta^M(x-x') = \delta(x_0-x_0') \delta(x_1-x_1') \cdots \delta(x_{M-1}-x_{M-1}')) , \]

and let \(V = V_1 V_2 \). We have then

\[V(x, x') = \exp \left(- \sum_{m=0}^{M-1} (C_1 C_2 x^2_m - S_1 x_m x_{m+1} - S_2 x_m x_m') \right) \]

\[Z_{MN} = \int_{R^M} dx (0) \cdots \int_{R^M} dx^{(N-1)} V(0, x^{(0)}) V(1, x^{(1)}) V(2, x^{(2)}) \cdots V(N-1, x^{(N-1)}) \]

\[= \text{trace } V^N \]

where we have set \(\text{trace } F = \int_{R^M} dx F(x, x) \). We introduce also “free boson fields” \(\phi_m, \pi_m (0 \leq m \leq M-1) \) through

\[\phi_m(x, x') = \sqrt{S_2} x_m \delta^M(x-x') \]

\[\pi_m(x, x') = \frac{1}{\sqrt{S_2}} \frac{\partial}{\partial x_m} \delta^M(x-x') . \]

The canonical commutation relations
are easily verified. Hence $W_B = \bigoplus_{m=0}^{M-1} (C\phi_m \oplus C\pi_m)$ is equipped with a symplectic structure. In terms of these free fields, V_1, V_2 are expressed as

$$V_1 = \exp \left(- \sum_{m=0}^{M-1} \left(C_1 C_2^m \phi_m^2 - S_1 S_2^m \phi_m \pi_{m+1} \right) \right)$$

$$V_2 = \sqrt{2\pi S_2^m} \exp \left(\frac{\pi}{4} \sum_{m=0}^{M-1} \left(\phi_m^2 + \pi_m^2 \right) \right).$$

To see the second equality we note the following lemma.

Lemma. Put

$$\hat{\phi}(\theta) = \sum_{m=0}^{M-1} e^{-im\theta \mu} \phi_m, \quad \hat{\pi}(\theta) = \sum_{m=0}^{M-1} e^{-im\theta \mu} \pi_m.$$

As in Section 5.1, we fix an expectation value $\langle \rangle$ given by

$$\langle a \rangle = \text{tr}(aV^N), \quad a \in A(W_B).$$

Proposition 5.4.2. The table of expectation values for (5.4.21) reads as follows:

$$\langle \hat{\phi}(\theta) \hat{\phi}(\theta') \rangle \langle \hat{\pi}(\theta) \hat{\pi}(\theta') \rangle = \frac{1}{2} \begin{pmatrix} a_\mu & -2 - b_\mu \\ -b_\mu & a_\mu \end{pmatrix} d\delta_{\mu,-\mu},$$

where

$$a_\mu = \frac{1}{N} \sum_{\nu=0}^{M-1} \frac{S_2}{A(\theta_\mu, \theta_\nu)} = a_{-\mu}.$$
\[b_\mu = \frac{1}{N} \sum_{\nu=0}^{N-1} \frac{S_2 e^{i\theta_{\nu}}}{\Delta(\theta_\mu, \theta_{\nu})} = b_{-\mu}. \]

Proof. As an example we evaluate \(\langle \hat{\Phi}(\theta_\mu) \hat{\Phi}(\theta_{\mu'}) \rangle \). The rest are calculated similarly. By the definition we have

\[S_2 \langle \pi_m \pi_{m'} \rangle = Z_{MN}^{1 \frac{1}{N}} \int_{R^{MN}} dx \left(\frac{\partial^2}{\partial y_m \partial y_{m'}} V(y, x^{(1)}) V(x^{(1)}, x^{(2)}) \ldots \right. \]

\[\left. \ldots V(x^{(N-1)}, x^{(0)}) \right|_{y=x^{(0)}} \]

\[= Z_{MN}^{1 \frac{1}{N}} \int_{R^{MN}} dx \ e^{-E(x)} \left\{ -2C_1 C_2 \delta_{m m'} + S_1 (\delta_{m, m'-1} + \delta_{m, m'+1}) \right. \]

\[+ (-2C_1 C_2 x_{m0} + S_1 (x_{m-1,0} + x_{m+1,0}) + S_2 x_{m1}) \]

\[\times (-2C_1 C_2 x_{m0} + S_1 (x_{m-1,0} + x_{m+1,0}) + S_2 x_{m1}) \}. \]

Substitution of (5.4.12) shows that the right hand side is equal to

\[-2C_1 C_2 \delta_{m, m'} + S_1 (\delta_{m, m'-1} + \delta_{m, m'+1}) \]

\[+ 4 \frac{1}{2MN} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} \frac{e^{i(m-m')(\theta_{\mu})}}{\Delta(\theta_\mu, \theta_{\nu})} \left(A(\theta_\mu, \theta_{\nu}) + \frac{1}{2} S_2 e^{i\theta_{\nu}} \right) \left(A(\theta_\mu, \theta_{\nu}) + \frac{1}{2} S_2 e^{-i\theta_{\nu}} \right) \]

\[= \frac{S_2^2}{2} \frac{1}{MN} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} \frac{e^{i(m-m')(\theta_{\mu})}}{\Delta(\theta_\mu, \theta_{\nu})}. \]

Taking the Fourier transformation we obtain \(\langle \hat{\Phi}(\theta_\mu) \hat{\Phi}(\theta_{\mu'}) \rangle \).

Remark. In the limit \(N \to \infty \), (5.4.24) tends respectively to \(a_\mu \to 1/\sinh \gamma(\theta_\mu) \)

and \(b_\mu \to e^{-\gamma(\theta_\mu)}/\sinh \gamma(\theta_\mu) \), so that (5.4.23) simplifies into

\[(5.4.23)' \begin{bmatrix} \langle \hat{\Phi}(\theta_\mu) \hat{\Phi}(\theta_{\mu'}) \rangle & \langle \hat{\Phi}(\theta_\mu) \hat{\Theta}(\theta_{\mu'}) \rangle \\ \langle \hat{\Theta}(\theta_\mu) \hat{\Phi}(\theta_{\mu'}) \rangle & \langle \hat{\Theta}(\theta_\mu) \hat{\Theta}(\theta_{\mu'}) \rangle \end{bmatrix} \]

\[= \frac{1}{2} \begin{bmatrix} 1 & -e^{\gamma(\theta_{\mu})} \\ -e^{-\gamma(\theta_{\mu})} & 1 \end{bmatrix} \begin{bmatrix} M\delta_{\mu,-\mu'} \\ \sinh \gamma(\theta_{\mu}) \end{bmatrix}. \]

The rotations induced by \(V_1, V_2 \) are immediately obtained from (5.4.18).

(5.4.25) \(T_{V_1} \phi_m = \phi_m \), \(T_{V_1} \pi_m = \pi_m + 2C_1 C_2^* \phi_m - S_1 S_2^*(\phi_{m-1} + \phi_{m+1}) \)

\(T_{V_1} \pi_m = -\phi_m \)

\(T_{V_2} \phi_m = 2C_1 C_2^* \phi_m - S_1 S_2^*(\phi_{m-1} + \phi_{m+1}) + \pi_m \)

\(T_{V_2} \pi_m = -\phi_m \).

(5.4.26) \(T_{V_1} \hat{\phi}(\theta_\mu) = \hat{\phi}(\theta_\mu) \), \(T_{V_1} \hat{\pi}(\theta_\mu) = \hat{\phi}(\theta_{\mu}) \cdot 2 \cosh \gamma(\theta_\mu) + \hat{\Theta}(\theta_\mu) \)

\(T_{V_2} \hat{\phi}(\theta_\mu) = \hat{\Theta}(\theta_\mu) \), \(T_{V_2} \hat{\pi}(\theta_\mu) = -\hat{\phi}(\theta_\mu) \)

\(T_{V} \hat{\phi}(\theta_\mu) = \hat{\phi}(\theta_\mu) \cdot 2 \cosh \gamma(\theta_\mu) + \hat{\Theta}(\theta_\mu) \), \(T_{V} \hat{\pi}(\theta_\mu) = -\hat{\phi}(\theta_\mu) \).

The rotation \(T_V \) is diagonalized in the following basis:
We have

\begin{align}
(5.4.28) &
T \phi^+ (\theta) = e^{-\gamma(\theta)} \phi^+ (\theta), \quad T \phi (\theta) = e^{\gamma(\theta)} \phi (\theta).
\end{align}

Moreover from (5.4.23)' and (5.4.27) we have, for $W \rightarrow 0$,

\begin{align}
(5.4.29) &
\begin{bmatrix}
\langle \phi^+ (\theta) \phi^+ (\theta') \rangle & \langle \phi^+ (\theta) \phi^+ (\theta') \phi (\theta') \rangle \\
\langle \phi (\theta) \phi^+ (\theta') \rangle & \langle \phi (\theta) \phi (\theta') \phi (\theta') \rangle
\end{bmatrix} =
\begin{pmatrix}
0 & \sinh \gamma(\theta) \cdot M \delta_{\mu,-\mu'} \\
1 & 1
\end{pmatrix}
\sinh \gamma(\theta) \cdot M \delta_{\mu,-\mu'}.
\end{align}

Hence the expectation value $\langle \cdot \rangle$ in this limit coincides with the one induced by the holonomic decomposition $W = V^+ \otimes V$, $V^+ = \bigoplus_{\mu=0}^{M-1} C \phi^+ (\theta)$, $V = \bigoplus_{\mu=0}^{M-1} C \phi (\theta)$.

Now we return to the correlation function $\rho(\partial \Gamma)$ and define the "spin operator" $s_{B,m}$ by

\begin{align}
(5.4.31) &
s_{B,m}(x, x') = \delta(x_0 + x'_0) \cdots \delta(x_{m-1} + x'_{m-1}) \delta(x_m - x'_m) \cdots \delta(x_{M-1} - x'_{M-1})
\end{align}

Then $s_{B,m}$ satisfies the following characteristic commutation relation with the free fields:

\begin{align}
(5.4.32) &
s_{B,m} \phi^m' = \begin{cases}
-\phi_m' s_{B,m} & (0 \leq m' \leq m-1) \\
\phi_m' s_{B,m} & (m \leq m' \leq M-1)
\end{cases}
\end{align}

Assuming $n_1 \leq \cdots \leq n_k$, we have

\begin{align}
\langle s_{B,m_1} \cdots s_{B,m_k} \rangle &= Z_{MN}^{-1} \text{ trace } (V^{n_1} s_{B,m_1} V^{n_2-n_1} s_{B,m_2} \cdots s_{B,m_k} V^{-n_k}) \\
&= Z_{MN}^{-1} \int_{\text{polygons}} dx \ V(x(0), x(1)) \cdots V(x(n_1-1), x(n_1)) V(\bar{x}(n_1 m_1), x(n_1+1)) \\
&\quad \cdots V(x(n_2-1), x(n_2)) V(\bar{x}(n_2 m_2), x(n_2+1)) \cdots V(x(N-1), x(0)) \\
&= \rho(\partial \Gamma),
\end{align}

where $\bar{x}(n;m) = (-x_0(n), \ldots, -x_{m-1}(n), x_m(n), \ldots, x_{M-1}(n))$, and Γ denotes the polygon shown in Figure 5.4.2:
Let us compute the norm of $s_{B,mn}$ in the infinite lattice. The free fields are expressed in terms of creation-annihilation operators $\phi^\dagger(\theta)$, $\phi(\theta)$ as

$$\phi_{mn} = -\frac{1}{\sqrt{2}} \int d\theta (e^{-im\theta-(n+1)\gamma(\theta)} \phi^\dagger(\theta) + e^{im\theta+(n+1)\gamma(\theta)} \phi(\theta)), $$

$$\pi_{mn} = -\frac{1}{\sqrt{2}} \int d\theta (e^{-im\theta-n\gamma(\theta)} \phi^\dagger(\theta) + e^{im\theta+n\gamma(\theta)} \phi(\theta)), $$

where $d\theta = d\theta/2\pi \sinh \gamma(\theta)$. They satisfy the difference equations

$$\phi_{m,n+1} = 2C_1C_2 \phi_{mn} - S_1S_2(\phi_{m-1,n} + \phi_{m+1,n}) + \pi_{mn}$$

$$\pi_{m,n+1} = -\phi_{mn}$$

and in particular

$$C_1C_2 \phi_{mn} - \frac{1}{2} S_1(\phi_{m+1,n} + \phi_{m-1,n}) - \frac{1}{2} S_2(\phi_{m,n+1} + \phi_{m,n-1}) = 0.$$

Clearly π_{mn} also satisfies (5.4.35).

In the basis $\hat{\phi}(\theta) = \sum_{m \in \mathbb{Z}} e^{-im\theta} \phi_m$, $\hat{\pi}(\theta) = \sum_{m \in \mathbb{Z}} e^{-im\theta} \pi_m$ the rotation $T_{s00} = 1-2P$ and the operator $E^{-1} = H^{-1}J$ (in the notation of (A.17), Chapter IV) read

$$P(\theta, \theta') = \frac{\int_0^{2\pi} d\theta (\hat{\phi}(\theta), \hat{\pi}(\theta)) P(\theta, \theta')}{1 - e^{-2i(\theta-\theta'-i\theta)}} $$

$$(E^{-1}\hat{\phi}(\theta), E^{-1}\hat{\pi}(\theta)) = (\hat{\phi}(\theta), \hat{\pi}(\theta))E^{-1}(\theta)$$

$$E^{-1}(\theta) = \begin{pmatrix} -\cosh \gamma(\theta) & 1 \\ -1 & \cosh \gamma(\theta) \end{pmatrix} \frac{1}{\sinh \gamma(\theta)}$$
\[\cos \gamma(\theta) + 1 \]
\[\frac{\cosh \gamma(\theta) - 1}{\sinh \gamma(\theta)} \]
\[\frac{1}{\sqrt{2}} \left(\frac{1}{1} - \frac{1}{1} \right) \]
\[Q = \frac{1}{\sqrt{2}} \left(\frac{1}{1} - \frac{1}{1} \right) \]
where \(Q = \frac{1}{\sqrt{2}} \left(\frac{1}{1} - \frac{1}{1} \right) \).

In view of the formula

\[\cosh \gamma(\theta) + 1 \]
\[\frac{\cosh \gamma(\theta) - 1}{\sinh \gamma(\theta)} = \frac{1}{\sqrt{\alpha_1 \alpha_2}} \left(\frac{c(\theta)}{c(-\theta)} \right) \]

the factorization (A.18) is achieved by choosing

\[Q X^{-1} Q^{-1} = \begin{pmatrix} \frac{c(\theta)}{\sqrt{\alpha_1 \alpha_2}} & \sqrt{\alpha_1 \alpha_2} \\ \sqrt{\alpha_1 \alpha_2} & c(\theta) \end{pmatrix} \]
\[Q X^{-1} Q^{-1} = \begin{pmatrix} \frac{1}{c(-\theta)} & c(-\theta) \end{pmatrix} \]

Here we have assumed \(T > T_c \) for definiteness, but in the case \(T < T_c \) all the formulas are valid by the replacement \(\alpha_2 \mapsto \alpha_2^{-1} \). The kernel \(\tilde{R}(\theta, \theta') \) is obtained by applying (A.19):

\[\langle s_{B, mn} \rangle = \frac{1}{(1 - S_1^2 S_2^2)^{1/8}} \]
\[= \frac{1}{(1 - S_1^{-2} S_2^{-2})^{1/8}} \]

Finally we rewrite the result using the creation-annihilation operators, and obtain the following.

Theorem 5.4.3. The norm of \(s_{B, mn} \) has the form

\[\text{Nr}(s_{B, mn}) = \langle s_{B, mn} \rangle \rho_{mn}^{1/2} \]

\[\rho_{mn} = \int_{-\pi}^{\pi} d\theta \int_{-\pi}^{\pi} d\theta' \left(\phi^*(\theta) \phi(\theta) \right) \left(\begin{array}{cc} R_{mn}^{-}(\theta, \theta') & R_{mn}^{+}(\theta, \theta') \\ R_{mn}^{+}(\theta, \theta') & R_{mn}^{-}(\theta, \theta') \end{array} \right) \left(\phi^*(\theta') \phi(\theta') \right) \]
where the kernels $R_{mn}(\theta, \theta')$ are given by

\[(5.4.43)\]

\[
R_{mn}(\theta, \theta') = \frac{1}{2} \sqrt{(1 - \alpha_1 e^{-i\theta})(1 - \alpha_2^{-1} e^{-i\theta})(1 - \alpha_1 e^{-i\theta'})(1 - \alpha_2^{-1} e^{-i\theta'})} \\
\times \left\{ \frac{1}{\sqrt{\alpha_1 \alpha_2}} (1 - \alpha_1 e^{-i\theta})(1 - e^{\alpha_2 \gamma(\theta)})(1 - \alpha_1 e^{-\alpha_2 \gamma(\theta')})(1 - e^{\alpha_2 \gamma(\theta')}) \right. \\
\left. - \sqrt{\alpha_1 \alpha_2} (1 - \alpha_2^{-1} e^{-i\theta})(1 + e^{\alpha_2 \gamma(\theta)})(1 - \alpha_2^{-1} e^{-i\theta'})(1 + e^{\alpha_2 \gamma(\theta')}) \right\} \\
\times \frac{1}{1 - e^{-i(\sigma \theta + \sigma' \theta' - i\phi)}} e^{i(m-1)(\sigma \theta + \sigma' \theta') + n(\gamma(\theta) + \gamma(\theta'))} \\
(\sigma, \sigma' = \pm)
\]

for $T > T_c$. If $T < T_c$ we replace α_2 by α_2^{-1}.

§ 5.5. The Scaling Limit

In this section we compute the scaling limit of spin operators of the Ising model as well as of its bosonic counterpart. We shall see that there result the fields ϕ_F, ϕ^F and φ_B constructed in the previous chapter [3].

Let us consider a square lattice of unit length e. By scaling limit we mean the simultaneous limit

\[(5.5.1)\]

\[T \to T_c \quad e \to 0; \quad m, n \to \infty\]

where me and ne being fixed and finite.

First consider the Ising model above the critical temperature $T > T_c$. We set

\[(5.5.2)\]

\[x^1 = me, \quad x^0 = \sqrt{-1} \kappa ne.\]

Here the factor $\sqrt{-1}$ is inserted so that in the limit $e \to 0$ $(x^0, x^1) \in \mathbb{R}^2$ constitutes a coordinate of 2-dimensional Minkowski space-time. The positive constant κ will be fixed later. Choose constants α, μ, μ' so that $0 < \alpha < 1$, $\mu > 0$. Let the interaction strengths be given through

\[(5.5.3)\]

\[\alpha_1 = \alpha + \varepsilon \mu', \quad \alpha_2 = 1 + \varepsilon \mu\]

where α_1, α_2 are defined in (5.1.29)-(5.1.30). We also set

\[(5.5.4)\]

\[p^1 = \theta/\varepsilon.\]

In the limit $e \to 0$ we have then the following.
(5.5.5) \[S_1 = \frac{2\sqrt{\alpha}}{1-\alpha} + \varepsilon \frac{1+\alpha}{\sqrt{\alpha}} (\mu' - \alpha \mu) + O(\varepsilon^2), \]
\[C_1 = \frac{1+\alpha}{1-\alpha} + \varepsilon \frac{2}{(1-\alpha)^2} (\mu' - \alpha \mu) + O(\varepsilon^2), \]
\[S_2^\# = \frac{2\sqrt{\alpha}}{1-\alpha} + \varepsilon \frac{1+\alpha}{\sqrt{\alpha}} (\mu' + \alpha \mu) + O(\varepsilon^2), \]
\[C_2^\# = \frac{1+\alpha}{1-\alpha} + \varepsilon \frac{2}{(1-\alpha)^2} (\mu' + \alpha \mu) + O(\varepsilon^2). \]

(5.5.6) \[a(\theta)^\pm \sinh \gamma(\theta) = \frac{2\sqrt{\alpha}}{1-\alpha} (\mu \mp ip^1) + O(\varepsilon^2), \]
\[\sinh \gamma(\theta) = \frac{2\sqrt{\alpha}}{1-\alpha} \sqrt{\mu^2 + (p^1)^2} + O(\varepsilon^2). \]

We set

(5.5.7) \[\kappa = \frac{2\sqrt{\alpha}}{1-\alpha}. \]

We introduce a parameter \(u \) and an operator \(\psi(u) \) by

(5.5.8) \[u^\pm = \frac{\sqrt{\mu^2 + (p^1)^2} \pm p^1}{\mu}, \quad \psi(u) = \frac{\psi(\theta)}{\sqrt{\kappa}} \quad \text{for} \ u > 0, \]
\[u^\pm = \frac{-\sqrt{\mu^2 + (p^1)^2} \pm p^1}{\mu}, \quad \psi(u) = \frac{\psi(\theta)}{\sqrt{\kappa}} \quad \text{for} \ u < 0. \]

Then we have in the limit \(\varepsilon \to 0 \)

(5.5.9) \[\langle \psi(u), \psi(u') \rangle = 2\pi |u| \delta(u + u'), \]
(5.5.10) \[e^{-n p^0} = \exp \left(i x^6 \int_0^\infty du \, p^0 \psi(-u) \psi(u) \right), \]
(5.5.11) \[e^{-im p^1} = \exp \left(-ix^1 \int_0^\infty du \, p^1 \psi(-u) \psi(u) \right), \]

where \(du = du/2\pi |u| \) and \(p^0 = \pm \sqrt{\mu^2 + (p^1)^2} \) if \(u \geq 0 \).

From Theorem 5.2.3 we have the following.

Theorem 5.5.1. In the limit \(\varepsilon \to 0 \), we have

(5.5.12) \[\text{Nr} \left(s_{mn} \right) = \left(\frac{1}{1-\alpha} \mu^6 \right)^{1/8} \text{Nr} \left(\phi^F(x) \right) + O(\varepsilon^{9/8}), \]

where \(\phi^F(x) \) is given in (4.6.2) of [3]. Namely

(5.5.13) \[\text{Nr} \left(\phi^F(x) \right) = \psi_0(x) e^{\rho_F(x)/2}, \]
\[\psi_0(x) = \int_{-\infty}^\infty du \, e^{-i \mu (x-u+x^2 u^{-1})} \psi(u) , \]
\[\rho_F(x) = \int_{-\infty}^{\infty} du \, du' \frac{-i(u - u')}{u + u' - i0} e^{-i\mu(x - (u + u') + x^+(u^{-1} + u^{-1} - 1))} \psi(u) \psi(u'). \]

Corollary 5.5.2. In the limit \(\varepsilon \to 0 \), we have

\[(5.5.14)_{T > T_c} \quad \rho_k((m_1, n_1), \ldots, (m_k, n_k)) = \left(\frac{2}{1 - \lambda} - \frac{\mu \varepsilon}{\Delta} \right)^{k/8} \langle \varphi^F(x^{(1)}) \cdots \varphi^F(x^{(k)}) \rangle + O(\varepsilon^{k/8+1}), \]

where \(x^{(j)} = (m_j, \sqrt{-1} \kappa n_j) \) (\(j = 1, \ldots, k \)) and \(\langle \varphi^F(x^{(1)}) \cdots \varphi^F(x^{(k)}) \rangle \) is given by (4.6.57), (4.6.59), (4.6.70) and (4.6.71).

Not only the spin operator but also the auxiliary operators \(p_{mn} \) and \(q_{mn} \) have the scaling limits.

Theorem 5.5.3. In the limit \(\varepsilon \to 0 \), we have

\[(5.5.15)_{T > T_c} \quad p_{mn} = \sqrt{\mu \varepsilon / 2} (\psi_+(x) + \psi_-(x)), \]
\[q_{mn} = -i \sqrt{\mu \varepsilon / 2} (\psi_+(x) - \psi_-(x)), \]

where

\[(5.5.16) \quad \psi_\pm(x) = \int_{-\infty}^{\infty} du \sqrt{1 \pm i u} \, e^{iu(x - u + x^{-1} - 1)} \psi(u). \]

Remark. The difference equation (5.2.27) goes to the 2-dimensional Dirac equation in the limit. In fact setting

\[(5.5.17) \quad \psi^{(\pm)}_{mn} = v^{(\pm)}(x), \]
\[\frac{v^{(\pm)}_{mn+1} - v^{(\pm)}_{mn}}{\varepsilon \kappa} = i \frac{\partial v^{(\pm)}}{\partial x^0}(x), \]
\[\frac{v^{(\pm)}_{m+1,n} - v^{(\pm)}_{mn}}{\varepsilon} = \frac{\partial v^{(\pm)}}{\partial x^1}(x), \]

we have

\[(5.5.18)_{T > T_c} \quad i \frac{\partial v^{(+)}}{\partial x^0} = \frac{\partial v^{(-)}}{\partial x^1} + \mu v^{(-)}, \]
\[i \frac{\partial v^{(-)}}{\partial x^0} = - \frac{\partial v^{(+)}}{\partial x^1} + \mu v^{(+)}. \]

Taking (5.5.15) into account we set

\[(5.5.19)_{T > T_c} \quad w_\pm = v^{(+)} \pm iv^{(-)}. \]

(5.5.18)_{T > T_c} is transformed into (4.2.42) for \(w_\pm \).

The case \(T < T_c \) is similarly treated. We set
\[(5.5.3)' \quad \alpha_1 = \alpha + \varepsilon \mu', \quad \alpha_2 = 1 - \varepsilon \mu. \]

In (5.5.5) and (5.5.6) \(\mu \) should be replaced by \(-\mu \), but (5.5.8) is unchanged.

Theorem 5.5.4. *In the limit \(\varepsilon \to 0 \), we have*

\[(5.5.20) \quad \text{Nr} (\xi_m) = \left(2 \frac{1 + \frac{\alpha + \xi \mu}{1 - \frac{\alpha}{\mu}}}{\mu} \right)^{1/8} \text{Nr} \left(\varphi_F(x) \right) + O(\varepsilon^{9/8}), \]

where \(\varphi_F(x) \) is given in (4.2.45). Namely

\[(5.5.21) \quad \text{Nr} \left(\varphi_F(x) \right) = e^{\rho_F(x)/2}, \]

\[\rho_F(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} du \, du' \frac{-i(u-u')}{u+u'-i0} e^{-i\mu(x^0-u^0)+x^+ (u^1+u'^1)} \psi(u') \psi(u). \]

Corollary 5.5.5. *In the limit \(\varepsilon \to 0 \), we have*

\[(5.5.14)_{T<T_c} \quad \rho_k((m_1, n_1), \ldots, (m_k, n_k)) \]

\[= \left(2 \frac{1 + \frac{\alpha}{1 - \frac{\alpha}{\mu}}}{\mu} \right)^{k/8} \langle \varphi_F(x^{(1)}) \cdots \varphi_F(x^{(k)}) \rangle + O(\varepsilon^{k/8+1}) \]

where \(x^{(j)} = (m_j \varepsilon, \sqrt{-1} \kappa n_j \varepsilon) \) (\(j = 1, \ldots, k \)) and \(\langle \varphi_F(x^{(1)}) \cdots \varphi_F(x^{(k)}) \rangle \) is given by (4.6.70).

Theorem 5.5.6. *In the limit \(\varepsilon \to 0 \), we have*

\[(5.5.15)_{T<T_c} \quad p_{mn} = \sqrt{\mu \varepsilon / 2} (\psi_+(x) - \psi_-(x)), \]

\[q_{mn} = -i \sqrt{\mu \varepsilon / 2} (\psi_+(x) + \psi_-(x)). \]

Remark. The limit of the difference equation reads

\[(5.5.18)_{T<T_c} \quad \frac{i}{\partial x^0} = \frac{\partial v^(-)}{\partial x^1} - \mu v^(-), \]

\[i \frac{\partial v^(-)}{\partial x^0} = - \frac{\partial v^+}{\partial x^1} - \mu v^+. \]

If we set

\[(5.5.19)_{T<T_c} \quad w_0 = \pm v^+ + iv^-, \]

(5.5.18)\(_{T<T_c} \) is transformed into (4.2.42).

Now we turn to the bosonic model. Using the parametrization (5.5.3) for \(T > T_c \) or (5.5.3)' for \(T < T_c \), we see from (5.4.43) that in this case

\[R_{\theta, \theta'} = \frac{2\sqrt{\alpha}}{1 - \frac{\alpha}{\mu}} \sigma^1 \frac{-i}{\sigma^\dagger \sigma^1 + \sigma^\dagger p^1 - i0} \]

\[\times \{ \sqrt{\mu - i\sigma^1 \sqrt{\mu - i\sigma^1 p^1}} - \sqrt{\mu + i\sigma^1 \sqrt{\mu + i\sigma^1 p^1}} \} + O(\varepsilon). \]
Rewriting this in terms of the parameter u in (5.5.8) and

\[
\phi(u) = \begin{cases}
\frac{\phi(\theta)}{\sqrt{\kappa}} & (u > 0) \\
\frac{\phi^*(\theta)}{\sqrt{\kappa}} & (u < 0)
\end{cases},
\]

we thus obtain

Theorem 5.5.7. In the limit $\varepsilon \to 0$,

\[
(5.5.23) \quad \text{Nr} \left(s_{B,m,n} \right) = \left(\frac{2 + \frac{\pi}{1 - \alpha} \mu \varepsilon}{1 - \alpha} \right)^{1/8} \text{Nr} \left(\varphi_B(x) \right) + O(\varepsilon^{9/8})
\]

where $\varphi_B(x)$ is given by ((4.1.66) in IV [3])

\[
(5.5.24) \quad \text{Nr} \left(\varphi_B(x) \right) = e^{\mu n(x)/2}
\]

\[
\rho_B(x) = \int_{-\infty}^{+\infty} du \, du' \frac{2 - 2\sqrt{u - i0} \sqrt{u' - i0}}{u + u' - i0} \times e^{-i\mu(x^{-} + x^{+} + x^{+}(u^{-} + u^{+}))} \phi(u)\phi(u').
\]

Hence the k-point functions of $s_{B,m,n}$ are scaled to give those of $\varphi_B(x)$.

Theorem 5.5.8. We have

\[
(5.5.25) \quad \phi_{mn} = -\frac{1}{\sqrt{2\kappa}} \phi(x) + O(\varepsilon)
\]

\[
\pi_{mn} + \phi_{mn} = -\frac{\sqrt{\kappa}}{2\sqrt{2} \varepsilon} i \frac{\partial \phi}{\partial x_0}(x) + O(\varepsilon^2)
\]

where

\[
(5.5.26) \quad \phi(x) = \int_{-\infty}^{+\infty} du \, e^{-i\mu(x^{-} + x^{+} + x^{+}(u^{-} + u^{+}))}\phi(u).
\]

The proof is straightforward from (5.4.33).

§ 5.6. The One-Dimensional XY Model

The one-dimensional XY model is described by the Hamiltonian

\[
(5.6.1) \quad \mathcal{H}_M = -\frac{1}{4} \sum_{m=0}^{M-1} \left\{ (1 + \gamma)\sigma^{x}_m\sigma^{x}_{m+1} + (1 - \gamma)\sigma^{y}_m\sigma^{y}_{m+1} + 2h\sigma^{z}_m \right\}
\]

where $\sigma^{a}_m = I_2 \otimes \cdots \otimes \sigma^{a}\otimes \cdots \otimes I_2$ ($* = x, y, z$). Here $\sigma^x, \sigma^y, \sigma^z$ are the Pauli matrices

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]
respectively. We set
\begin{align}
\begin{array}{c}
P_m = \sigma_1^\mu \cdots \sigma_{m-1}^\mu \sigma_m^\mu \\
q_m = i \sigma_1^\mu \cdots \sigma_{m-1}^\mu \sigma_m^\mu
\end{array}
\end{align}
and define \(\hat{p}(\theta_\mu) \) and \(\hat{q}(\theta_\mu) \) by (5.1.22). We adopt the modified Hamiltonian.
\begin{align}
(5.6.3) \quad \mathcal{H}_M &= \frac{1}{4} \sum_{m=0}^{M-1} \left\{ (1 + \gamma) q_m P_{m+1} - (1 - \gamma) P_m q_{m+1} - 2h q_m P_m \right\} \\
&= \frac{1}{4M} \sum_{m=0}^{M-1} \left\{ (1 + \gamma) \hat{q}(\theta_\mu) \hat{p}(\theta_\mu) e^{-i\theta_\mu} - (1 - \gamma) \hat{p}(\theta_\mu) \hat{q}(\theta_\mu) e^{-i\theta_\mu} \\
&\quad - 2h \hat{q}(\theta_\mu) \hat{p}(\theta_\mu) \right\}.
\end{align}
\(\mathcal{H}_M \) induces an infinitesimal orthogonal transformation on \(W_M = \sum_{\mu=0}^{M-1} C \hat{p}(\theta_\mu) + \sum_{\mu=0}^{M-1} C \hat{q}(\theta_\mu) \).
\begin{align}
(5.6.4) \quad ([\mathcal{H}_M, \hat{p}(\theta_\mu)], [\mathcal{H}_M, \hat{q}(\theta_\mu)]) &= (\hat{p}(\theta_\mu), \hat{q}(\theta_\mu)) \left(A_+(\theta_\mu) \right) \\
A_\pm(\theta) &= \cos \theta - h \pm i\gamma \sin \theta.
\end{align}
We set
\begin{align}
(5.6.5) \quad E(\theta) &= \sqrt{A_+(\theta) A_-(\theta)} = \sqrt{(\cos \theta - h)^2 + \gamma^2 \sin^2 \theta}, \\
(5.6.6) \quad \alpha_\pm &= \frac{h \pm \sqrt{h^2 + \gamma^2 - 1}}{1 - \gamma}.
\end{align}
Then we have
\begin{align}
(5.6.7) \quad A_\pm(\theta) &= \frac{1 - \gamma}{2} e^{\pm i\theta} (e^{\pm i\theta} - \alpha_+)(e^{\pm i\theta} - \alpha_-).
\end{align}
We distinguish the following three phases. (Figure 5.6.1.)
\begin{align}
(5.6.8) \quad \mathcal{I}_1: \quad \gamma > 0, \ h > 1 & \text{ where } |x_+^1|, |x_-^1| < 1, \\
\mathcal{I}_2: \quad \gamma > 0, \ -1 < h < 1 & \text{ where } |x_+^1|, |x_-^1| < 1, \\
\mathcal{I}_3: \quad \gamma > 0, \ h < -1 & \text{ where } |x_+^1|, |x_-^1| < 1.
\end{align}

![Figure 5.6.1.](image-url)
We shall diagonalize H_M in each phase. The results are as follows.

\[(5.6.9)_{\mathcal{A}}_1\]

\[H_{M,\text{ren}} = \frac{1}{M} \sum_{\mu=0}^{M-1} E(\theta_\mu) \hat{\psi}_1(\theta_\mu) \hat{\psi}_1(\theta_\mu),\]
\[2\hat{\psi}_1(-\theta_\mu) = \sqrt{a_1(\theta_\mu)} \hat{\rho}(\theta_\mu) - \sqrt{a_1(\theta_\mu)^{-1}} \hat{q}(\theta_\mu),\]
\[2\hat{\psi}_1(\theta_\mu) = \sqrt{a_1(\theta_\mu)} \hat{\rho}(\theta_\mu) + \sqrt{a_1(\theta_\mu)^{-1}} \hat{q}(\theta_\mu),\]
\[a_1(\theta) = b_1(\theta)/b_1(-\theta), \quad b_1(\theta) = \sqrt{1-\alpha_- e^{i\theta}/1-\alpha_-^{-1} e^{-i\theta}},\]
\[-A_\pm(\theta) = E(\theta)a_1(\theta)^{\pm 1}.\]

\[(5.6.9)_{\mathcal{A}}_2\]

\[H_{M,\text{ren}} = \frac{1}{M} \sum_{\mu=0}^{M-1} E(\theta_\mu) \hat{\psi}_2(\theta_\mu) \hat{\psi}_2(\theta_\mu),\]
\[2\hat{\psi}_2(-\theta_\mu) = \sqrt{a_2(\theta_\mu)} e^{i\theta_\mu} \hat{\rho}(\theta_\mu) + \sqrt{a_2(\theta_\mu)^{-1}} \hat{q}(\theta_\mu),\]
\[2\hat{\psi}_2(\theta_\mu) = \sqrt{a_2(\theta_\mu)} e^{i\theta_\mu} \hat{\rho}(\theta_\mu) - \sqrt{a_2(\theta_\mu)^{-1}} \hat{q}(\theta_\mu),\]
\[a_2(\theta) = b_2(\theta)/b_2(-\theta), \quad b_2(\theta) = \sqrt{(1-\alpha_- e^{i\theta})(1-\alpha_-^{-1} e^{-i\theta})},\]
\[A_\pm(\theta) = E(\theta)(a_2(\theta)e^{i\theta})^{\pm 1}.\]

\[(5.6.9)_{\mathcal{A}}_3\]

\[H_{M,\text{ren}} = \frac{1}{M} \sum_{\mu=0}^{M-1} E(\theta_\mu) \hat{\psi}_3(\theta_\mu) \hat{\psi}_3(\theta_\mu),\]
\[2\hat{\psi}_3(-\theta_\mu) = \sqrt{a_3(\theta_\mu)} \hat{\rho}(\theta_\mu) + \sqrt{a_3(\theta_\mu)^{-1}} \hat{q}(\theta_\mu),\]
\[2\hat{\psi}_3(\theta_\mu) = \sqrt{a_3(\theta_\mu)} \hat{\rho}(\theta_\mu) - \sqrt{a_3(\theta_\mu)^{-1}} \hat{q}(\theta_\mu),\]
\[a_3(\theta) = b_3(\theta)/b_3(-\theta), \quad b_3(\theta) = \sqrt{1-\alpha_+ e^{i\theta}/1-\alpha_+^{-1} e^{-i\theta}},\]
\[A_\pm(\theta) = E(\theta)a_3(\theta)^{\pm 1}.\]

Here, $H_{M,\text{ren}}$ means the renormalized Hamiltonian obtained by subtracting the zero point energy from H_M.

Now we go to the limit $M \to \infty$, and compute the ground state averages for products of spin operators. In other words we compute correlation functions for σ^x_m, σ^y_m and σ^z_m with respect to the vacuum expectation given by (5.2.5) with $\hat{\psi}^\dagger(\theta) = \hat{\psi}_j^\dagger(\theta)$, $\hat{\psi}(\theta) = \hat{\psi}_j(\theta)$ ($j = 1, 2, 3$) in each phase $\mathcal{A}_1 \sim \mathcal{A}_3$. Since we have product formulas (§ 1.4 [1]), it is sufficient to compute the norms of σ^x_m and σ^y_m. (σ^z_m is trivial, since $\sigma^z_m = q_m p_m$). In general we shall compute

\[(5.6.10)\]

\[\sigma_{mn} = e^{i n P^0 - i m P^1} \sigma^x_0 e^{-i n P^0 + i m P^1}\]

for $m \in \mathbb{Z}$ and $n \in \mathbb{R}$. Here we have set

\[(5.6.11)\]

\[P^0 = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} E(\theta) \hat{\psi}^\dagger(\theta) \hat{\psi}(\theta),\]
\[P^1 = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \theta \hat{\psi}^\dagger(\theta) \hat{\psi}(\theta).\]
The results are as follows.

\[(5.6.12)_{\mathcal{A}_1}\]
\[
\begin{align*}
Nr(\sigma^x_{mn}) &= Nr(p_{mn}t_{mn}) = \psi^x_{1, mn} Nr(t_{mn}), \\
\psi^x_{1, mn} &= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \frac{1}{|b_1(\theta)|} \left(e^{-im\theta+iE(\theta)} \hat{\psi}^1(\theta) + e^{im\theta-iE(\theta)} \hat{\psi}^1(\theta) \right), \\
Nr(i\sigma^y_{mn}) &= Nr(q_{mn}t_{mn}) = \psi^y_{1, mn} Nr(t_{mn}), \\
\psi^y_{1, mn} &= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \left| b_1(\theta) \right| \left(e^{-im\theta+iE(\theta)} \hat{\psi}^1(\theta) + e^{im\theta-iE(\theta)} \hat{\psi}^1(\theta) \right), \\
Nr(t_{mn}) &= \langle t_{mn} \rangle e^{\rho_{1, mn}/2}, \\
\langle t_{mn} \rangle &= \left(\frac{h^2 - 1}{h^2 + \gamma^2 - 1} \right)^{1/8}.
\end{align*}
\]

\(\rho_{j, mn} (j = 1, 2, 3)\) is given by \((5.2.17)\) and \((5.2.18)\) with \(\hat{\psi}^1(\theta), \hat{\psi}(\theta), b(\theta)\) and \(\gamma(\theta)\) replaced by \(\hat{\psi}^j(\theta), \hat{\psi}_j(\theta), b_j(\theta)\) and \(-iE(\theta)\), respectively. \(\psi^x_{j, mn}\) and \(\psi^y_{j, mn}\) are similarly defined as \(\psi^j_{1, mn}\) and \(\psi^x_{1, mn}\) with \(b_1(\theta), \hat{\psi}^1(\theta)\) and \(\hat{\psi}_1(\theta)\) replaced by \(b_j(\theta), \hat{\psi}_j(\theta)\) and \(\hat{\psi}_j(\theta)\), respectively. We note that \(t_{m0}\) induces the rotation

\[(5.6.13)_{\mathcal{A}_2}\]
\[
\begin{align*}
T_{t_{m0}} p_m' &= \begin{cases}
 p_m', & m' \geq m \\
 -p_m', & m' \leq m - 1,
\end{cases} \\
T_{t_{m0}} q_m' &= \begin{cases}
 q_m', & m' \geq m \\
 -q_m', & m' \leq m - 1,
\end{cases}
\end{align*}
\]
and satisfies \(t_{m0} t_{m20} = q_{m1} p_{m1} \cdots q_{m2-1} p_{m2-1} (m_1 < m_2)\).

As in the case \(T < T_c\) of the Ising lattice, in the phase \(\mathcal{A}_2\) we consider \(\tilde{\sigma}^x_m = \sigma^x_m \text{ and } \tilde{\sigma}^y_m = \sigma^y_m\) for the finite lattice, and then take the limit.

\[(5.6.12)_{\mathcal{A}_3}\]
\[
\begin{align*}
Nr(\tilde{\sigma}^x_{mn}) &= \langle \tilde{\sigma}^x_{mn} \rangle e^{\rho_{2, mn}/2}, \\
\langle \tilde{\sigma}^x_{mn} \rangle &= \sqrt{2} \left(\frac{\gamma^2 (1 - h^2)}{1 + \gamma^2} \right)^{1/8}, \\
Nr(i\tilde{\sigma}^y_{mn}) &= Nr(q_{mn}p_{mn}\tilde{\sigma}^x_{mn}) = \psi^y_{2, mn} \psi^x_{2, m-1, n} Nr(\tilde{\sigma}^x_{mn}).
\end{align*}
\]

\[(5.6.13)_{\mathcal{A}_3}\]
\[
\begin{align*}
Nr(\sigma^x_{mn}) &= Nr(p_{mn}t_{mn}') = \psi^x_{3, mn} Nr(t_{mn}'), \\
Nr(i\sigma^y_{mn}) &= Nr(q_{mn}t_{mn}') = -\psi^y_{3, mn} Nr(t_{mn}'), \\
Nr(t_{mn}') &= \langle t_{mn}' \rangle e^{\rho_{1, mn}'/2}, \\
\langle t_{mn}' \rangle &= \left(-\frac{h^2 - 1}{h^2 + \gamma^2 - 1} \right)^{1/8}.
\end{align*}
\]

The factor \((-\gamma)^m\) comes from the fact that not the limit \(\lim_{m \to \infty} \langle q_0p_0 \cdots q_m q_{m-1} p_{m-1} \rangle\) but the limit \(\lim_{m \to \infty} \langle q_0p_0 \cdots q_m q_{m-1} p_{m-1} \rangle \langle -\rangle^m = \left(\frac{h^2 - 1}{h^2 + \gamma^2 - 1} \right)^{1/8}\) exists.

We note that \(t_{m0}'\) induces the same rotation as \((5.6.13)\) and satisfies \(t_{m0}' t_{m20}' = q_{m1} p_{m1} \cdots q_{m2-1} p_{m2-1} (m_1 < m_2)\).
Infinite series expressions for correlation functions are obtained by direct application of the product formula (§ 1.4 [1] and Appendix of IV [3]). For our purpose it suffices to consider operators of the following form:

\[
\rho_{mn} = \sum_{\sigma, \sigma'} \int \frac{d\theta}{2\pi} \frac{d\theta'}{2\pi} R^{\sigma, \sigma'}(\theta, \theta') e^{i\sigma \delta(\theta) \sigma' \delta(\theta')} \psi_{\sigma}(\theta) \psi_{\sigma'}(\theta'),
\]

where \(\psi_{-}(\theta) = \psi^{\dagger}(\theta), \psi_{+}(\theta) = \psi(\theta) \) satisfy \([\psi(\theta), \psi^{\dagger}(\theta')] = 2\pi \delta(\theta - \theta') \). We have then

\[
\langle g_{m_1 n_1} \cdots g_{m_k n_k} \rangle = \langle g_{m_1 n_1} \cdots g_{m_k n_k} \rangle \exp \left(-\sum_{l=2}^{k} F_k^{(l)}/2l \right),
\]

\[
F_k = \sum_{v_1, \ldots, v_l} F_{k_1, \ldots, v_l}^{(l)},
\]

where \(E_j = E(\theta_j) \) and \(\epsilon_{\mu v} = 1 (\mu > v), = 0 (\mu = v), = -1 (\mu < v), \)

\[
\langle g_{m_1 n_1} \cdots g_{m_1 n_1}^{(1)} \cdots g_{m_2 n_2}^{(2)} \cdots g_{m_k n_k}^{(l)} \rangle \big/ \langle g_{m_1 n_1} \cdots g_{m_k n_k} \rangle = \sum_{l=0}^{\infty} c_{k_1 k_2}^{(l)},
\]

where \(k_1 \leq k_2 \), and if \(k_1 = k_2 \) the left hand side means \(\langle g_{m_1 n_1} \cdots g_{m_k n_k}^{(l)} \cdots g_{m_k n_k} \rangle \).

In general an arbitrary \(K \)-point function involving \(g_{mn}^{(j)^{\prime}} \) and \(g_{mn}^{\prime} \) is expressed by using a Pfaffian with entries \((5.6.17) \). See formula (1.4.10) in [1]. For instance we have

\[
\langle g_{m_1 n_1} \cdots g_{m_k n_k}^{(1)} \cdots g_{m_k n_k} \rangle = \langle g_{m_1 n_1} \cdots g_{m_k n_k}^{(1)} \cdots g_{m_k n_k} \rangle \big/ \langle g_{m_1 n_1} \cdots g_{m_k n_k} \rangle \big/ \langle g_{m_1 n_1} \cdots g_{m_k n_k}^{(1)} \cdots g_{m_k n_k} \rangle
\]

\[
- \langle g_{m_1 n_1} \cdots g_{m_k n_k}^{(1)} \cdots g_{m_k n_k} \rangle \big/ \langle g_{m_1 n_1} \cdots g_{m_k n_k} \rangle \big/ \langle g_{m_1 n_1} \cdots g_{m_k n_k}^{(1)} \cdots g_{m_k n_k} \rangle
\]
Let us now compute the scaling limit of spin operators near the critical points, i.e. the singularities of the energy $E(\theta)$. There are three possibilities:

(i) $\theta \to 0$, $h \to 1 \pm 0$, $\gamma \to 0$ fixed.

(ii) $\gamma \to 0$, $\theta \to \pm \theta_0$ with $h = \cos \theta_0$, $|h| < 1$.

(iii) $\pm \theta \to \pi$, $h \to -1 \mp 0$, $\gamma \to 0$ fixed.

Case (i)$_+$. We set

\begin{equation}
(5.6.18)
\end{equation}

and take the limit $\varepsilon \to 0$, $m, n \to \infty$ under fixed γ, p^1, x^0 and x^1. Here $\mu > 0$ is an arbitrarily chosen constant. We have then

\begin{equation}
(5.6.19)_+
\end{equation}

As in (5.5.8) we introduce $\psi(u) = \sqrt{\omega(p^1)}\hat{\psi}_1(\theta)$ ($u > 0$), $= \sqrt{\omega(p^1)}\hat{\psi}_1(-\theta)$ ($u < 0$) where $u^\pm = (\varepsilon(u)\omega(p^1) \pm p^1)/\mu$. The result reads as follows:

\begin{equation}
(5.6.20)
\end{equation}

The third equality of (5.6.20) follows from the fact that $\psi_0(x, \rho F(x)) = 0$ (see (4.3.79), (4.3.80)).

Case (i)$_-$. Set $h = 1 - \mu\varepsilon$ and define p^1, x^0, x^1 as in (5.6.18). The leading behavior of $E(\theta)$ and α_+ are given by (5.6.19)$_+$, while $\alpha_- = 1 - \mu\varepsilon + \cdots$ and $b_1(\theta)$ is replaced by

\begin{equation}
(5.6.19)_-
\end{equation}

In this case we modify the definition of $\psi(u)$ as $\psi(u) = -i\sqrt{\omega(p^1)}\hat{\psi}_2(\theta)$ ($u > 0$), $= i\sqrt{\omega(p^1)}\hat{\psi}_2(-\theta)$ ($u < 0$). Noting the fact that $\psi_{2, mn, 2, m-n} = -\psi_{2, mn, 2, m-n}$...
HOLONOMIC QUANTUM FIELDS. V 575

\[-\psi_{2,m-1,n} = e^{-\frac{1}{2\gamma}} \psi_{0}(x) \cdot \frac{\partial \psi_{0}}{\partial x^1}(x) + \cdots, \text{ we obtain}\]

\[(5.6.21) \quad \text{Nr} \left(\bar{\sigma}^{x}_{mn} \right) = \sqrt{\frac{2\gamma}{1+\gamma}} \left(\frac{2\mu e}{\gamma} \right)^{1/8} \text{Nr} \left(\varphi_{F}(x) \right) + o(e^{1/8})
\]

\[\text{Nr} \left(i\bar{\sigma}^{y}_{mn} \right) = \sqrt{\frac{1+\gamma}{2\gamma}} \left(\frac{2\mu e}{\gamma} \right)^{1/8} e^{i\theta_{0}} \psi_{0}(x) \cdot \frac{\partial \psi_{0}}{\partial x^1}(x) e^{\mu p_{1}(x)/2} + o(e^{9/8}) \]

\[= \sqrt{\frac{1+\gamma}{2\gamma}} \left(\frac{2\mu e}{\gamma} \right)^{1/8} e^{i\theta_{0}} \text{Nr} \left(i \frac{\partial \varphi_{F}}{\partial \chi^{0}}(x) \right) + o(e^{9/8}) \]

where \(\varphi_{F}(x) \) is given in (5.5.21).

Case (ii). Here we set

\[(5.6.22) \quad \gamma = \mu e, \quad x^{0} = m|\sin \theta_{0}|, \quad x^{1} = m\theta
\]

and \(\theta = \pm \theta_{0} + e \theta_{1} \) in the region \(\theta \sim \pm \theta_{0} \). We have

\[(5.6.23) \quad E(\theta) = e \sin \theta_{0} |\omega(p^1)| + \cdots
\]

\[\alpha_{\pm} = e^{\pm i\theta_{0}}(1 + \mu e) + \cdots
\]

\[b_{2}(\theta) = e(1 - e^{\pm 2i\theta_{0}})(\mu - i\theta_{1})
\]

according as \(\theta \to \pm \theta_{0} \). Consider first \(\rho_{2,mm} \) appearing in (5.6.12)\(\sigma_{2} \). In the limit \(m, n \to \infty, \epsilon \to 0 \), the only contributions come from the regions \(\sigma \theta + \sigma' \theta' = 0 \) (\(\sigma, \sigma' = \pm \)), \(\theta = \theta_{0} \) or \(- \theta_{0} \), due to the rapid oscillation of the exponential factors in (5.2.18) (where \(b(\theta) \) and \(\gamma(\theta) \) are replaced by \(b_{2}(\theta) \) and \(-iE(\theta) \), respectively). Writing

\[\tilde{\psi}^{(1,2)}(p^1) = \sqrt{e\omega(p^1)} \tilde{\psi}^{\dagger}(\pm \theta_{0} + e \theta_{1}), \quad \tilde{\psi}^{(1,2)}(p^1) = \sqrt{e\omega(p^1)} \tilde{\psi}(\pm \theta_{0} + e \theta_{1}),
\]

we get

\[
\rho_{2,mm} = \frac{1}{2\pi \omega} \int_{-\infty}^{\infty} dp^{1} \int_{-\infty}^{\infty} dp^{1'} \left\{ \tilde{\psi}^{(1)}(p^1) \tilde{\psi}^{(2)}(p^{1'}) \right\} i(\omega - \omega') \frac{\epsilon_{r}^{1+}(x_{0}^{1} + x^{1}) - \epsilon_{s}^{1+}(x^{1} + p^{1})}{p^{1} + p^{1'} + i0} + \tilde{\psi}^{(1)}(p^1) \tilde{\psi}^{(2)}(p^{1'}) \frac{i(\omega - \omega')}{p^{1} + p^{1'} - i0} e^{-i\epsilon_{r}^{1+}(x_{0}^{1} + x^{1}) + i\epsilon_{s}^{1+}(p^{1} + p^{1'})} + \tilde{\psi}^{(1)}(p^1) \tilde{\psi}^{(2)}(p^{1'}) \frac{i(\omega - \omega')}{p^{1} - p^{1'} + i0} e^{-i\epsilon_{r}^{1-}(x_{0}^{1} + x^{1}) + i\epsilon_{s}^{1-}(p^{1} - p^{1'})} + \cdots
\]

with \(\omega = \omega(p^1), \omega' = \omega(p^{1'}) \). Making use of the canonical transformation

\[(5.6.24) \quad \sqrt{2} \tilde{\psi}^{(1)}(p^1) = i\tilde{\psi}^{(1)}(p^1) + \psi^{(2)}(p^1)
\]

\[\sqrt{2} \tilde{\psi}^{(2)}(p^1) = i\tilde{\psi}^{(1)}(p^1) - \psi^{(2)}(p^1)
\]

\[\sqrt{2} \tilde{\psi}^{(1)}(p^1) = -i\tilde{\psi}^{(1)}(p^1) + \psi^{(2)}(p^1)
\]

\[\sqrt{2} \tilde{\psi}^{(2)}(p^1) = -i\tilde{\psi}^{(1)}(p^1) - \psi^{(2)}(p^1)
\]
and setting $\psi^{(j)}(u) = \psi^{(j)}(p^1) (u > 0), = \psi^{(j)*}(-p^1) (u < 0)$ we have

$$\rho_{2,mn} = \rho^{(1)}_{2}(x) + \rho^{(2)}_{2}(x) + o(1).$$

Here $\rho^{(j)}_{2}(x)$ is obtained from (5.5.21) by replacing $\psi(u)$ by mutually independent free fermion operators $\psi^{(j)}(u) (j = 1, 2)$. The scaled form for $\rho_{2,mn}^{(m)} \rho_{2,m-n}^{(m)}$ is calculated similarly. Thus we find

$$\rho_{2,mn}^{(m)} = (4 \sqrt{1 - h^2 \mu \epsilon})^{1/4} \rho_{2,mn}^{(1)}(x) \rho_{2,mn}^{(2)}(x) + o(\epsilon^{1/4})$$

Since the scaled spin operators are the tensor product $\varphi_{(1)}^{(1)}(x) \otimes \varphi_{(2)}^{(1)}(x)$ or $\varphi_{(1)}^{(1)}(x) \otimes \varphi_{(2)}^{(2)}(x)$ of identical ones, their n-point functions coincide with the squares of those for the Ising model. (For the 2-point function this result was obtained in [13].)

Case (iii) +. Setting $h = -1 - \mu \epsilon, \theta = \pi + \epsilon p^1$ we see that (5.6.19) + holds, where $\alpha_{=}$ should be replaced by $-\alpha_{=}$. Therefore (5.6.13)$_{+}$ implies

$$\rho_{2,mn}^{(m)} = (4 \sqrt{1 - h^2 \mu \epsilon})^{1/4} \rho_{2,mn}^{(1)}(x) \rho_{2,mn}^{(2)}(x) + o(\epsilon^{1/4})$$

Case (iii) −. In this case $h = -1 + \mu \epsilon, \theta = \pi + \epsilon p^1, -\alpha_{=} = 1 - \mu \epsilon + \cdots$ and $-\alpha_{=} = (1 + \gamma)/(1 - \gamma)$. (5.6.19) − holds without any change. Hence we have

$$\rho_{2,mn}^{(m)} = (4 \sqrt{1 - h^2 \mu \epsilon})^{1/4} \rho_{2,mn}^{(1)}(x) \rho_{2,mn}^{(2)}(x) + o(\epsilon^{1/4})$$

§ 5.7. The Orthogonal Model

In this section we formulate a general orthogonal version of lattice models ([13], [14], [15]) using the Grassmann integral and solve it analogously as in Section 5.4.

First we prepare some generalities on the Grassmann integral. Let W be an N-dimensional vector space, and let ω be a non-zero element of $A^{N}(W)$. The Grassmann integral with respect to ω is a linear form on $A(W)$.
such that the map \(a \mapsto \omega \left(\int \omega^{-1} a \right) \) coincides with the projection onto \(\Lambda^N(W) \).

If \(\omega = c \omega' \) for some \(c \in \mathcal{C} \), we have

\[
\int \omega^{-1} a = c^{-1} \int \omega'^{-1} a \quad (c \neq 0).
\]

Let \(W' \) be another vector space of dimensions \(N' \). For \(\tilde{a} \in \Lambda(W \oplus W') \) we also define \(\int \omega^{-1} \tilde{a} \in \Lambda(W') \) so that \(\tilde{a} \mapsto \omega(\int \omega^{-1} \tilde{a}) \) coincides with the projection \(\Lambda(W \oplus W') \to \Lambda^N(W) \wedge \Lambda(W') \). If \(\omega' \in \Lambda^N(W') \), we have

\[
\int \omega'^{-1} \omega^{-1} \tilde{a} = \int (\omega \omega')^{-1} \tilde{a}.
\]

Let \(v_1, \ldots, v_N \) be a basis of \(W \), and set \(\omega = v_1 \cdots v_N \). For an anti-symmetric matrix \(F = (f_{jk})_{j,k=1,\ldots,N} \), we set \(S = \frac{1}{2} \sum_{j,k=1}^N f_{jk} v_j v_k \in \Lambda^2(W) \). Then we have

\[
\int \omega^{-1} e^S = \text{Pfaffian} \, F,
\]

\[
\int \left(\omega^{-1} e^S v_j v_k / \int \omega^{-1} e^S \right)_{j,k=1,\ldots,N} = -F^{-1}.
\]

In general, for \(w_1, \ldots, w_s \in W \) we have

\[
\int \omega^{-1} e^{S w_1 \cdots w_s} / \int \omega^{-1} e^S = \text{Pfaffian} \, (h_{jk})_{j,k=1,\ldots,s}
\]

where \(h_{jk} = \int \omega^{-1} e^{S w_j w_k} / \int \omega^{-1} e^S \).

Consider a rectangular lattice \(L \) of size \(M \times N \) with cyclic boundary and with even \(M \) and \(N \). To each site \((m, n)\) we attach a 4-dimensional vector space \(W_{mn} = Cu_{mn} \oplus Cv_{mn} \oplus Cu_{mn}^+ \oplus Cv_{mn}^+ \), and set \(W = \bigoplus_{m=0}^{M-1} \bigoplus_{n=0}^{N-1} W_{mn} \).

We set in \(\Lambda(W) \)

\[
\omega_{\mathcal{W}} = \prod_{m=0}^{M-1} \prod_{n=0}^{N-1} v_{mn}^t u_{mn} u_{mn}^t v_{mn},
\]

\[
\mathcal{E}^{(0)} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(f_{12} u_{mn} v_{mn} + f_{13} u_{mn} u_{mn}^t + f_{14} u_{mn} v_{mn}^t + f_{23} v_{mn} u_{mn}^t + f_{24} v_{mn}^t u_{mn} + f_{34} u_{mn} v_{mn}^t \right),
\]

\[
\mathcal{E}^{(1)} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} u_{mn} u_{m+1,n}^t.
\]
The grand partition function is defined by the integral (see (5.4.2))

\[Z_{MN} = \int \omega_1^{-1} e^{\phi^{(0)} + \phi^{(1)} + \phi^{(2)}}. \]

In order to compute \(Z_{MN} \) we define the Fourier transformation by

\[
\begin{align*}
\hat{u}(\theta_\mu, \theta'_\nu) &= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-im\theta_\mu - in\theta'_\nu} \left(u_{mn} \right), \\
\hat{v}(\theta_\mu, \theta'_\nu) &= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{im\theta_\mu + in\theta'_\nu} \left(v_{mn} \right), \\
\hat{u}^\dagger(\theta_\mu, \theta'_\nu) &= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \omega_1 \left(u_{mn}^{\dagger} \right), \\
\hat{v}^\dagger(\theta_\mu, \theta'_\nu) &= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \omega_1 \left(v_{mn}^{\dagger} \right), \\
\left(\theta_\mu = \frac{2\pi \mu}{M}, \theta'_\nu = \frac{2\pi \nu}{N}; \mu = -\frac{M+1}{2}, \ldots, \frac{M-1}{2}, \right. \\
\left. \nu = -\frac{N+1}{2}, \ldots, \frac{N-1}{2} \right).
\end{align*}
\]

Then we have

\[
G^{(0)} + G^{(1)} + G^{(2)} = \frac{1}{MN} \sum_{\mu=-\frac{M+1}{2}}^{\frac{M-1}{2}} \sum_{\nu=-\frac{N+1}{2}}^{\frac{N-1}{2}} \left(f_{12} \hat{u}(\theta_\mu, \theta'_\nu) \hat{v}(\theta'_\nu) \right. \\
+ \left(f_{13} + e^{-i\theta_\mu} \right) \hat{u}(\theta_\mu, \theta'_\nu) \hat{u}^\dagger(\theta_\mu, \theta'_\nu) + f_{14} \hat{u}(\theta_\mu, \theta'_\nu) \hat{v}(\theta_\mu, \theta'_\nu) \\
+ f_{23} \hat{v}(\theta_\mu, \theta'_\nu) \hat{u}^\dagger(\theta_\mu, \theta'_\nu) + \left(f_{24} + e^{-i\theta'_\nu} \right) \hat{v}(\theta_\mu, \theta'_\nu) \hat{v}^\dagger(\theta_\mu, \theta'_\nu) \\
+ \left. f_{34} \hat{v}^\dagger(\theta_\mu, \theta'_\nu) \hat{v}^\dagger(-\theta_\mu, \theta'_\nu) \right).
\]

From (5.7.2) and (5.7.4) we have ([14], [15])

\[
Z_{MN} = \prod_{\mu=-\frac{M+1}{2}}^{\frac{M-1}{2}} \prod_{\nu=-\frac{N+1}{2}}^{\frac{N-1}{2}} \det \begin{pmatrix}
0 & f_{12} & f_{13} + e^{-i\theta_\mu} & f_{14} \\
-f_{12} & 0 & f_{23} & f_{24} + e^{-i\theta'_\nu} \\
-f_{13} - e^{i\theta_\mu} & -f_{23} & 0 & f_{34} \\
-f_{14} & -f_{24} - e^{i\theta'_\nu} & -f_{34} & 0
\end{pmatrix}
\]

where \(\Delta(\theta, \theta') = 1 + f_{12} f_{34} + f_{13} f_{24} + f_{14} f_{23} - 2 \cos \theta (f_{1234} f_{24} - f_{13} f_{24}) - 2 \cos \theta' (f_{1234} f_{13} - f_{24}) - 2 \cos (\theta - \theta') (f_{12} f_{34} - f_{13} f_{24}) - 2 \cos (\theta + \theta') (f_{14} f_{23} - f_{13} f_{24}) \)

with

\[
f_{1234} = f_{12} f_{34} - f_{13} f_{24} + f_{14} f_{23}.
\]

For a 1-chain \(\Gamma \) we set (cf. p. 557)
(5.7.13) \[\mathcal{F}^{(1)}(\Gamma) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{F}_{mn}^{(1)}(\Gamma) u_{mn} u_{m+n,0}^\dagger, \]
\[\mathcal{F}^{(2)}(\Gamma) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{F}_{mn}^{(2)}(\Gamma) v_{mn} v_{m+n,0}^\dagger. \]

The correlation function for \(\partial \Gamma \) is defined by

(5.7.14) \[\rho(\partial \Gamma) = Z_{MN}^{-1} \int \omega_{\mathcal{F}} e^{\mathcal{F}^{(1)}(\Gamma)+\mathcal{F}^{(2)}(\Gamma)}. \]

\(\rho(\partial \Gamma) \) depends only on \(\partial \Gamma \) (see Proposition 5.4.1). In order to compute \(\rho(\partial \Gamma) \) we use the transfer matrix formalism.

We consider \(2M \)-dimensional vector spaces \(W = \sum_{m=0}^{M-1} \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C} \) and \(W' = \sum_{m=0}^{M-1} \mathfrak{C} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \). We set in \(\Lambda(W \otimes W') \)

(5.7.15) \[\omega_W = \prod_{m=0}^{M-1} p_m^\dagger v_m, \quad \omega_{W'} = \prod_{m=0}^{M-1} u_m^\dagger u_m, \]

(5.7.16) \[S_0 = \sum_{m=0}^{M-1} (f_{12} u_m v_m + f_{13} u_m u_m^\dagger + f_{14} u_m^\dagger v_m + f_{23} v_m u_m^\dagger + f_{24} v_m^\dagger v_m^\dagger + f_{34} u_m^\dagger u_m^\dagger), \]
\[S_1 = \sum_{m=0}^{M-1} u_m u_{m+1}. \]

We equip \(W \) with an orthogonal structure by the inner product \(\langle , \rangle \) such that \(\langle v_m, v_m^\dagger \rangle = 0, \langle v_m, v_m' \rangle = 0 \) and \(\langle v_m^\dagger, v_m' \rangle = \delta_{mm'} \). We denote by \(\langle \text{vac} | \) and \(| \text{vac} \rangle \) the vacuums with respect to the holonomic decomposition \(W = W_{\text{cre}} \otimes W_{\text{ann}} \) where \(W_{\text{cre}} = \sum_{m=0}^{M-1} \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C} \) and \(W_{\text{ann}} = \sum_{m=0}^{M-1} \mathfrak{C} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \). We also denote by \(\langle m_1 \cdots m_k | \) (resp. \(| m_1 \cdots m_k \rangle \)) the state vector \(\langle \text{vac} | v_{m_1} \cdots v_{m_k} \) (resp. \(v_{m_1}^\dagger \cdots v_{m_k}^\dagger | \text{vac} \rangle \)).

We define an element \(V \) of \(\mathcal{A}(W) \) by specifying its matrix elements as follows.

(5.7.17) \[\langle m_1 \cdots m_j | V | m_{k}^\dagger \cdots m_{l}^\dagger \rangle = \int \omega_{W}^{-1} \int \omega_{W'}^{-1} e^{S_0+S_1} v_{m_1}^\dagger \cdots v_{m_j}^\dagger v_{m_k}^\dagger \cdots v_{m_l}^\dagger. \]

Then we have

(5.7.18) \[Z_{MN} = \text{trace } V^N. \]

Thus \(V \) is the transfer matrix of our system.

Proposition 5.7.1. \(V \) belongs to the Clifford group \(G(W) \).

Proof. By Theorem 1.4.4 an element \(g \in \mathcal{A}(W) \) such that \(\langle g \rangle = 1 \) belongs to \(G(W) \) if and only if the matrix elements \(\langle m_1 \cdots m_j | g | m_{k}^\dagger \cdots m_{l}^\dagger \rangle \) satisfy the
condition
\[
\langle m_1 \cdots m_j | g | m'_k \cdots m'_1 \rangle = \text{Pfaffian} \left(\begin{array}{ccc}
0 & \cdots & \langle m_1 | g | \text{vac} \rangle \\
\vdots & & \vdots \\
-\langle m_1 | g | \text{vac} \rangle & \cdots & 0 \\
\vdots & & \vdots \\
-\langle m_1 | g | m'_k \rangle & \cdots & -\langle \text{vac} | g | m'_k m'_1 \rangle \\
\vdots & & \vdots \\
-\langle m_1 | g | m'_1 \rangle & \cdots & -\langle \text{vac} | g | m'_k m'_1 \rangle & \cdots & 0
\end{array} \right).
\]

Hence the proposition follows from (5.7.6).

Now we define the spin operator \(s_m \) by
\begin{equation}
(5.7.19) \quad s_m = \prod_{j=0}^{m-1} (1 - 2v_m^j v_m^*).
\end{equation}

If we set
\begin{equation}
(5.7.20) \quad p_m = v_m^0 + v_m, \quad q_m = -v_m^1 + v_m,
\end{equation}
we have
\begin{equation}
(5.7.21) \quad s_m = q_{m-1} p_{m-1} \cdots q_0 p_0.
\end{equation}

\(s_m \) belongs to \(G(W) \) and the induced rotation is given by
\begin{equation}
(5.7.22) \quad T_{s_m} v_j = \begin{cases}
v_j & j \geq m \\
v_j & j \leq m - 1,
\end{cases}
\end{equation}

\begin{equation}
(5.7.23) \quad T_{s_m} v_j = \begin{cases}
v_j & j \geq m \\
v_j & j \leq m - 1.
\end{cases}
\end{equation}

Proposition 5.7.2.
\[
\rho((m_1, n_1), \ldots, (m_k, n_k)) = Z_{M_N}^{-1} \text{trace } V^{n_1} s_{m_1} V^{n_2-n_1} s_{m_2} \cdots V^{n_k-n_{k-1}} s_{m_k} V^{N-n_k}.
\]

Proof. Note that
\[
\langle m_1 \cdots m_j | s_m V | m'_k \cdots m'_1 \rangle
= \langle m_1 \cdots m_j | s_m | m'_j \cdots m'_1 \rangle \langle m_1 \cdots m_j | V | m'_k \cdots m'_1 \rangle
= (-)^{(j' + m_j-1)} \langle m_1 \cdots m_j | V | m'_k \cdots m'_1 \rangle.
\]

Taking \(\Gamma \) as the polygon in Figure 5.7.1 we can show the proposition.
Now we shall diagonalize V. We define the Fourier transformation by

$$
(\hat{u}(\theta_\mu)) = \sum_{m=0}^{M-1} e^{-im\theta_\mu} \begin{pmatrix}
u_m \\ u_m \end{pmatrix},
$$

$$
(\hat{v}(\theta_\mu)) = \sum_{m=0}^{M-1} e^{im\theta_\mu} \begin{pmatrix} u_m^\dagger \\ v_m^\dagger \end{pmatrix}.
$$

Then we have

$$
e^{S_0 S_1} = \left\{ \omega_{\mu}^{\dagger}, e^{S_0 S_1} = \prod_{\mu=0}^{M} Q(\theta_\mu) \right\},
$$

$$
Q(\theta) = \left(-f_{13} - e^{-i\theta} + \frac{1}{M} (f_{23} \delta(\theta) - f_{34} \delta(\theta) - f_{12} \delta(-\theta) - f_{14} \delta(\theta)) \right) + \frac{1}{M} f_{24} \delta(\theta) \delta(\theta).
$$

For simplicity sake we assume that $f_{12}=f_{34}$ and $f_{14}=f_{23}$. Since $\rho(\delta \Gamma)$ depends on f_{12} and f_{34} (resp. f_{14} and f_{23}) through the product $f_{12} f_{34}$ (resp. $f_{14} f_{23}$), this is not a restriction. We set

$$
f_{12}=f_{34}=c,
$$

$$
f_{14}=f_{23}=d,
$$

$$
f_{13}=b_+, \quad f_{24}=b_-,
$$

Pfaffian $F=c^2+d^2-b_+ b_- = a_+$.

Proposition 5.7.3. The induced rotation T_ν is given by

$$
(T_\nu \delta^\dagger(-\theta_\mu), T_\nu \delta(\theta_\mu)) = (\delta^\dagger(-\theta_\mu), \delta(\theta_\mu)) T(\theta_\mu)
$$

where

$$
T(\theta) = \begin{pmatrix} r(\theta) & 0 \\ s(\theta) & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & s(\theta) \\ 0 & r(-\theta) \end{pmatrix},
$$

$$
r(\theta) = \frac{c^2}{b_+ + e^{-i\theta}} + \frac{d^2}{b_+ + e^{i\theta}} - b_-,
$$

$$
s(\theta) = cd\left(\frac{1}{b_+ + e^{-i\theta}} - \frac{1}{b_+ + e^{i\theta}} \right).$$
Proof. From (5.7.25) and Proposition 5.7.1 we know that $V^\dagger(\theta_\mu)$ and $V(\theta_\mu)$ are linear combinations of $\delta^\dagger(\theta_\mu)\delta(\theta_\mu)$, $\delta(\theta_\mu)^\dagger\delta(\theta_\mu)$ and $\delta(\theta_\mu)^\dagger\delta(\theta_\mu)$. The coefficients are determined by computing the matrix elements of the forms

\[
\langle \theta(-M+1)/2 \cdots \theta(M-1)/2 \vert A \vert \theta(-M+1)/2 \cdots \theta(M-1)/2\rangle \quad \text{and} \\
\langle \theta(-M+1)/2 \cdots \theta(M-1)/2 \vert A \vert \theta(-M+1)/2 \cdots \theta(M-1)/2\rangle.
\]

Using (5.7.20) we can rewrite (5.7.27) as

\[
(T_V \delta(\theta_\mu), T_V \delta(\theta_\mu)) = (\delta(\theta_\mu), \delta(\theta_\mu)) T'(\theta_\mu)
\]

where

\[
T'(\theta) = \frac{1}{B(\theta) + iC(\theta)} \begin{pmatrix} A(\theta) & eA_+(\theta) \\ eA_-(\theta) & A(\theta) \end{pmatrix}.
\]

Here $A_\pm(\theta)$ (resp. $E(\theta)$ below) is given by (5.6.4) (resp. (5.6.5)) with

\[
\begin{align*}
 h &= (a_1^2 + b_1^2 - b_1^2 e^{-1})/e, \\
 \gamma &= 2cd/e, \\
 e &= a_+ b_- + b_+.
\end{align*}
\]

We have set also

\[
A(\theta) = (a_1^2 + b_1^2 + b_1^2 e^{-1})/2 - (a_+ b_- - b_+) \cos \theta,
\]

\[
B(\theta) = a_+ b_- - b_+ + (a_+ - b_+ b_-) \cos \theta,
\]

\[
C(\theta) = (a^2 - d^2) \sin \theta.
\]

(5.7.28) shows that the diagonalization of V reduces to that of the XY model in Section 5.6. The renormalized transfer matrix $V_{\text{ren}} = \exp (-\mathcal{H}_{M,\text{ren}})$ is given by (5.6.9) with $E(\theta_\mu)$ in $\mathcal{H}_{M,\text{ren}}$ replaced by

\[
E(\theta_\mu) = \log \frac{A(\theta) + eE(\theta)}{B(\theta) + iC(\theta)}.
\]

Let us consider the expectation value $\langle a \rangle = \text{tr} (a V_N)$. In the limit $M, N \to \infty$, $\psi^\dagger(\theta)$ (resp. $\psi(\theta)$) becomes the creation (resp. annihilation) operator. Let us compute the norm of s_{mn} in this limit. From (5.7.21) and (5.7.28), this computation also reduces to that of the XY model. Namely in \mathfrak{A}_1 (resp. \mathfrak{A}_3) $\text{Nr}(s_{mn})$ of the orthogonal model is given by $\text{Nr}(t_{mn})$ (resp. $\text{Nr}(t'_{mn})$) with $E(\theta)$ replaced by $\bar{E}(\theta)$. In \mathfrak{A}_2 we must consider $s_{m,n} = s_m P_0$ for the finite lattice and then take the limit. Then we have

\[
\text{Nr}(s_{mn}) = \psi_{2,m-1,n}^\dagger \text{Nr}(\bar{s}_{mn})
\]

with $E(\theta)$ replaced by $\bar{E}(\theta)$ in (5.6.12) of \mathfrak{A}_2.

Remark. The correlation function (5.7.14)(*) coincides with that of Ising spins on the dual lattice. See [14] for the detailed discussions on this point. We only note the values of parameters (5.7.26) for i) the triangular and ii) the generalized square lattices.

i) The triangular lattice.

\[
\begin{align*}
b_+ &= e^{\Delta (K_1 + K_3)} \\
b_- &= e^{\Delta (K_1 - K_3)} \\
c &= e^{K_1 + K_2 - 2K_3} \\
d &= e^{K_1 + K_2}
\end{align*}
\]

ii) The generalized square lattice.

\[
\begin{align*}
b_+ &= \cosh (K_1 + K_2 - K_3 - K_4) / \\
&\quad \cosh (K_1 - K_3 + K_3 - K_4) \\
b_- &= \cosh (K_1 + K_2 - K_3 - K_4) / \\
&\quad \cosh (K_1 - K_3 + K_3 - K_4) \\
c &= \sqrt{\cosh (K_1 + K_2 - K_3 + K_4) \cosh (-K_1 + K_2 + K_3 - K_4)} / \\
&\quad \cosh (K_1 + K_2 - K_3 - K_4) \\
d &= \sqrt{\cosh (K_1 + K_2 + K_3) \cosh (K_1 + K_2 - K_3 - K_4)} / \\
&\quad \cosh (K_1 - K_2 + K_3 - K_4)
\end{align*}
\]

References

(*) Infinite series expressions are obtained by substituting the above results into (5.6.14)–(5.6.17).

See e.g. the book of Domb and Green, *Phase transitions and critical phenomena* 1, Academic Press, 1972.

Note added in proof: The authors are indebted to Professor C.A. Tracy for drawing their attention to the following article: C.A. Tracy and B.M. McCoy, *Phys. Rev. Lett.*, 31 (1973), 1500–1504, which should be added to the references of this series on Holonomic Quantum Fields. After completion of the manuscript they also learned that the path formulation of order-disorder variables in Sections 5.4 and 5.7 originates in the work of Kadanoff and Ceva (*Phys. Rev.*, B3 (1971), 3918–3939).