Mathematical Analysis — Optimal regularity results in spaces of Hölder continuous functions for some infinite dimensional Ornstein-Uhlenbeck semigroup, by Giuseppe Da Prato.

Dedicated to the memory of Renato Caccioppoli

Abstract. — We consider the elliptic equation \(\lambda \phi - L\phi = f \) where \(\lambda > 0 \), \(f \) is \(\theta \)-Hölder continuous and \(L \) is an Ornstein-Uhlenbeck operator in a Hilbert space \(H \). We show that the mapping \(D^2\phi \) (with values in the space of Hilbert–Schmidt operators on \(H \)) is \(\theta \)-Hölder continuous.

Key words: PDEs with infinitely many variables, Schauder estimates, Ornstein-Uhlenbeck semigroup.

2000 Mathematics Subject Classification AMS: 35R15, 35B45.

1. Introduction and setting of the problem

Let \(H \) be a separable real Hilbert space (norm \(| \cdot | \), inner product \(\langle \cdot, \cdot \rangle \)). We are given a linear operator \(A: D(A) \subset H \to H \) such that

Hypothesis 1.1.

(i) \(A \) is self-adjoint and there exists \(\omega > 0 \) such that

\[
\langle Ax, x \rangle \leq -\omega |x|^2, \quad x \in D(A).
\]

(ii) \(A^{-1} \) is of trace class.

As well known, Hypothesis 1.1 implies that there exists a complete orthonormal system \((e_k) \) in \(H \) and a sequence of real numbers \((a_k) \) greater than \(\omega \) such that

\[
Ae_k = -a_k e_k, \quad \forall k \in \mathbb{N}
\]

and

\[
\text{Tr}[A^{-1}] = \sum_{k=1}^{\infty} \frac{1}{a_k} < +\infty.
\]
Under Hypothesis 1.1 we can consider the Ornstein–Uhlenbeck semigroup defined by (see [6])

\[R_t \varphi(x) = \int_H \varphi(e^{tA}x + y)N_Q(dy), \quad \forall t > 0, x \in H. \]

Here \(\varphi : H \to \mathbb{R} \) is any continuous function with e.g. polynomial growth (that is such that \(|\varphi(x)| \leq M(1 + |x|^n) \) for all \(x \in H \) and some \(M > 0, n \in \mathbb{N} \)) and \(N_Q_t \) is the Gaussian measure in \(H \) with mean 0 and covariance operator \(Q_t \) given by

\[Q_t = -\frac{1}{2} A^{-1}(1 - e^{2tA}), \quad \forall t \geq 0. \]

Note that the Gaussian measure \(N_Q_t \) is well defined since \(A^{-1} \), and consequently \(Q_t \), is of trace class.

Let us define the infinitesimal generator \(L \) of \(R_t \) through its Laplace transform (as in [2]) setting for any \(\lambda > 0 \) and for any continuous function \(f : H \to \mathbb{R} \) with polynomial growth

\[(\lambda - L)^{-1} f(x) = \int_0^{\infty} e^{-\lambda t} R_t f(x) \, dt, \quad \forall x \in H. \]

The operator \(L \) acts as a concrete differential operator on the space \(\delta_A(H) \) of all exponential functions defined as the linear span of all real parts of functions \(\varphi_h \) of the form

\[\varphi_h(x) = e^{i\langle x, h \rangle}, \quad \forall x \in H, \]

where \(h \) varies in \(D(A) \). It is not difficult in fact to check that

\[L\varphi = \frac{1}{2} \text{Tr}[D^2\varphi] + \langle x, AD\varphi \rangle, \quad \forall \varphi \in \delta_A(H). \]

This paper is devoted to the study of the elliptic equation

\[\lambda \varphi - L \varphi = f, \]

where \(\lambda > 0 \) is a given number and \(f \) is a given function in a suitable functional space. As we shall see there is a dramatic difference between the case when \(H \) is finite or infinite dimensional. In order to better illustrate this difference it is convenient to recall what happens when \(f \) belongs to \(L^2(H, \mu) \) where \(\mu \) is the unique invariant measure of \(R_t, t \geq 0 \). The short Section 2 is devoted to recall the main results in this case. Finally, Section 3 is devoted to study (1.7) in spaces of Hölder continuous functions. We first recall previous optimal regularity result proved in [1] and [3] and then we present a new optimal regularity result. This last result will allow us to take into account a new kind of perturbations of the Ornstein–Uhlenbeck diffusion process for which it is will possible to prove existence and
uniqueness of an associated martingale problems, arguing as in [13]. These facts will be the object of a future paper.

Remark 1.2. \(R_t \) is the transition semigroup of the diffusion process \(X(t), t \geq 0 \), the solution to the differential stochastic equation

\[
\begin{aligned}
\left\{
\begin{array}{l}
\frac{dX(t)}{dt} = AX(t) + dW(t), \\
X(0) = x \in H,
\end{array}
\right. \\
\end{aligned}
\]

where \(W(t) \) is a cylindrical Wiener process in some probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) taking values in \(H \). We can take \(W(t) \) as

\[
\langle W(t), z \rangle = \sum_{k=0}^{\infty} \beta_k \langle z, e_k \rangle, \quad \forall z \in H,
\]

where \((\beta_k) \) is a family of mutually independent standard Brownian motions on \((\Omega, \mathcal{F}, \mathbb{P}) \). Then we have

\[
R_t \phi(x) = \mathbb{E}[\phi(X(t, x))], \quad t \geq 0, \ x \in H, \ \phi \in C_b(H),
\]

where \(\mathbb{E} \) denotes the expectation.

2. Optimal regularity results for \(f \in L^2(H, \mu) \)

By (1.3) it follows easily that \(\mu = N_{\frac{1}{2}A^{-1}} \), where

\[
Q_{\infty} = -\frac{1}{2}A^{-1},
\]

is the unique invariant measure for \(R_t, t \geq 0 \), that is

\[
\int_H R_t \phi(x) \mu(dx) = \int_H \phi(x) \mu(dx),
\]

for all \(\phi : H \rightarrow \mathbb{R} \) continuous and bounded. So, \(R_t \) can be uniquely extended to \(L^2(H, \mu) \) (even to \(L^p(H, \mu) \) for any \(p \geq 1 \)) which we shall denote by \(R_t^2 \). The infinitesimal generator of \(R_t^2 \) will be denoted by \(L_2 \).

The following result can be found in [7], see also [4, (10.55)].

Proposition 2.1. Let \(\lambda > 0 \) and \(f \in L^2(H, \mu) \). Then equation (1.8) has a unique solution \(\phi \in D(L_2) \) with the following properties

\[
\begin{aligned}
\phi &\in W^{2,2}(H, \mu), \\
(-A)^{1/2}D\phi &\in L^2(H, \mu; H).
\end{aligned}
\]
Moreover the following identity holds.

\[\int_H (L_2 \varphi)^2 d\mu = \frac{1}{2} \int_H \text{Tr}[(D^2 \varphi)^2] d\mu + \int_H \|(-A)^{1/2} D\varphi\|^2 d\mu. \]

Notice that if the dimension of \(H \) is finite, equation (1.8) reduces to

\[\lambda \varphi - \frac{1}{2} \Delta \varphi - \langle x, AD\varphi \rangle = f, \]

so that, by (2.1) it follows that both terms

\[\Delta \varphi, \quad \langle x, AD\varphi \rangle \]

belong to \(L^2(H, \mu) \). Nothing similar happens if the dimension of \(H \) is infinite. In this case we have no information on the terms

\[\frac{1}{2} \text{Tr}[D^2 \varphi], \quad \langle x, AD\varphi \rangle, \]

we know only that the sum of these two terms is meaningful. However, the weaker informations (2.1) and (2.2) are available. When \(H \) is infinite dimensional \(A \) is unbounded and so, identity (2.3) shows that they are in a sense optimal.

3. Optimal regularity results in space of Hölder continuous functions

3.1. Introduction

Here we consider equation (1.8) when \(f \) belongs to the space of all \(\theta \)-Hölder continuous and bounded real functions on \(H \), which we denote by \(C^\theta_b(H) \).

We start by recalling some known results.

Theorem 3.1. Assume that Hypothesis 1.1 holds. Let \(\theta \in (0, 1) \), \(f \in C^\theta_b(H) \), \(\lambda > 0 \) and let \(\varphi = (\lambda - L)^{-1}f \) be the solution to (1.8). Then the following statements hold.

(i) \(\varphi \) belongs to \(C^{2+\theta}_b(H) \) and there exists \(M > 0 \) (independent on \(\lambda \) and on \(f \)) such that

\[\|\varphi\|_{C^{2+\theta}_b(H)} \leq M\|f\|_{C^\theta_b(H)}. \]

(ii) For all \(x \in H \) we have \(D\varphi(x) \in D((-A)^{1/2}) \) and \((-A)^{1/2}D\varphi \in C^\theta_b(H) \). Moreover, there exists \(M_1 > 0 \) (independent on \(\lambda \) and on \(f \)) such that

\[\|(-A)^{1/2}D\varphi\|_{C^\theta_b(H)} \leq M_1\|f\|_{C^\theta_b(H)}. \]
For a precise definition of $C^\theta_b(H)$ and $C^{2+\theta}_b(H)$ see the end of this subsection.

The Schauder estimate (i) was proved in [1] whereas (ii) was proved in [3]. Clearly

(ii) is a counterpart of (2.2) in the Hölder setting. The main result of this paper is the proof of a counterpart of (2.1), namely that if $f \in C^\theta_b(H)$ then

(iii) $D^2 \varphi \in C^\theta_b(H, L^2(H))$ and there exists $M_3 > 0$ (independent on λ and on f) such that

$$\|D^2 \varphi\|_{C^\theta_b(H, L^2(H))} \leq M_3 \|f\|_{C^\theta_b(H)}.$$

(3.3)

Remark 3.2. When H is finite-dimensional, the Schauder estimates (3.1) were proved in [5]. Even in this case they are not consequence of the general results in [8] because the Ornstein–Uhlenbeck operator has unbounded coefficients.

Remark 3.3. A result similar to (iii) was proved for the Gross Laplacian by [11].

Let us finish this section by giving some notation and by recalling the definition of interpolation spaces needed in what follows.

3.1.1 Notations. In all the paper H is a separable Hilbert space, $A : D(A) \subset H \to H$ is a linear operator fulfilling Hypothesis 1.1 and (e_h) is an orthonormal basis defined by (1.2). For each $x \in H$ and any $h \in \mathbb{N}$ we set $x_h = \langle x, e_h \rangle$.

By $L^2(H)$ we denote the Hilbert space of all Hilbert–Schmidt operators from H into H endowed with the inner product

$$\langle T, S \rangle = \text{Tr}[TS^*], \quad \forall T \in L^2(H)$$

and the norm

$$\|T\|^2_{L^2(H)} = \text{Tr}[TT^*] = \sum_{h,k=1}^{\infty} |\langle Te_h, e_k \rangle|^2, \quad \forall T \in L^2(H).$$

Let E be a Banach space. We shall denote by $C_b(H; E)$ the Banach space of all uniformly continuous and bounded functions from H into E endowed with the norm $\|\varphi\|_0 = \sup_{x \in H} |\varphi(x)|_E$. For any $k \in \mathbb{N}$ we denote by $C^k(H; E)$ the space of all mappings $\varphi : H \to E$ which are uniformly continuous and bounded together with their derivatives up to the k-th order. $C^k(H; E)$ is a Banach space with the norm

$$\|\varphi\|_k = \sum_{h=1}^{k} \sup_{x \in H} \|D^h \varphi(x)\|.$$

Here $D^h \varphi(x)$ is the derivative of φ at x of order h and $\|D^h \varphi(x)\|$ is the usual norm of the h-linear form $D^h \varphi(x)$.
Finally, if \(\theta \in (0, 1) \), we shall denote by \(C^0_b(H; E) \) (resp. \(C^{k+\theta}_b(H; E) \), \(k \in \mathbb{N} \)) the subspace of \(C_b(H; E) \) (resp. \(C^k(H; E) \)) consisting of all functions \(\varphi : H \to E \) such that

\[
[\varphi]_\theta := \sup_{x, y \in H \atop x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|x - y|^{\theta}} < +\infty,
\]

(respectively,

\[
[\varphi]_{k+\theta} := \sup_{x, y \in H \atop x \neq y} \frac{\|D^k \varphi(x) - D^k \varphi(y)\|}{|x - y|^{\theta}} < +\infty.
\]

\(C^0_b(H; E) \) is a Banach space with the norm

\[
\|\varphi\|_\theta := \|\varphi\|_0 + [\varphi]_\theta, \quad \varphi \in C^0_b(H; E).
\]

When \(E = \mathbb{R} \) we shall write \(C^k_b(H; \mathbb{R}) = C^k_b(H) \) and \(C^{k+\theta}_b(H; \mathbb{R}) = C^{k+\theta}_b(H) \).

3.1.2 Interpolation spaces. We shall use the \(K \) method for real interpolation spaces, see e.g. [12]. Let \(X \) and \(Y \) be Banach spaces such that \(Y \subset X \) with continuous embedding. For any \(t > 0 \) and any \(x \in H \) define

\[
K(t, x) = \inf \{ \|a\|_X + t \|b\|_Y : x = a + b, a \in X, b \in Y \}.
\]

Then, for arbitrary \(\theta \in (0, 1) \), set

\[
\|x\|_{(X, Y)_{\theta, \infty}} = \sup_{t > 0} t^{-\theta} K(t, x),
\]

\((X, Y)_{\theta, \infty} = \{ x \in X : \|x\|_{(X, Y)_{\theta, \infty}} < +\infty \} \).

As is easily seen \((X, Y)_{\theta, \infty} \), endowed with the norm

\[
\|x\|_{(X, Y)_{\theta, \infty}},
\]

is a Banach space.

Remark 3.4. It is not difficult to check that the following statement (i):

(i) For all \(t > 0 \) there exist \(a_t \in X \) and \(b_t \in Y \) such that \(x = a_t + b_t \) and

\[
\|a_t\|_X + t \|b_t\|_Y \leq L t^\theta,
\]

implies that

(ii) \(x \in (X, Y)_{\theta, \infty} \) and \(\|x\|_{(X, Y)_{\theta, \infty}} \leq L \).

Conversely, statement (ii) implies that \(\forall \varepsilon > 0, \forall t > 0 \) there exist \(a_t \in X \) and \(b_t \in Y \) such that \(x = a_t + b_t \) and

\[
\|a_t\|_X + t \|b_t\|_Y \leq (L + \varepsilon) t^\theta.
\]
Let us recall the basic interpolation theorem, see e.g. [12].

Theorem 3.5. Let X, X_1, Y, Y_1 be Banach spaces such that $Y \subset X, Y_1 \subset X_1$ with continuous embeddings. Let moreover T be a linear mapping $T : X \to X_1, T : Y \to Y_1$, such that for some $M, N > 0$

$$
\|Tx\|_{X_1} \leq M\|x\|_X, \quad \|Ty\|_{Y_1} \leq N\|y\|_Y.
$$

Then T maps $(X, Y)_{\theta, \infty}$ into $(X_1, Y_1)_{\theta, \infty}$, and

$$
\|Tx\|_{(X_1, Y_1)_{\theta, \infty}} \leq M^{1-\theta}N^\theta\|x\|_{(X, Y)_{\theta, \infty}}, \quad x \in (X, Y)_{\theta, \infty}.
$$

We shall need also the following result, see [1].

Theorem 3.6. Let K be a separable Hilbert space. Then we have

$$
(C_b(K), C^1_b(K))_{\theta, \infty} = C^0_b(K), \quad \forall \theta \in (0, 1).
$$

Moreover there exists a positive constant κ_θ such that

$$
\frac{1}{\kappa_\theta} \|\varphi\|_{C^0_b(K)} \leq \|\varphi\|_{(C_b(K), C^1_b(K))_{\theta, \infty}} \leq \kappa_\theta \|\varphi\|_{C^0_b(K)}.
$$

Remark 3.7. Let $\varphi \in C^0_b(K)$ and let $\theta \in (0, 1)$. By Remark 3.4 to prove that $\varphi \in C^0_b(K)$ it is enough to prove that for any $t \in (0, 1]$ there exist $a_t \in C^0_b(K)$ and $b_t \in C^1_b(K)$ such that $\varphi = a_t + b_t$ and

$$
\|a_t\|_0 \leq \kappa t^\theta, \quad \|b_t\|_1 \leq \kappa t^{\theta-1}
$$

for a suitable positive constant κ.

3.2. Estimates

We assume here that Hypothesis 1.1 holds. Under this assumption for any $t > 0$ and any $\varphi \in C^0_b(H)$ we have that $R_t\varphi \in C^\infty_b(H)$, see [7]. Moreover, the following expressions hold for the three first derivatives of $R_t\varphi$.

$$
\langle DR_t\varphi(x), \alpha \rangle = \int_H \langle \Lambda_t\alpha, Q_t^{1/2}y \rangle \varphi(e^{tA}x + y)N_Q(dy), \quad \forall x, \alpha \in H,
$$

$$
\langle D^2 R_t\varphi(x) \cdot \alpha, \beta \rangle = \int_H \langle \Lambda_t\alpha, Q_t^{-1/2}y \rangle \langle \Lambda_t\beta, Q_t^{-1/2}y \rangle \varphi(e^{tA}x + y)N_Q(dy)
\quad - \langle \Lambda_t\alpha, \Lambda_t\beta \rangle R_t\varphi(x), \quad \forall x, \alpha, \beta \in H.
$$

and, for any $x, \alpha, \beta, \gamma \in H$, ...
\(D^3 R_t \varphi(x)(x, \beta, \gamma) \)

\[
= \int_H \langle \Lambda_t x, Q_t^{-1/2} y \rangle \langle \Lambda_t \beta, Q_t^{-1/2} y \rangle \langle \Lambda_t \gamma, Q_t^{-1/2} y \rangle \varphi(e^{tA}x + y)N_Q(dy) \\
- (\langle \Lambda_t x, \Lambda_t \beta \rangle D_r R_t \varphi(x) + \langle \Lambda_t x, \Lambda_t \gamma \rangle D_r R_t \varphi(x) \\
+ \langle \Lambda_t \beta, \Lambda_t \gamma \rangle D_x R_t \varphi(x)).
\]

Here we have set

\[
\Lambda_t = Q_t^{-1/2} e^{tA} = \sqrt{2}(-A)^{1/2} e^{tA}(1 - e^{2tA})^{-1/2}.
\]

Lemma 3.8. There exist \(c_1 > 0 \) such that

\[
\|\Lambda_t\| \leq c_1 t^{-1/2}, \quad \forall t > 0,
\]

Proof. It is enough to notice that

\[
\|\Lambda_t\| = \sup_{k \in \mathbb{N}} \sqrt{2a_k e^{-\lambda_k} (1 - e^{-2\lambda_k})^{-1/2}} \\
\leq t^{-1/2} \sup_{\xi > 0} \sqrt{2\xi e^{-\xi} (1 - e^{-2\xi})^{-1/2}}, \quad t > 0.
\]

Lemma 3.9. Let \(\varphi \in C_b(H) \) and \(t > 0 \). Then \(D^2 R_t \varphi \in C_b(H; L^2(H)) \) and there exists \(d_1 > 0 \) such that

\[
|D^2 R_t \varphi(x)|_{L^2(H)} \leq d_1 t^{-1} \|\varphi\|_0, \quad \forall t > 0, \ x \in H.
\]

Proof. By (3.8) we have for all \(h, k \in \mathbb{N} \)

\[
\langle D^2 R_t \varphi(x) \cdot e_h, e_k \rangle = \int_H \langle \Lambda_t e_h, Q_t^{-1/2} y \rangle \langle \Lambda_t e_k, Q_t^{-1/2} y \rangle \varphi(e^{tA}x + y)N_Q(dy) \\
- \langle \Lambda_t e_h, \Lambda_t e_k \rangle R_t \varphi(x),
\]

which can be written as

\[
\langle D^2 R_t \varphi(x) \cdot e_h, e_k \rangle = \Lambda_{t,h} \Lambda_{t,k} \lambda_h(t)^{-1/2} \lambda_k(t)^{-1/2} \int_H y_h y_k \varphi(e^{tA}x + y)N_Q(dy) \\
- \Lambda_{t,h}^2 \delta_{h,k} \int_H \varphi(e^{tA}x + y)N_Q(dy),
\]

where \(y_k = \langle y, e_k \rangle \) for all \(k \in \mathbb{N} \) and for \(t > 0 \), \(\Lambda_{t,k}, \ k \in \mathbb{N}, \) is the sequence of eigenvalues of \(\Lambda_t \) defined by,

\[
\Lambda_t e_k = \Lambda_{t,k} e_k, \quad \forall t > 0, \ k \in \mathbb{N},
\]

\[3.10\]
whereas \(\lambda_k(t), h \in \mathbb{N} \), are the sequence of eigenvalues of \(Q_t \),

\[
Q_t e_k = \lambda_k(t)e_k, \quad h \in \mathbb{N}.
\]

In order to estimate \(\|D^2 R_t \varphi(x)\|_{L^2(H)} \) we proceed as in [7, Lemma 6.2.7], introducing a suitable orthonormal system in \(L^2(H, N_{Q_t}) \). More precisely, for any \(t > 0 \) we define

\[
\Phi_{h,k}(t) = \begin{cases} 2^{-1/2}(\lambda_h^{-1}(t) y_h^2 - 1), & \text{if } h = k, \\ \lambda_h^{-1}(t) \lambda_k^{-1/2}(t) y_h y_k, & \text{if } h \neq k. \end{cases}
\]

(3.15)

(3.14)

(It is not difficult to check that \((\Phi_{h,k}(t)) \) is indeed orthonormal in \(L^2(H, N_{Q_t}) \) for any \(t > 0 \).)

Now let \(h = k \in \mathbb{N} \) and write

\[
\langle D^2 R_t \varphi(x) \cdot e_k, e_k \rangle = \sqrt{2} \Lambda_{t,k}^2 \int_H \Phi_{k,k}(t) \varphi(e^{tA} x + y) N_{Q_t}(dy) = \sqrt{2} \Lambda_{t,k}^2 \langle \Phi_{k,k}(t), \varphi(e^{tA} x + \cdot) \rangle_{L^2(H, N_{Q_t})}.
\]

Recalling that \(|\Lambda_{t,k}^2| = |\Lambda_t|^2 \) for all \(k \in \mathbb{N} \) and all \(t > 0 \) we have

\[
|\langle D^2 R_t \varphi(x) \cdot e_k, e_k \rangle|^2 \leq 2|\Lambda_t|^4 \langle \Phi_{k,k}(t), \varphi(e^{tA} x + \cdot) \rangle_{L^2(H, N_{Q_t})}^2.
\]

Summing up on \(k \) we deduce by the Parseval inequality that

\[
\sum_{k=1}^{\infty} |\langle D^2 R_t \varphi(x) \cdot e_k, e_k \rangle|^2 \leq 2|\Lambda_t|^4 \int_H |\varphi(e^{tA} x + y)|^2 N_{Q_t}(dy) = 2|\Lambda_t|^4 |\varphi|^2_0.
\]

Now from (3.11) we have

\[
(3.16) \quad \sum_{k=1}^{\infty} |\langle D^2 R_t \varphi(x) \cdot e_k, e_k \rangle|^2 \leq 2c_1^4 t^{-2} |\varphi|^2_0.
\]

Let now \(h \neq k \in \mathbb{N} \) and write

\[
\langle D^2 R_t \varphi(x) \cdot e_h, e_k \rangle = \Lambda_{t,h} \Lambda_{t,k} \int_H \Phi_{h,k}(t) \varphi(e^{tA} x + y) N_{Q_t}(dy) = \Lambda_{t,h} \Lambda_{t,k} \langle \Phi_{h,k}(t), \varphi(e^{tA} x + \cdot) \rangle_{L^2(H, N_{Q_t})}.
\]

Proceeding as before we see that

\[
|\langle D^2 R_t \varphi(x) \cdot e_h, e_k \rangle|^2 \leq |\Lambda_t|^4 |\langle \Phi_{h,k}(t), \varphi(e^{tA} x + \cdot) \rangle_{L^2(H, N_{Q_t})}|^2.
\]

By the Parseval inequality we deduce that
Now from (3.11) we have

$$\sum_{h,k=1, h \neq k}^{\infty} |\langle D^2 R_t \varphi(x) \cdot e_h, e_k \rangle|^2 \leq |\Lambda_i|^4 \|\varphi\|_0^2.$$

By (3.16) and (3.17) it follows that

$$\text{Tr}[(D^2 R_t \varphi(x))^2] \leq 2 c_1^4 t^{-2} \|\varphi\|_0^2,$$

which proves the result with $d_1 = \sqrt{2} c_1^2$. However, it remains to show that $D^2 R_t \varphi \in C_b(H, L_2(H))$. To this purpose let us introduce a one-to-one mapping $\psi : \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$. For any $x, y \in H$ and any $N \in \mathbb{N}$ we have

$$\|D^2 R_t \varphi(x) - D^2 R_t \varphi(y)\|_{L_2(H)}^2 = \sum_{(h,k): \psi(h,k) = 1}^N (D_h D_k R_t \varphi(x) - D_h D_k R_t \varphi(y))^2 + \sum_{(h,k): \psi(h,k) = N+1}^{\infty} (D_h D_k R_t \varphi(x) - D_h D_k R_t \varphi(y))^2 := I_1 + I_2.$$

Now I_2 can be made arbitrarily small by (3.18) choosing N sufficiently large, then I_1 goes to zero when y is close to x because all partial derivatives of $R_t \varphi$ are Lipschitz continuous. The proof is complete. \hfill \Box

Now we prove

Lemma 3.10. Let $\varphi \in C^1_b(H)$ and $t > 0$. Then $D^2 R_t \varphi \in C_b(H; L_2(H))$ and there exists $d_2 > 0$ such that

$$\|D^2 R_t \varphi(x)\|_{L_2(H)} \leq d_2 t^{-1/2} \|\varphi\|_1, \quad \forall t > 0, x \in H.$$

Proof. Let $\varphi \in C^1_b(H)$, $t > 0$. Then, differentiating (1.3) with respect to x yields

$$\langle DR_t \varphi(x), \alpha \rangle = \int_H \langle D\varphi(e^{tA}x + y), e^{tA} \alpha \rangle N_Q(dy), \quad \forall t > 0, x, \alpha \in H.$$

Now, using (3.7) with $\langle D\varphi(e^{tA}x + \cdot), e^{tA} \alpha \rangle$ replacing φ, yields

$$\langle D^2 R_t \varphi(x) \alpha, \beta \rangle = \int_H \langle \Lambda_i \beta, Q_t^{-1/2} y \rangle \langle D\varphi(e^{tA}x + y), e^{tA} \alpha \rangle N_Q(dy), \quad \forall t > 0, x, \alpha, \beta \in H.$$
Consequently for any $h, k \in \mathbb{N}$

$$
\langle D^2 R_t \varphi(x) e_h, e_k \rangle = \Lambda_{t,k} e^{-\alpha t h} \int_H \hat{\lambda}_k(t)^{-1/2} y_k D_h \varphi(e^{tA} x + y) N_{Q_h}(dy),
$$

$$
\forall t > 0, x \in H,
$$

where $\Lambda_{t,k}$ were defined in (3.13). Setting

$$
\Psi_k(t) = \hat{\lambda}_k(t)^{-1/2} y_k, \quad t > 0, k \in \mathbb{N},
$$

we can write the above identity as

$$
\langle D^2 R_t \varphi(x) e_h, e_k \rangle = \Lambda_{t,k} e^{-\alpha t h} \langle \Psi_k(t), D_h \varphi(e^{tA} x + \cdot) \rangle_{L^2(H,N_{Q_h})}.
$$

It follows that

$$
|\langle D^2 R_t \varphi(x) e_h, e_k \rangle|^2 \leq \|\Lambda_t\|^2 |\langle \Psi_h(t), D_h \varphi(e^{tA} x + \cdot) \rangle|_{L^2(H,N_{Q_h})}^2.
$$

Now, summing up on k and taking into account that the system $(\Psi_h(t))$ is orthonormal on $L^2(H,N_{Q_h})$, we see by the Parseval inequality and (3.11) that

$$
\sum_{k=1}^{\infty} |\langle D^2 R_t \varphi(x) e_h, e_k \rangle|^2 \leq c_1^2 t^{-1} \int_H |D_h \varphi(e^{tA} x + y)|^2 N_{Q_h}(dy) \leq c_1^2 t^{-1} \|\varphi\|_1.
$$

Equation (3.19) follows summing up on h and taking $d_2 = c_1$.

Corollary 3.11. Let $\varphi \in C_b^0(H), \; \theta \in (0,1)$ and $t > 0$. Then $D^2 R_t \varphi \in C_b(H;L^2(H))$ and we have

$$
\|D^2 R_t \varphi\|_{C_b(H;L^2(H))} \leq c_\theta t^{\theta/2-1} \|\varphi\|_{\theta}, \quad t > 0,
$$

where $c_\theta = d_1^{1-\theta} d_2^\theta \kappa_\theta$ and κ_θ is defined in (3.5).

Proof. Let $t > 0$ be fixed and denote by γ the mapping

$$
\gamma : C_b(H) \rightarrow C_b(H;L^2(H)), \quad \varphi \mapsto D^2 R_t \varphi.
$$

From Lemmas 3.9 and 3.10 it follows that

(i) γ maps $C_b(H)$ into $C_b(H;L^2(H))$ with norm less than $d_1 t^{-1}$,

(ii) γ maps $C_b^1(H)$ into $C_b(H;L^2(H))$ with norm less than $d_2 t^{-1/2}$.

Consequently, by Theorem 3.6, we have that γ maps $(C_b(H),C_b^1(H))_{\theta,\infty}$ into $C_b(H;L^2(H))$ with norm less than $(d_1 t^{-1})^{1-\theta} (d_2 t^{-1/2})^\theta$. Therefore

$$
\|\gamma(\varphi)\|_{C_b(H;L^2(H))} \leq (d_1 t^{-1})^{1-\theta} (d_2 t^{-1/2})^\theta \|\varphi\|_{(C_b(H),C_b^1(H))_{\theta,\infty}}.
$$
On the other hand by Theorem 3.5 we have
\[(C_b(H), C^1_b(H))_{	heta, \infty} = C^0_b(H),\]
and so the conclusion follows from (3.5).

\[\square\]

Lemma 3.12. Let \(\varphi \in C_b(H)\) and \(t > 0\). Then \(D^2 R_t \varphi \in C^1_b(H; L_2(H))\) and there exists \(d_3 > 0\) such that
\[
\|D^2 R_t \varphi(x)\|_{L_2(H)} \leq d_3 t^{-3/2}\|\varphi\|_{0}, \quad t > 0.
\]

Proof. Let \(\varphi \in C_b(H)\). Then we have
\[
\|D^2 R_t \varphi(x)\|_{L_2(H)} = \sum_{h, k, l=1}^{\infty} |D^3 R_t \varphi(x)(e_h, e_k, e_l)|^2.
\]

On the other hand, by (3.9) we have
\[
D^3 R_t \varphi(x)(e_h, e_k, e_l)
= \Lambda_{t, h} \Lambda_{t, k} \Lambda_{t, l} \int_H \lambda_h(t)^{-1/2} y_h \lambda_k(t)^{-1/2} y_k \lambda_l(t)^{-1/2} y_l \varphi(e^{tA}x + y) N_{Q_l}(dy)
- \Lambda_{t, h}^2 \Lambda_{t, l} \delta_{h, k} \int_H \lambda_l(t)^{-1/2} y_l \varphi(e^{tA}x + y) N_{Q_l}(dy)
- \Lambda_{t, k}^2 \Lambda_{t, l} \delta_{h, l} \int_H \lambda_k(t)^{-1/2} y_k \varphi(e^{tA}x + y) N_{Q_l}(dy)
- \Lambda_{t, k}^2 \Lambda_{t, l} \delta_{l, k} \int_H \lambda_h(t)^{-1/2} y_h \varphi(e^{tA}x + y) N_{Q_l}(dy).
\]

Now we define an orthonormal system on \(L^2(H, N_{Q_l})\) setting
\[
\zeta_{h, k, l} = \begin{cases}
(\lambda_h(t) \lambda_k(t) \lambda_l(t))^{-1/2} y_h y_k y_l, & \text{if } h \neq k \neq l, \\
3^{-1/2}(\lambda_h^2(t) \lambda_l(t))^{-1/2} y_h^2 y_l - \lambda_l(t)^{-1/2} y_l, & \text{if } h = k \neq l, \\
3^{-1/2}(\lambda_l^2(t) \lambda_k(t))^{-1/2} y_k^2 y_l - \lambda_k(t)^{-1/2} y_l, & \text{if } h \neq k = l, \\
3^{-1/2}(\lambda_k^2(t) \lambda_h(t))^{-1/2} y_h y_k^2 - \lambda_h(t)^{-1/2} y_l, & \text{if } k = l \neq h.
\end{cases}
\]

Assume first that \(h \neq k \neq l\) and write (3.23) as
\[
D^3 R_t \varphi(x)(e_h, e_k, e_l) = \Lambda_{t, h} \Lambda_{t, k} \Lambda_{t, l} \langle \zeta_{h, k, l}, \varphi(e^{tA}x + \cdot) \rangle_{L_2(H, N_{Q_l})},
\]
which implies
\[
|D^3 R_t \varphi(x)(e_h, e_k, e_l)|^2 \leq c_1^6 t^{-3} |\langle \zeta_{h, k, l}, \varphi(e^{tA}x + \cdot) \rangle_{L_2(H, N_{Q_l})}|^2.
\]
So, by the Parseval inequality

\[(3.24) \quad \sum_{h,k,l,h \neq k \neq l} |D^3 R_{i} \phi(x)(e_h, e_k, e_l)|^2 \leq c_1^6 t^{-3} \| \phi \|_0^2.\]

Let now \(h = k \neq l \) and write (3.23) as

\[D^3 R_{i} \phi(x)(e_h, e_k, e_l) = 3^{1/2} \Lambda_{i,h}^2 \Lambda_{i,l} \langle \zeta_h, k, l, \varphi(e^{tA}x + \cdot) \rangle_{L^2(H, N_{0i})},\]

which implies

\[|D^3 R_{i} \phi(x)(e_h, e_k, e_l)|^2 \leq 3c_1^6 t^{-3} |\langle \zeta_h, k, l, \varphi(e^{tA}x + \cdot) \rangle_{L^2(H, N_{0i})}|^2.\]

So, by the Parseval inequality

\[(3.25) \quad \sum_{h,k,l,h \neq k \neq l} |D^3 R_{i} \phi(x)(e_h, e_k, e_l)|^2 \leq 3c_1^6 t^{-3} \| \phi \|_0^2.\]

In a similar way we see that if \(h = l \neq k \) we have

\[(3.26) \quad \sum_{h,k,l,h \neq k \neq l} |D^3 R_{i} \phi(x)(e_h, e_k, e_l)|^2 \leq 3c_1^6 t^{-3} \| \phi \|_0^2.\]

and if \(k = l \neq h \) we have

\[(3.27) \quad \sum_{h,k,l,h \neq k} |D^3 R_{i} \phi(x)(e_h, e_k, e_l)|^2 \leq 3c_1^6 t^{-3} \| \phi \|_0^2.\]

Taking into account (3.25), (3.26) and (3.27) we end up with

\[\sum_{h,k,l=1}^{\infty} |D^3 R_{i} \phi(x)(e_h, e_k, e_l)|^2 \leq 3c_1^3 t^{-3} \| \phi \|_0^2\]

and so, the conclusion follows since the fact that \(D^2 R_{i} \phi \in C_b(H, L_2(H)) \) can be proved as before.

\[\square\]

Lemma 3.13. Let \(\phi \in C_b^1(H) \) and \(t > 0 \). Then \(D^2 R_{i} \phi \in C_b^1(H; L_2(H)) \) and there exists \(d_4 > 0 \) such that

\[(3.28) \quad \| DD^2 R_{i} \phi(x) \|_{L_2(H)} \leq d_4 t^{-1} \| \phi \|_0, \quad t > 0.\]

Proof. Let \(\phi \in C_b^1(H) \) and \(h, k \in \mathbb{N} \). Then, differentiating (1.3) with respect to \(x \) in the direction \(e_h \) yields

\[\langle DR_{i} \phi(x), e_h \rangle = e^{-t x_h} \int_H D_h \phi(e^{tA}x + y)N_{0i}(dy), \quad \forall t > 0, x.\]
Now, using (3.8) with $D_h \varphi(e^{tA}x + \cdot)$ replacing φ, yields

$$D^3 R_i \varphi(x)(e_h, e_k, e_l) = \int_H \langle \Lambda_i e_k, \mathcal{Q}_l^{-1/2} y \rangle \langle \Lambda_i e_l, \mathcal{Q}_l^{-1/2} y \rangle D_h \varphi(e^{tA}x + \cdot) N_Q(dy)$$

$$- \langle \Lambda_i e_k, \Lambda_i e_l \rangle R_i D_h \varphi(x),$$

which can be written as

$$D^3 R_i \varphi(x)(e_h, e_k, e_l) = e^{-ta_k} \Lambda_{t,k} \Lambda_{t,l} \int_H \lambda_k(t)^{-1/2} \lambda_l(t)^{-1/2} y_k y_l D_h \varphi(e^{tA}x + \cdot) N_Q(dy)$$

$$- e^{-ta_k} \Lambda_{t,k}^2 \delta_{k,l} \int_H D_h \varphi(e^{tA}x + \cdot) N_Q(dy).$$

Let now $k = l$. Then recalling (3.15) we have

$$D^3 R_i \varphi(x)(e_h, e_k, e_l) = 2^{1/2} e^{-ta_h} \Lambda_{t,k}^2 \langle \Phi_{k,k}, D_h \varphi(e^{tA}x + \cdot) \rangle_{L^2(H,N_Q)},$$

from which

$$|D^3 R_i \varphi(x)(h, k, k)|^2 \leq 2c_1^4 t^2 |\langle \Phi_{k,k}, D_h \varphi(e^{tA}x + \cdot) \rangle_{L^2(H,N_Q)}|^2$$

and, summing up on k and h

$$\sum_{h,k=1}^\infty |D^3 R_i \varphi(x)(e_h, e_k, e_l)|^2 \leq 2c_1^4 t^2 \|\varphi\|_0^2. \quad (3.29)$$

Finally, if $k \neq l$, then using again by (3.15) we have

$$D^3 R_i \varphi(x)(e_h, e_k, e_l) = e^{-ta_h} \Lambda_{t,k}^2 \langle \Phi_{k,l}, D_h \varphi(e^{tA}x + \cdot) \rangle_{L^2(H,N_Q)},$$

from which

$$|D^3 R_i \varphi(x)(e_h, e_k, e_l)|^2 \leq c_1^2 t^2 |\langle \Phi_{k,k}, D_h \varphi(e^{tA}x + \cdot) \rangle_{L^2(H,N_Q)}|^2$$

and, summing up on k, l and h

$$\sum_{h,k,l=1,k \neq l}^\infty |D^3 R_i \varphi(x)(e_h, e_k, e_l)|^2 \leq c_1^2 t^2 \|\varphi\|_0^2. \quad (3.30)$$

Now the conclusion follows from (3.29) and (3.30).
Finally we prove.

Corollary 3.14. Let $\varphi \in C^0_b(H)$, $\theta \in (0,1)$ and $t > 0$. Then $D^2 R_t \varphi \in C^0_b(H; L^2(H))$ and we have

$$\|D^2 R_t \varphi(x)\|_{C^1_b(H; L^2(H))} \leq c_{1,0} t^{(0-3)/2} \|\varphi\|_{\theta}, \quad t > 0,$$

where $c_{0,1} = d_3 t^{-3/2} d_4^3 \kappa_0$.

Proof. Let $t > 0$ be fixed and denote by δ the mapping

$$\delta : C_b(H) \to C_b(H, L^2(H)), \quad \varphi \mapsto D^2 R_t \varphi.$$

From Lemmas 3.12 and 3.13 it follows that

(i) δ maps $C_b(H)$ into $C^1_b(H; L^2(H))$ with norm less than $d_3 t^{-3/2}$,

(ii) δ maps $C^1_b(H)$ into $C^1_b(H; L^2(H))$ with norm less than $d_4 t^{-1}$.

Consequently, by Theorem 3.5, we have that δ maps $(C_b(H), C^1_b(H))_{\theta, \infty}$ into $C^1_b(H; L^2(H))$ with norm $\leq (d_3 t^{-3/2})^{1-\theta} (d_4 t^{-1})^\theta$. Therefore

$$\|\delta(\varphi)\|_{C^1_b(H; L^2(H))} \leq (c_4 t^{-3/2})^{1-\theta} (c_5 t^{-1})^\theta \|\varphi\|_{(C_b(H), C^1_b(H))_{\theta, \infty}}.$$

Now the conclusion follows from Theorem 3.5.

\[\square\]

3.3. Proof of the Main Result

We are now ready to prove the main result of the paper. The proof is similar to the finite-dimensional case, see [9].

Theorem 3.15. Assume that Hypothesis 1.1 holds. Let $\theta \in (0,1)$, $f \in C^0_b(H)$, $\lambda > 0$ and let $\varphi = (\lambda - L)^{-1} f$ be the solution to (1.8). Then we have $D^2 \varphi \in C^0_b(H; L^2(H))$ and there exists $M_1 > 0$ (independent on λ and on f) such that

$$\|D^2 \varphi\|_{C^0_b(H; L^2(H))} \leq M_1 \|f\|_{C^0_b(H)}.$$

Proof. Let $f \in C^0_b(H)$, $\lambda > 0$ and $\varphi = (\lambda - L)^{-1} f$. Then for any $s \geq 0$,

$$D^2 R_s \varphi(x) = \int_0^{+\infty} e^{-\lambda s} D^2 R_s f(x) ds, \quad x \in H.$$

Proceeding as in [2] it follows that the integral is well defined for each $x \in H$. Following Remark 3.7 we shall look, given $t > 0$, for $a_t \in C_b(H, L^2(H))$ and $b_t \in C^1_b(H; L^2(H))$ such that (3.6) holds. We shall set

$$a_t(x) = \int_0^{t^2} e^{-\lambda s} D^2 R_s f(x) ds, \quad x \in H,$$
and
\[b_t(x) = \int_{t^2}^{+\infty} e^{-\lambda s} D^2 R_s f(x) \, ds, \quad x \in H. \]

By arguing as in Lemma 3.9 we see that \(a_t \) and \(b_t \) are uniformly continuous. Moreover, it is easy to check that
\[
\|a_t(x)\|_{L^2(H)} \leq \int_0^{t^2} e^{-\lambda s} \|D^2 R_s f(x)\|_{L^2(H)} \, ds, \quad x \in H,
\]
so, by (3.20) we deduce
\[
\|a_t(x)\|_{L^2(H)} \leq \int_0^{t^2} e^{-\lambda s} \|D^2 R_s f\|_{C_b(H; L^2(H))} \, ds, \quad x \in H.
\]

Finally, taking the supremum in \(x \) yields
\[
(a_t)_{C_b(H; L^2(H))} \leq c_0 \|f\|_0 \int_0^{t^2} s^{\theta/2-1} \, ds = \frac{2}{\theta} c_0 \|f\|_0 t^{\theta}. \tag{3.33}
\]

In the same way since
\[Db_t(x) = \int_{t^2}^{+\infty} e^{-\lambda s} DD^2 R_s f(x) \, ds, \quad x \in H, \]
we deduce by (3.31) that
\[
\|Db_t\|_{C_b(H; L^2(H))} \leq c_{1, \theta} \|f\|_0 \int_{t^2}^{+\infty} s^{(\theta-3)/2} \, ds = \frac{2c_{1, \theta}}{1 - \theta} \|f\|_0 t^{\theta-1}. \tag{3.34}
\]

Therefore \(D^2 R_t \varphi \) belongs to \((C_b(L^2(H)), C^1_b(L^2(H))))_{0, \infty} \) and so to \(C^0_b(L^2(H)) \) by Theorem 3.6.

ACKNOWLEDGEMENTS. We thank Alessandra Lunardi for several useful comments and suggestions.

REFERENCES

Received 26 May 2009,
and in revised form 14 September 2009.

Scuola Normale Superiore
56126, Pisa, Italy
daprato@sns.it