Weak Type (1,1) Estimates of the Maximal Function for the Laguerre Semigroup in Finite Dimensions

Ulla Dinger

Abstract

We prove that, in arbitrary finite dimensions, the maximal operator for the Laguerre semigroup is of weak type (1,1). This extends Muckenhoupt's one-dimensional result.

Introduction

Let \((F, \nu)\) be some positive measure space. A semigroup \(\{T^t\}_{0 \leq t < \infty}\) is understood to be a family of bounded linear operators, defined simultaneously on \(L^p(\nu), 1 \leq p \leq \infty\), satisfying measurability in \(t\) and the semigroup axioms \(T^{t+s} = T^t T^s\) and \(T^0 = I\) is the identity. The semigroup \(\{T^t\}\) is called a «symmetric diffusion semigroup» if it has the following properties

- (I) \(\| T^t f \|_p \leq \| f \|_p\), \(1 \leq p \leq \infty\) (Contraction)
- (II) \(T^t\) is self-adjoint on \(L^2(\nu)\) (Symmetry)
- (III) \(T^t f \geq 0\) if \(f \geq 0\) (Positivity)
- (IV) \(T^t 1 = 1\) (Conservation)
- (V) \(\lim_{t \to 0^+} T^t f = f\) in \(L^2(\nu)\) for all \(f \in L^2(\nu)\) (Strong continuity on \(L^2\)).
The maximal operator M associated with the semigroup \{T^t\} is defined by

$$Mf(x) = \sup_{t > 0} |T^t f(x)|.$$

Under the assumptions (I), (II), and (V), the maximal theorem due to E. M. Stein ([St j]) states that

(a) M is bounded on $L^p(\nu)$, i.e. $\|Mf\|_p \leq A_p \|f\|_p$, $1 < p \leq \infty$.

(b) If $f \in L^p(\nu)$, $1 < p < \infty$, then $\lim_{t \to 0^+} T^t f(x) = f(x)$ a.e.

An operator is said to be of weak type $(1,1)$ if it maps $L^1(\nu)$ boundedly into $L^{1,\infty}(\nu)$, where $L^{1,\infty}(\nu)$ is defined by means of its quasinorm

$$\|f\|_{1,\infty} = \sup_{\beta > 0} \beta \nu\{x: |f(x)| > \beta\}.$$

It seems to be unknown whether weak type $(1,1)$ holds for M, as a substitute result in the maximal theorem when $p = 1$. However, the Hopf-Dunford-Schwartz ergodic theorem ([DS] p. 690) gives that the «maximal average operator» \bar{M}, defined by

$$\bar{M}f(x) = \sup_{s > 0} \left| \frac{1}{s} \int_0^s T^t f(x) \, dt \right|,$$

is of weak type $(1,1)$ if the semigroup \{T^t\} satisfies (I).

In several concrete settings, the maximal operator M of a symmetric diffusion semigroup has been investigated and found to be of weak type $(1,1)$. This is done by well-known methods when the semigroup is defined as convolution with an «approximate identity» and the underlying measure is translation invariant. For instance the Poisson and Gaussian kernels in (\mathbb{R}^n, dx) define semigroups of that kind. On the other hand, semigroups defined in terms of «classical orthogonal polynomials» have to be handled differently. For the ultraspherical harmonics, the Hermite polynomials, and the Laguerre polynomials — each with the appropriate measure space in one dimension — it has been proved that the corresponding maximal operators are of weak type $(1,1)$. For the ultraspherical harmonics this is a joint result by B. Muckenhoupt and E. M. Stein ([MS]), whereas it is due to Muckenhoupt ([Mi]) for the Hermite and Laguerre semigroups. In [Sj1], P. Sjögren proves the same result for the Hermite semigroup in higher (finite) dimensions, and the Laguerre semigroup in higher dimensions is treated in the present paper.

The setting is as follows (cf. [Mi]). Let $\mathbb{R}_+^d = \{x \in \mathbb{R}^d: x_i > 0 \text{ for every } i\}$ and denote by γ_α the measure on \mathbb{R}_+^d given by the density

$$\gamma_\alpha(x) = \prod_{i=1}^d x_i^\alpha e^{-x_i}.$$
For \(\alpha > -1 \), the \(d \)-dimensional Laguerre polynomials

\[
L_m^\alpha(x) = \prod_{i=1}^{d} L_m^{\alpha}(x_i), \quad m = (m_1, \ldots, m_d) \in \mathbb{N}^d,
\]

form a complete orthogonal system in \(L^2(\gamma_\alpha) \). The definition of the \(m \)-th Laguerre polynomial, \(L_m^\alpha \), used here will be the one used in [Sz]. For a function \(f \in L^1(\gamma_\alpha) \), its «Laguerre-Poisson integral» \(M_\alpha^r f \) is defined for \(0 < r < 1 \) by

\[
M_\alpha^r f(x) = \int K_\alpha^r(x,y) f(y) \, dy_{\alpha}(y),
\]

where

\[
K_\alpha^r(x,y) = \prod_{i=1}^{d} K_\alpha^r(x_i,y_i), \quad x, y \in \mathbb{R}^d,
\]

\[
K_\alpha^r(x_i,y_i) = \sum_{n=0}^{\infty} \frac{r^n L_n^\alpha(x_i) L_n^\alpha(y_i)}{\Gamma(\alpha + 1)} \binom{n + \alpha}{n}. \quad (\forall x, y \in \mathbb{R}^d)
\]

The kernel may also be expressed in terms of the standard Bessel function \(J_\alpha \),

\[
K_\alpha^r(s,t) = \frac{(-rst)^{-\alpha/2}}{1-r} \exp \left(\frac{-r(s+t)}{1-r} \right) J_\alpha \left(\frac{2 \sqrt{-rst}}{1-r} \right),
\]

which can be estimated to give

\[
(0.1) K_\alpha^r(s,t) \sim \begin{cases}
(1-r)^{-\alpha-1} \exp \left(\frac{-r(s+t)}{1-r} \right), & 0 < 4rst < (1-r)^2 \\
(4rst)^{-\alpha/2-1/4} \left(\frac{1-r}{1-r} \right)^{1/2} \exp \left(\frac{-r(s+t) + 2 \sqrt{rst}}{1-r} \right), & 4rst \geq (1-r)^2.
\end{cases}
\]

Here, and in the sequel, \(f \sim g \) means \(c \leq f/g \leq C \) for some positive constants \(c \) and \(C \). In (0.1) the constants depend only on \(\alpha \). Thus, for \(r \) and \(x \) fixed, the function \(K_\alpha^r(x, \bullet) \) is bounded. Therefore, the Laguerre-Poisson integral \(M_\alpha^r f \) is well defined for each \(f \in L^1(\gamma_\alpha) \), \(0 < r < 1 \). In particular, if a function in \(L^2(\gamma_\alpha) \) has the Laguerre expansion \(\Sigma_m a_m L_m^\alpha \), then its Laguerre-Poisson integral is the function of \(x \) and \(r \) which for fixed \(r(0 < r < 1) \) has the Laguerre expansion \(\Sigma_m a_m L_m^\alpha \), \(|m| = \Sigma m_i \) (see [M]).

The Laguerre semigroup, with parameter \(\alpha > -1 \), is defined by

\[
T_t = M_{e^{-rt}}^\alpha, \quad 0 < t < \infty, \quad \text{and} \quad T_0 = I.
\]

This defines a symmetric diffusion semigroup, whose infinitesimal generator is

\[
Lu = \Sigma(x_i \partial^2 u/\partial x_i^2 + (1 + \alpha - x_i) \partial u/\partial x_i),
\]

i.e. \(u(x,t) = T_t f(x) \) satisfies \(\partial u/\partial t = Lu \) and \(u(x,0) = f(x) \).
By virtue of Stein’s maximal theorem, the operator
\[M^\alpha f(x) = \sup_{0 < r < 1} |M^\alpha_r f(x)| \]
is bounded on \(L^p(\gamma_a) \), \(1 < p \leq \infty \). The following theorem is the main result in this paper.

Theorem 1. For each finite dimension \(d \) and \(\alpha > -1 \) there is a constant \(c = c(d, \alpha) \) such that
\[|M^\alpha f|_{1, \infty} \leq c \| f \|_1 \text{ for each } f \in L^1(\gamma_a). \]

Corollary. \(\lim_{r \to 1} M^\alpha_r f(x) = f(x) \) a.e. if \(f \in L^1(\gamma_a) \).

The almost everywhere convergence is as usual a consequence of the estimate for the maximal operator. Everywhere pointwise convergence is easily verified for polynomials. Since they form a dense subset of \(L^1(\gamma_a) \), the proof of the Corollary is then quite standard and we omit it. The use of polynomials was suggested to the author by Fulvio Ricci.

There is a natural way to define \(\gamma_a \) and \(K^\alpha_t \), and hence \(M^\alpha \), for multi-indices \(\alpha = (\alpha_1, \ldots, \alpha_d), \alpha_i > -1 \). For such \(\alpha \), Theorem 1 still holds and the proof is only slightly modified.

It is noticeable that in the proof of Theorem 1 the constant \(c \) depends heavily on the dimension. Both for the Hermite and the Laguerre semigroup, it is an open problem to obtain constants independent of the dimension.

Some conventions: \(c \) and \(C \) denote various positive constants, which usually depend on the dimension and \(\alpha \). In case \(c \) depends on a parameter \(k \) we indicate this by writing \(c_k \). We abbreviate \(f \leq c \) by \(f \leq c \). Usually we will not indicate the underlying space for measures, e.g. \(d\gamma_a(x) \) means the measure \((\Pi x_i^a e^{-x}) dx \) on \(\{ x_i > 0, \text{ all } i \} \) where the dimension will be clear from \(x \).

1. Sketch of the proof

The flavour of the proof of Theorem 1 is not «semigroup theoretical» — the semigroup property is not used at all. On the other hand, the fact that \(M^\alpha \) is given by a symmetric positive kernel and leave constant functions invariant (implying (I)-(IV)) is essential.

The proof is split into several lemmas. First it is proved that \(M^\alpha \) is of weak type \((1, 1)\) when \(\alpha \) is an integer or half-integer. If \(2\alpha = n - 2 \), for some \(n = 1, 2, \ldots, \) this is done by a transformation to the Hermite case in \(\mathbb{R}^{dn} \) and an application of Sjögren’s result. Next, for general \(\alpha \) the supremum is restrict-
ed to the intervals $0 < r < 1/2$ and $1/2 < r < 1$, respectively. The main part
is the proof that the operator

$$M_\alpha^\ast f(x) = \sup_{1/2 < r < 1} |M_\alpha^\ast f(x)|$$

is of weak type $(1,1)$. For this, the course of action is as follows.

For any pair of disjoint subsets I' and I'' of $I = \{1, \ldots, d\}$ let

$$A(I', I'') = \{(x, y): y_i \leq x_i/D \text{ for } i \in I', x_i/D < y_i < Dx_i \text{ for } i \in I'',$$

$$y_i \geq Dx_i \text{ for } i \not\in I' \cup I''\},$$

where D is a large constant. The operator M_α^\ast can be written as a finite sum
of operators, each given by the kernel $K_\alpha^\ast(x, y)$ restricted to one of the (pairwise
disjoint) regions $A(I', I'')$. Of course, it then suffices to prove weak type $(1,1)$
for each of the corresponding maximal functions.

When $I' = I'' = \emptyset$ the corresponding maximal operator turns out to be
bounded on $L^1(\gamma_\alpha)$. This implies (see Proposition 1), because of the product
structure and the fact that $K_\alpha^\ast(x, y) \geq 0$, that it remains to prove weak type
$(1,1)$ for the cases $I' \cup I'' = I$. If $I' = \emptyset$, i.e. $x_i/D < y_i < Dx_i$ for all i, this is
done by a comparison (locally) with the case $\alpha = -1/2$, which is already clear.
The proof for the remaining case $I' \neq \emptyset$, $I' \cup I'' = I$ is rather long
and technical. It is divided into five steps, of which we give a brief summary.

In Step 1 the kernel is estimated. Depending on whether i belongs to I' or
not, basic estimates of $K_\alpha^\ast(x_i, y_i)$ are obtained. These imply an appropriate
division of the space into regions where additional (local) estimates are made.
In this way a sum emerges, to which the summation theorem in $L^{1, \infty}$ due to
E. M. Stein and N. Weiss ([SW]) is applied. The range of $1 - r$ is split into the
intervals $\{4^{-n-1}, 4^{-n}\}$, and in Step 2 the task of estimating the terms in
the sum above is reduced to prove that, for $0 < a < 1$,

$$\sum_{N=0}^\infty a^N \gamma_0 \{x \in Q: U_{N, k} g(x) > a^N \beta\} \leq \frac{A_k}{\beta} \|g\|_{L^1(\phi)}, \quad \beta > 0. \quad (1.1)$$

Here, the $U_{N, k}$'s are operators obtained in the series of estimates, Q is a
«dyadic» rectangle, and g is any non-negative function supported in Q and its
surrounding rectangles. For x in Q, the size of x_j is about 4^N. Assuming
without loss of generality that N_1 is the largest of the N_i's, we split the sum
in (1.1) into two parts, $N \leq N_1$ and $N > N_1$. In Step 3, the sum over $N > N_1$
estimated by an application of Proposition 2. This proposition gives an
inequality similar to that in (1.1), where the operators are averages over
subsets belonging to hierarchical partitions. The sum over $N \leq N_1$ is estimated
term by term in Step 4, where a covering argument is crucial. The covering
argument is justified in Step 5.
2. Transformation to the Hermite Case

For certain α it is possible to prove the theorem by a transformation to the corresponding operator given by Hermite expansions and then apply the result in [Sj1].

Lemma 1. $M^{\alpha}: L^1(\gamma_\alpha) \to L^{1,\infty}(\gamma_\alpha)$ is bounded for $2\alpha = -1, 0, 1, \ldots$.

For a given finite dimension n we denote by μ the measure on \mathbb{R}^n given by the density $e^{-|y|^2}$. Let H_k denote the k-th Hermite polynomial (see [Sz]) and define, for $0 < r < 1$, the kernels

$$P_r(x, y) = \prod_{i=1}^n P_r(x_i, y_i), \quad x, y \in \mathbb{R}^n,$$

where

$$P_r(x_i, y_i) = \sum_{k=0}^\infty r^k H_k(x_i) H_k(y_i) / \sqrt{\pi} 2^k k!.$$

Define the operators $N_r, 0 < r < 1$, and the corresponding maximal operator N by

$$N_r f(x) = \int P_r(x, y) f(y) d\mu(y),$$
$$N f(x) = \sup_{0 < r < 1} |N_r f(x)|.$$

The theorem proved in [Sj1] can then be stated as follows.

Theorem A ([Sj1]) $N: L^1(\mu) \to L^{1,\infty}(\mu)$ is bounded.

Now, if $2\alpha = n - 2$ ($n = 1, 2, \ldots$) let μ live on $\mathbb{R}^n \times \cdots \times \mathbb{R}^n = \mathbb{R}^{dn}$ and define $G: \mathbb{R}^{dn} \to \mathbb{R}_+$ by

$$G(x^1, \ldots, x^d) = (|x^1|^2, \ldots, |x^d|^2), \quad x^i \in \mathbb{R}^n.$$

Then

$$\int_{\mathbb{R}^{dn}} f \circ G(x) d\mu(x) = c \int_{\mathbb{R}^d} f(y) d\gamma_\alpha(y)$$

for each $f \in L^1(\gamma_\alpha)$.

Moreover, expanding the function $L^2_{\alpha}(|x|^2), x \in \mathbb{R}^n$, with respect to the orthogonal basis $\{H_{k_1}(x_1) \cdots H_{k_n}(x_n)\}_{k \in \mathbb{N}}$ in $L^2(\mu, \mathbb{R}^{dn})$, we get the formula

$$L^2_{\alpha}(|x|^2) = \sum_{k_1 + \cdots + k_n = k} a_{k_1} \cdots H_{2k_1}(x_1) \cdots H_{2k_n}(x_n), \quad x \in \mathbb{R}^n$$

for $2\alpha = n - 2, n = 1, 2, \ldots$.
Proof of Lemma 1. Let \(2\alpha = n-2\) for some \(n = 1, 2, \ldots\). Assume \(f \in L^2(\gamma_a)\) and let

\[
f(x) = \sum_{k_i = b, 1, \ldots} b_{k_1, \ldots, k_d} L_{k_1}^a(x_1) \cdots L_{k_d}^a(x_d) = \sum_k b_k L_k^a(x)
\]

be the Laguerre expansion of \(f\). From (2.2) we have, for \(y \in \mathbb{R}^d\),

\[
f \circ G(y) = \sum_k b_k L_{k_1}^a(|y_1|^2) \cdots L_{k_d}^a(|y_d|^2)
\]

\[
eq \sum_k b_k \prod_{i=1}^d \left(\sum_{l_{t_1} + \cdots + l_{t_n} = k_i} a_{t_1, \ldots, t_n} H_{2l_1}(y_1) \cdots H_{2l_n}(y_n) \right).
\]

The product is a sum of Hermite polynomials in \(\mathbb{R}^d\) of degree 2\(|k|\). Since (see [M])

\[
N_a \left(\sum_k a_k H_k \right) = \sum_k r^{2k} a_k H_k
\]

this gives

\[
N_a(f \circ G)(y) = \sum_k r^{2k} b_k L_k^a(|y_1|^2, \ldots, |y_d|^2)
\]

\[
= M^{\gamma_a}_a f(|y_1|^2, \ldots, |y_d|^2)
\]

\[
= (M^{\gamma_a}_a f) \circ G(y).
\]

Since both \(K_a^\gamma(x, \cdot)\) and \(P_r(x, \cdot)\) are bounded functions (see [M]), we get

\[
(2.3) \quad |N_a(f \circ G)| = |(M_a^{\gamma_a} f) \circ G|
\]

for all \(f \in L^1(\gamma_a)\), by taking the limit for \(f_j \in L^2(\gamma_a)\) such that \(f_j \to f\) in \(L^1(\gamma_a)\).

Taking the supremum over \(0 < r < 1\) on both sides in (2.3) gives

\[
(2.4) \quad N(f \circ G) = (M^{\gamma_a} f) \circ G, \quad f \in L^1(\gamma_a).
\]

Finally, from (2.1), (2.4), and Theorem A we get

\[
c_{\gamma_a} \{x \in \mathbb{R}^d : M^{\gamma_a} f(x) > \beta\} = \mu \{y \in \mathbb{R}^d : (M^{\gamma_a} f) \circ G(y) > \beta\}
\]

\[
= \mu \{y \in \mathbb{R}^d : N(f \circ G)(y) > \beta\}
\]

\[
\leq \frac{C}{\beta} |f \circ G|_{L^1(\gamma_a)}
\]

\[
= \frac{C}{\beta} |f|_{L^1(\gamma_a)},
\]

which proves Lemma 1.
3. The Case $1/2 \leq r < 1$

In this and the next section we intend to prove the following lemma — the main part of the theorem.

Lemma 2. The operator

$$M^r_\alpha f(x) = \sup_{1/2 \leq r < 1} (M^\alpha_r f(x))$$

is bounded from $L^1(\gamma_o)$ into $L^{1,\infty}(\gamma_o)$ for all $\alpha > -1$.

We split the proof into three more lemmas, where we restrict the kernel to different areas of integration. A simple result about non-negative kernels will be used several times. Therefore, it is convenient to state it in a general form.

Let (E, μ) and (F, ν) be measure spaces, with μ and ν non-negative and σ-finite. Further, let I be a countable subset of \mathbb{R}. Suppose that, for $r \in I$, $A_r(x, y)$ and $B_r(x', y')$ are non-negative measurable functions on $E \times E$ and $F \times F$, respectively, such that

$$A_r(x, \ast) \in L^\infty(\mu) \quad \text{and} \quad B_r(x', \ast) \in L^\infty(\nu) \quad \text{for all} \quad r \in I, \quad x \in E, \quad x' \in F.$$

Then the following operators are well defined, giving rise to measurable functions, on $L^1(\mu)$, $L^1(\nu)$, and $L^1(\mu \times \nu)$, respectively

$$Af(x) = \sup_{r \in I} \left| \int A_r(x, y) f(y) \, d\mu(y) \right|, \quad x \in E,$$

$$Bf(x') = \sup_{r \in I} \left| \int B_r(x', y') f(y') \, d\nu(y') \right|, \quad x' \in F,$$

$$A \otimes Bf(x, x') = \sup_{r \in I} \left| \int A_r(x, y) B_r(x', y') f(y, y') \, d\mu(y) \, d\nu(y') \right|, \quad (x, x') \in E \times F.$$

Proposition 1. If $A: L^1(\mu) \to L^{1,\infty}(\mu)$ boundedly with norm C_A and $B: L^1(\nu) \to L^1(\nu)$ boundedly with norm C_B then $A \otimes B: L^1(\mu \times \nu) \to L^{1,\infty}(\mu \times \nu)$ is boundedly with norm $C_A C_B$.

Proof. Since the kernels are non-negative, it is enough to consider $f \geq 0$. Then

$$A \otimes Bf(x, x') \leq \sup_{r \in I} \int A_r(x, y) \left(\sup_{r \in I} \int B_r(x', y') f(y, y') \, d\nu(y') \right) \, d\mu(y)$$

$$= AF^*_r(x)$$
where

\[F_{x'}(y) = Bf_{x'}(x'), \quad f_{y'}(y') = f(y, y'). \]

Thus

\[(\mu \times \nu)((x, x') : A \otimes Bf(x, x') > \beta) \lesssim \int \mu \{ x : AF_{x'}(x) > \beta \} d\nu(x') \]

\[\lesssim C_A \beta^{-1} \int \| F_{x'} \|_{L^1(\mu \times \nu)} d\nu(x') \]

\[= C_A \beta^{-1} \left(\int \left(\int Bf_{x'}(x') d\nu(x') \right) d\mu(y) \right) \]

\[\lesssim C_A C_B \beta^{-1} \int \| f \|_{L^1(\mu \times \nu)} d\mu(y) \]

\[= C_A C_B \beta^{-1} |f|_{L^1(\mu \times \nu)}, \]

which proves the proposition.

Notice that the condition «I countable» (to ensure measurability) will not cause us any problem, since the kernels we are dealing with are nice enough to enable us to restrict the supremum to e.g. r rational.

Now, by Proposition 1, the following three lemmas will imply Lemma 2.

Lemma 3. For large D, the operator

\[A^\alpha f(x) = \int \sup_{1/2 \leq r < 1} K^\alpha_r(x, y) x_{[y_1 \geq Dx_1, \text{all } i]} |f(y)| d\gamma_\alpha(y) \]

is bounded on $L^1(\gamma_\alpha)$.

Lemma 4. For any $D > 1$, the operator

\[B^\alpha f(x) = \sup_{1/2 \leq r < 1} \left| \int K^\alpha_r(x, y) x_{[y_1 < D, \text{all } i]} f(y) d\gamma_\alpha(y) \right| \]

maps $L^1(\gamma_\alpha)$ boundedly into $L^{1, \infty}(\gamma_\alpha)$.

Lemma 5. For large D, the operator

\[C^\alpha f(x) = \sup_{1/2 \leq r < 1} \left| \int K^\alpha_r(x, y) x_{[y_1 < D, \text{all } i, \text{some } y_i \leq s_1]} f(y) d\gamma_\alpha(y) \right| \]

maps $L^1(\gamma_\alpha)$ boundedly into $L^{1, \infty}(\gamma_\alpha)$.
Throughout the remaining proofs, (0.1) will be used frequently. Therefore we set \((s, t) \in \mathbb{R}^+\), \(0 < r < 1\)

\[
D^\alpha_r(s, t) = (1 - r)^{-\alpha - 1}\exp \left(\frac{-r(s + t)}{1 - r} \right) \chi_{\{s + t < (1 - r)^2\}}
\]

\[
E^\alpha_r(s, t) = \frac{(4rst)^{-\alpha/2 - 1/4}}{(1 - r)^{1/2}} \exp \left(\frac{-r(s + t) + 2\sqrt{rст}}{1 - r} \right) \chi_{\{s + t \geq (1 - r)^2\}}.
\]

With these notations, (0.1) says that

\[
K^\alpha_r(s, t) \sim D^\alpha_r(s, t) + E^\alpha_r(s, t) \quad (s, t) \in \mathbb{R}^+ \]

and, consequently, we have

\[
K^\alpha_r(x, y) \sim \sum_{i=1}^{\min\{x, y\}} \left(\prod_{i \in I} D^\alpha_r(x_i, y_i) \right) \left(\prod_{i \not\in I} E^\alpha_r(x_i, y_i) \right), \quad x, y \in \mathbb{R}^d.
\]

Proof of Lemma 3. The lemma follows if we estimate \(K^\alpha_r(x, y)\), when \(y_i \geq Dx_i\), \(1/2 \leq r < 1\), by a function \(A(x, y)\) such that

\[
\int A(x, y) \chi_{\{y_i \geq Dx_i\}} \, d\gamma(x) \leq c.
\]

Of course, it is enough to do this in one dimension.

For fixed \(x\) and \(y\) in \(\mathbb{R}^+\) let

\[
D(r) = (1 - r)^{-\alpha - 1}\exp \left(\frac{-r(x + y)}{1 - r} \right), \quad 1/2 \leq r < 1.
\]

Then \(D(r)\) equals \((\alpha + 1 - (x + y)/(1 - r))\) times a positive factor. Hence, \(D(r)\) takes its maximum at \(1 - r = (x + y)/(1 + \alpha)\) if \((x + y)/(1 + \alpha) \leq 1/2\), which gives \(D(r) \leq (x + y)^{-\alpha - 1}\). On the other hand, \(D(r)\) is decreasing if \((x + y)/(1 + \alpha) > 1/2\), giving \(D(r) \leq D(1/2) = 1\).

Thus, for all \(x, y \in \mathbb{R}^+\) and \(1/2 \leq r < 1\), we have

\[
D^\alpha_r(x, y) \leq 1 + (x + y)^{-\alpha - 1}.
\]

In order to estimate \(E^\alpha_r(x, y)\), we set, for fixed \(x\) and \(y\) with \(y \geq Dx\),

\[
G(r) = (1 - r)^{-1/2} \exp \left(\frac{-r(x + y) + 2\sqrt{xy}}{1 - r} \right) = (1 - r)^{-1/2} \exp f(r),
\]

\(1/2 \leq r < 1\).

Then

\[
f'(r) = \frac{1}{(1 - r)^2} \left(\sqrt{xy}/r - (x + y) + \sqrt{xy} \right) = \text{pos}(\sqrt{xy} - \sqrt{r}) \left(\sqrt{xy} - \sqrt{r} \right)
\]

where \(\text{pos}(z) = \max(0, z)\).
Weak Type (1,1) Estimates of the Maximal Function for the Laguerre Semigroup

and

\[G'(r) = \text{pos} (1/2 + (1 - r)f'(r)). \]

With \(D \) large enough, \(G'(r) = 0 \) implies

\[(1 - r) = 2(x + y) - 2\sqrt{xy} (1 + r)/\sqrt{r} \geq y(2 - 4\sqrt{2/D}) \geq y. \]

Moreover, since \(f \) is decreasing for \(y \geq 2x \),

\[f(r) \leq f(1/2) = -(x + y) + 2\sqrt{2xy} \leq x. \]

Thus, if \(G'(r) = 0 \) then

\[G(r) \leq y^{-1/2} \exp f(r) \leq (xy)^{-1/4} e^x. \]

Since \(G(1/2) \leq \exp \left(-(x + y) + 2\sqrt{2xy} \right) \) and \(\lim_{r \to 1^-} G(r) = 0 \), this gives

\[E^\gamma_r(x, y) \leq (xy)^{-\alpha/2 - 1/4} \exp \left(-(x + y) + 2\sqrt{2xy} \right) + (xy)^{-\alpha/2 - 1/4} e^x. \]

This and (3.3) give the desired estimate of \(K^\gamma_r(x, y) \).

Proof of Lemma 4. Because of (3.2), it is enough to prove the lemma with \(K^\gamma_r(x, y) \) replaced by the kernel

\[\left(\prod_{i \in I} D^\gamma_r(x_i, y_i) \right) \left(\prod_{i \in J} E^\gamma_r(x_i, y_i) \right) \]

for a fixed, but arbitrary, \(I \). The operator

\[f \to \int \left[\prod_{i \in I} (1 + (x_i + y_i)^{-\alpha} - 1) \right] x_{[y/D < y_i < Dy, \text{all i}]} |f(y)| d\gamma(x) \]

is easily seen to be bounded on \(L^1(\gamma_d) \) for any dimension. Thus (3.3) implies, by means of Proposition 1, that we only have to prove that the operator

\[(3.4) \quad E^\gamma f(x) = \sup_{1/2 \leq r < 1} \left| \int \left(\prod_{i=1}^d E^\gamma_r(x_i, y_i) \right) x_{[y/D < y_i < Dy, \text{all i}]} f(y) d\gamma(x) \right| \]

is bounded from \(L^1(\gamma_d) \) into \(L^{1,\infty}(\gamma_d) \) for any dimension \(d \), for \(D > 1 \) and \(\alpha > -1 \). We write (3.4) as

\[E^\gamma f(x) = \sup_{1/2 \leq r < 1} |E^\gamma_r f(x)|. \]

Again, it is enough to consider \(f \geq 0 \). For \(m = (m_1, \ldots, m_d) \in \mathbb{Z}^d \) let

\[Q^m = \{ x : D^{m_1} < x_i \leq D^{m_i+1}, i = 1, \ldots, d \} \]
and
\[\mathcal{Q}^m = \{ x : D^{m_i - 1} x_i \leq D^{m_i + 2}, i = 1, \ldots, d \}. \]

Since \(E^\alpha f(x) \sim E_r^{-1/2} f(x) \) for all \(x \), we get, by applying Lemma 1,
\[
\gamma_a \{ x \in \mathcal{Q}^m : E^\alpha f(x) > \beta \} \lesssim D^{(\alpha + 1/2) \sum m_i \gamma'} \{ x \in \mathcal{Q}^m : E^{-1/2} f(x) > c\beta \} \\
\lesssim D^{(\alpha + 1/2) \sum m_i \gamma'} \{ x : M^{-1/2} (f|_{\mathcal{Q}^m})(x) > c\beta \} \\
\lesssim \frac{D^{(\alpha + 1/2) \sum m_i \gamma'}}{\beta} \| f|_{\mathcal{Q}^m} \|_{L^1(\gamma')^{-1/2}} \\
\lesssim \frac{1}{\beta} \int f|_{\mathcal{Q}^m} d\gamma_a.
\]

Summation over \(m \) yields that \(E^\alpha \) is bounded from \(L^1(\gamma_a) \) into \(L^{1,\infty}(\gamma_a) \), which proves Lemma 4.

So far we have used the Hermite result, but to prove Lemma 5 we have to investigate the kernel in more detail. Before the proof we recall a result (slightly restated) due to E. M. Stein and N. Weiss. We also state a proposition generalizing a special case of Lemma 1 in [Sj2].

Let \((E, \nu)\) be a measure space, with \(\nu \) non-negative.

Theorem B ([SW], Lemma 2.3) \textit{Suppose} \(g_j, j = 1, 2, \ldots, \) \textit{are non-negative measurable functions on} \(E \), \textit{satisfying}
\[
\nu \{ x : g_j(x) > \alpha \} < Ac_j/\alpha, \quad \alpha > 0,
\]
\textit{where} \(c_j \) \textit{are positive numbers such that} \(\sum c_j < \infty \) \textit{and} \(\sum c_j \ln(1/c_j) < \infty \). \textit{Then}
\[
\nu \{ x : \sum g_j(x) > \alpha \} < 2AC/\alpha, \quad \alpha > 0, \quad \text{for some positive number} \ C.
\]

\(E \) is said to have a piece hierarchy if for each \(N = 1, 2, \ldots \) there exists a partition of \(E \) into at most countably many disjoint subsets called \(N \)-pieces with the following properties

(i) Each \(N \)-piece is measurable with positive finite measure,
(ii) Any \((N + 1)\)-piece is contained in some \(N \)-piece.

Now, suppose \(E \) has a piece hierarchy. Denote the \(N \)-pieces by \(P_N^j \), \(j = 1, 2, \ldots, \), and let \(P_N(x) \), for \(x \in E \), be the \(N \)-piece that contains \(x \). Assume \(^\wedge \) is a one-to-one map from \(\{ P_N^j : j = 1, 2, \ldots \} \) into itself for each \(N \), such that
\[
\nu(P_N^j) \sim \nu(^\wedge P_N^j) \quad \text{(uniformly in} \ N, j).\]
Define the operators T_N on $L^1(\nu)$ by

$$T_N g(x) = \frac{1}{\nu(\wedge P_N(x))} \int_{\wedge P_N(x)} |g(y)| \, d\nu(y).$$

Proposition 2. For any $0 < a < 1$ there is a constant $c = c(a)$ such that

$$\sum_{N=1}^{\infty} a^N \nu(\{ x: T_N g(x) > a^N \beta \}) \leq \frac{c}{\beta} \| g \|_{L^1(\nu)}, \quad \beta > 0.$$

Proof. Since $T_N g$ is constant on each P_N^I, the set $I = \{ (N, j): T_N g > a^N \beta \}$ on P_N^I is well defined and the sum equals

$$\sum_{(N, j) \in I} a^N \nu(\wedge P_N^j) \sim \sum_{(N, j) \in I} (a^N - a^{N+1}) \nu(\wedge P_N^j).$$

Regard $[0, 1] \times E$ as a measure space. Then, the last sum above is just the measure of the union of the pairwise disjoint sets

$$A_{N,j} = \{ a^{N+1}, a^N \} \times \wedge P_N^j \subseteq [0, 1] \times E, \quad (N, j) \in I.$$

The family $\{ A_{N,j}: (N, j) \in I \}$ is partially ordered by

$$A_{M,i} \subseteq A_{N,j} \quad \text{if and only if} \quad \wedge P_M^i \subseteq \wedge P_N^j \quad \text{and} \quad M \geq N.$$

Notice that every $A_{N,j}$ is included in a maximal set. In measuring the union of the sets $A_{N,j}$, we first measure the sets smaller (not strictly) than a given maximal set. We then sum over all maximal sets. This means that the sum to the right in (3.5) equals

$$\sum_{(N, j) \in I} \left(\sum_{A_{M,i} \subseteq A_{N,j}} (a^M - a^{M+1}) \nu(\wedge P_M^i) \right).$$

The inner sum in (3.6) may be estimated by

$$\sum_{M \in N} (a^M - a^{M+1}) \left(\sum_{\wedge P_M^i \subseteq \wedge P_N^j} \nu(\wedge P_M^i) \right) \leq a^N \nu(\wedge P_N^j).$$

Since

$$\nu(\wedge P_N^j) \leq \frac{a^{-N}}{\beta} \int_{\wedge P_N^j} |g| \, d\nu$$

for $(N, j) \in I$, (3.6) is less than

$$\frac{1}{\beta} \sum_{(N, j) \in I} \int_{\wedge P_N^j} |g| \, d\nu.$$

Since these $\wedge P_N^j$ are pairwise disjoint, this proves Proposition 2.
4. The Proof of Lemma 5

For \(n = 0, \ldots, d-1 \) we let \(\chi_n \) denote the characteristic function of the set

\[
\begin{align*}
 x_i/D & \leq y_i < D x_i, & i = 1, \ldots, n \\
 y_i & \leq x_i/D, & i = n+1, \ldots, d.
\end{align*}
\]

By symmetry, it suffices to prove the lemma if we let, for \(n = 0, \ldots, d-1 \),

\[
C^\alpha f(x) = \sup_{1/2 \leq r < 1} |C^\alpha_r f(x)|
\]

with

\[
C^\alpha_r f(x) = \int K^\alpha_r(x,y)\chi_n f(y) \, d\gamma_a(y).
\]

Moreover, for the same reason as in the proof of Lemma 4, it is enough to prove boundedness (from \(L^1(\gamma_a) \) into \(L^{1,\infty}(\gamma_a) \)) for the corresponding maximal operator, still called \(C^\alpha \), where \(K^\alpha_r(x,y) \) is replaced by \(E^\alpha_r(x,y) \) for \(i = 1, \ldots, n \). We write

\[
C^\alpha_r(x,y) = \prod_{i=1}^n E^\alpha_r(x_i,y_i) \prod_{i=n+1}^d K^\alpha_r(x_i,y_i) = E^\alpha_r(x',y')K^\alpha_r(x'',y'')
\]

with \(x = (x', x'') \) in the obvious way. The proof will be split into 5 steps.

Step 1: Estimates

Since, for \(y_i \sim x_i \),

\[
E^\alpha_r(x_i,y_i) \leq \frac{x_i^{-\alpha - 1/2}}{(1 - r)^{1/2}} \exp \left(\frac{-(\sqrt{x_i} - \sqrt{ry_i})^2}{1 - r} \right)
\]

and

\[
\frac{(\sqrt{x_i} - \sqrt{ry_i})^2}{1 - r} = \frac{(y_i - x/r)^2}{x_i(1 - r)} \frac{r^2}{(1 + \sqrt{ry_i}/x_i)^3} \geq c \frac{(y_i - x_i/r)^2}{x_i(1 - r)}
\]

we get

\[
E^\alpha_r(x',y') \leq \left[\prod_{i=1}^n \frac{x_i^{-\alpha - 1/2}}{(1 - r)^{1/2}} \right] \exp \left(\sum_{i=1}^n x_i \right) \exp \left(-c \sum_{i=1}^n \frac{(y_i - x_i/r)^2}{x_i(1 - r)} \right).
\]

For \(i = n + 1, \ldots, d \) we have

\[
r(x_i + y_i) - 2 \sqrt{rxy_i} \geq x_i (r - 2 \sqrt{ry_i}/x_i) \geq x_i/4
\]
if D is large enough. Hence, if $\alpha \geqslant -1/2$ we get

$$E^\alpha_r(x_i, y_i) \lesssim (1 - r)^{-\alpha - 1} \exp \left(-x_i/4(1 - r) \right),$$

while for $-1 < \alpha < -1/2$ the following holds

$$E^\alpha_r(x_i, y_i) \lesssim \frac{x_i^{-\alpha - 1/2}}{(1 - r)^{1/2}} \exp \left(-x_i/4(1 - r) \right).$$

Since

$$D^\alpha_r(x_i, y_i) \lesssim (1 - r)^{-\alpha - 1} \exp \left(-x_i/4(1 - r) \right),$$

these estimates imply

$$K^\alpha(x', y'') \lesssim \exp \left(-\frac{1}{4(1 - r)} \sum_{\alpha + 1}^d x_i \right) \frac{1}{(1 - r)^{\alpha + 1}} \frac{x_i^{-\alpha - 1/2}}{(1 - r)^{1/2}} X_{-1 < \alpha < -1/2}. \tag{4.4}$$

For fixed x', we divide \mathbb{R}^d into the rectangles

$$2^{k_i - 1} \sqrt{x_i(1 - r)} \leq \lvert y_i - x_i/r \rvert < 2^{k_i} \sqrt{x_i(1 - r)}, \quad k_i = 0, 1, \ldots,$$

where the left hand side is interpreted as 0 for $k_i = 0$.

Further, \mathbb{R}^{d-n} is divided into strips (with respect to x'') where

$$4^{j-1} (1 - r) \leq \sum_{\alpha + 1}^d x_i < 4^j (1 - r), \quad j = 0, 1, \ldots$$

Again, $j = 0$ means 0 to the left.

Estimating the right hand side of (4.3) and (4.4) in these rectangles and strips, respectively, gives (we assume $f \geq 0$)

$$C^\alpha_r(x, y) \chi_n f(y) d\gamma_r(y) \leq \sum_{j=0}^{\infty} a_j (1 - r)^{-(d-n)(\alpha + 1)} x_{(\alpha + 1)} \chi_{4^{j-1} (1 - r) \leq \sum_{\alpha + 1}^d x_i < 4^j (1 - r)}$$

$$\times \sum_{k_i = 0, 1, \ldots} b_{k_i} \left(\prod_{\alpha + 1}^d \frac{x_i^{-\alpha - 1/2}}{(1 - r)^{1/2}} \right) \exp \left(\sum_{\alpha + 1}^d x_i \right) \int_{R_k(r, x')} F(y') d\gamma_r(y'),$$

where

$$F(y') = \int f(y', y'') d\gamma_r(y''),$$

$$R_k(r, x') = \{ y' : \lvert y_i - x_i/r \rvert < 2^{k_i} \sqrt{x_i(1 - r)}, x_i/D < y_i < D x_i \},$$

$$a_j = 2^{(d-n)j} \exp (-4^{j-2}).$$
and
\[
b_k = \exp \left(-c \sum_{i=1}^{n} 4^{k_i} \right).
\]
The factor \(2^{d-n}a_j\) in \(a_j\) is what remains from the case \(-1 < \alpha < -1/2\).

Taking the supremum over \(1 - r \in [4^{-N-1}, 4^{-N}]\) (written \(1 - r - 4^{-N}\)) in (4.5) yields
\[
C^\alpha f(x) \leq \sum_{j} \sum_{N=0,1,\ldots} \sup_{x \in N_{k,j}, j} T_{N,k,j} f(x) = \sum_{j} \sum_{k} T_{k,j} f(x),
\]
where
\[
T_{N,k,j} f(x) = a_j b_k 4^{N(d-n)(\alpha+1)N_{k,j}, \Sigma x_i < 4j^{-N}} \times \left(\prod_{i=1}^{n} 2^{N - x_i^{\alpha - 1/2}} \right) \exp \left(\sum_{i=1}^{n} x_i \right) \sup_{y \in N_{k,j}, j} \int_{R_k(r,x)} F(y') \, d\gamma_\alpha(y').
\]

Hence, by iterating the result in Theorem B, we get Lemma 5 if we prove
\[
\gamma_\alpha \{ x : T_{k,j} f(x) > \beta \} \leq c_{k,j} \frac{1}{\beta} \| f \|_{L^1(\gamma_\alpha)},
\]
with \(c_{k,j} = c_{k_1} \cdots c_{k_n} c_j^0\) such that
\[
\sum_{i=0}^{\infty} c_i^{n} < \infty, \quad \sum_{i=0}^{\infty} c_i^{0} \ln (1/c_i) < \infty, \quad i = 0, \ldots, n.
\]

Step 2: Localization
Let
\[
S_{N,k} F(x') = \left(\prod_{i=1}^{n} 2^{N x_i^{\alpha - 1/2}} \right) \exp \left(\sum_{i=1}^{n} x_i \right) \sup_{y \in N_{k,j}, j} \int_{R_k(r,x)} F(y') \, d\gamma_\alpha(y').
\]
Then
\[
\gamma_\alpha \{ x : T_{k,j} f(x) > \beta \} \leq \sum_{N=0}^{\infty} \gamma_\alpha \{ x : S_{N} F(x') > \beta a_j^{-1} b_k^{-1} 4^{-N(d-n)(\alpha+1)} \}
\]
\[
\times \gamma_\alpha \{ x' : S_{N,k} F(x') > \beta a_j^{-1} b_k^{-1} 4^{-N(d-n)(\alpha+1)} \}
\]
\[
\leq \sum_{N=0}^{\infty} 4^{J-N} (d-n)(\alpha+1)
\]
\[
\times \gamma_\alpha \{ x' : S_{N,k} F(x') > \beta a_j^{-1} b_k^{-1} 4^{-N(d-n)(\alpha+1)} \}.
\]
We here the Maximal Function for the Laguerre Semigroup

Hence, if we prove

\[(\ref{4.9}) \quad \sum_{N=0}^{\infty} d^N \gamma_a \{ x' : S_{N,k} F(x') > a^N \beta \} \leq \frac{A_k}{\beta} \| F \|_{L^1(\mathbb{R}^d)} \], \quad 0 < a < 1,

then (4.7) follows (take \(a = 4^{-(d-n)(\alpha + 1)} \)) with

\[(\ref{4.10}) \quad c_{k,j} \sim 4^{(d-n)(\alpha + 1)} (d-n)^j \exp \left(-4^{j-2}\right) \exp \left(-c \sum_{k=1}^{n} 4^{k}\right) A_k.

Thus, with \(A_k \) good enough, (4.9) would complete the proof of the lemma. Actually we have assumed here that \(n = 1, \ldots, d - 1 \).

In the case \(n = 0 \), we have

\[C^\alpha f(x) \leq \sum_{j=0}^{\infty} \sup_{N=0,1,\ldots} 4^{j(d+1)} 2^{dj} \exp \left(-4^{j-2}\right) \chi_{\{ x' : x_i < 4^j - N \}} \| f \|_{L^1(\mathbb{R}^d)} \]

\[= \sum_{j=0}^{\infty} \sup_{N=0} N_{j,f} f(x).

With

\[N_0 = \min \{ N : 4^{N(d+1)} 2^{dj} \exp \left(-4^{j-2}\right) \| f \|_{L^1(\mathbb{R}^d)} > \beta \},

we get

\[\gamma_a \left\{ x : \sup_{N} \gamma_{N,j} \gamma_a > \beta \right\} \leq \gamma_a \left\{ x : \sum x_i < 4^j - N_0 \right\}

\[\leq 4^{j(d+1)} (d+1) \]

\[\leq 4^{(d+1)(\alpha + 1)} 2^{dj} \exp \left(-4^{j-2}\right) \frac{1}{\beta} \| f \|_{L^1(\mathbb{R}^d)}.

These constants are good enough to imply, in view of Theorem B again, that \(C^\alpha \) is bounded.

Next, to simplify the proof of (4.9), we reduce it to a local property, which in particular enables us to get rid of the \(a \)'s. From now on we drop the primes, i.e. \(x' = x \in \mathbb{R}^d \). Let \(\{ Q^m : m \in \mathbb{Z}^n \} \) be the partition of \(\mathbb{R}^d \) into rectangles defined by

\[Q^m = \{ x : D^{m_i} < x_i \leq D^{m_i + 1}, \quad i = 1, \ldots, n \} \]

and let

\[\tilde{Q}^m = \{ x : D^{m_i - 1} < x_i \leq D^{m_i + 2}, \quad i = 1, \ldots, n \}. \]
In proving (4.9), we may, without loss of generality, assume that \(D = 4^M \) for some \(M \in \mathbb{N} \). For a given \(m \in \mathbb{Z}^n \), let \(N_i \in \mathbb{Z} \) be such that
\[
D^{m_i + 1} = 4^{N_i} \quad i = 1, \ldots, n
\]
and let, for \(g \geq 0 \),
\[
U_{N, k}^m g(x) = \left(\prod_{j=1}^{n} 2^{N_j} \right) \exp \left(\sum_{j=1}^{n} x_j \right) \sup_{|y_j - x_j|/|y_j| < \delta_{k, N}} \int_{|\psi| < \delta_{k, N}} g(y) \, dy.
\]
(4.12)
Then, if \(x \in Q^m \)
\[
S_{N, k} F(x) \leq U_{N, k}^m (F|_{Q^m=\gamma_0})(x).
\]
Hence, the sum in (4.9) is less than or equal to
\[
\sum_{m \in \mathbb{Z}^n} \left(\prod_{j=1}^{n} 4^{N_j} \right) \sum_{N=0}^{\infty} a^N \gamma_0 \{ x \in Q^m : U_{N, k}^m (F|_{Q^m=\gamma_0})(x) > ca^N \beta \}.
\]
(4.13)
If we prove that the sum over \(N \) in (4.13) is less than a constant \(B_k \), not depending on \(m \), times
\[
\frac{1}{\beta} \int F|_{Q^m} \, d\gamma_0
\]
we get (4.9) with \(A_k \sim B_k \).

For a fixed, but arbitrary, \(m \in \mathbb{Z}^n \), let \(Q = Q^m \) and \(U_{N, k} = U_{N, k}^m \).

It remains to prove that, for \(0 < a < 1 \) and \(g = g|_{Q} \geq 0 \),
\[
\sum_{N=0}^{\infty} a^N \gamma_0 \{ x \in Q : U_{N, k} g(x) > a^N \beta \} \leq \frac{A_k}{\beta} \| g \|_{L^1(\gamma_0)},
\]
(4.14)
with \(A_k \) good enough (see (4.10) and (4.8)). Of course, \(A_k \) may depend on \(a \).

Since the \(N_j \)'s are related to \(m \) as in (4.11), \(x \in Q \) clearly implies \(x_i \sim 4^{N_i} \) for all \(i \). For symmetry reasons, we may assume that
\[
N_1 \geq \cdots \geq N_k \geq N_{k+1} \geq \cdots \geq N_n.
\]
We split the sum in (4.14) into two parts, \(\sum_{N > N_1} \) and \(\sum_{N \leq N_1} \). In Step 3 we will apply Proposition 2 to \(\sum_{N > N_1} \), while in Step 4 we estimate the sum \(\sum_{N \leq N_1} \) term by term. In Step 4 we use a covering argument, which will be justified in Step 5.

We consider \(k \in \mathbb{N}^n \) fixed.

Step 3: Proof of (4.14) restricted to \(N > N_1 \)

For \(x \in Q \), let
\[
R_N(x) = \{ y \in \mathbb{R}^n_+ : |y_i - x_i| \leq 3 \cdot 2^{k_i + N_i - N} \text{ for every } i \}.
\]
Weak Type \((1,1)\) Estimates of the Maximal Function for the Laguerre Semigroup 111

Since \(N \geq N_i\) for each \(i\), this set contains all \(y\) with \(|y_i - x_i/r| < 2^{k_i + N_i - N}\), \(i = 1, \ldots, n\), if \(1 - r - 4^{-N}\). Thus,

\[
U_{N, k} g(x) \leq \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \exp \left(\sum_{i=1}^{n} x_i \right) \int_{R_N(o)} g(y) \, dy.
\]

Let

\[
Q_\eta = \left\{ x \in \mathbb{R}^n : \eta \leq \sum_{i=1}^{n} x_i < \eta + 1 \right\}, \quad \eta = 0, 1, \ldots,
\]

Suppose \(x \in Q \cap Q_\eta\). Then \(R_N(x)\) is included in the set

\[
\tilde{Q}_\eta = \bigcup_{l=-a}^{a} Q_{\eta + l}, \quad a = 32^{k_i},
\]

where \(Q_\eta = Q_0\) for \(\eta \leq 0\), so that

\[
(4.15) \quad U_{N, k} g(x) \leq e^n \left(\prod_{i=1}^{n} 2^{k_i} \right) \frac{1}{|R_N(x)|} \int_{R_N(o)} g|_{Q_\eta}(y) \, dy, \quad x \in Q \cap Q_\eta.
\]

Here \(|*|\) denotes the volume in \(\mathbb{R}^n\).

Let \(P_N\), for \(N = 0, 1, \ldots\), be the partition of \(\mathbb{R}^n\) consisting of rectangles with sidelong \(6 \cdot 2^{k_i} + N_i - N\) \((i = 1, \ldots, n)\). Then \(\{P_N\}\) defines a piece hierarchy in \(\mathbb{R}^n\). Let \(P_N(x)\) denote the rectangle in \(P_N\) which contains \(x\), and \(P_N^j(x), j = (j_1, \ldots, j_n), j_i = -1, 0, 1\), the rectangle in \(P_N\) obtained by moving one step to the left or right in the \(x_i\)-direction depending on whether \(j_i = -1\) or \(j_i = 1\). If \(j_i = 0\) one does not move at all in the \(x_i\)-direction. With these notations, we have

\[
(4.16) \quad R_N(x) \subseteq \bigcup_{j_i = -1, 0, 1} P_N^j(x).
\]

Let

\[
U_N^j h(x) = \frac{1}{|P_N^j(x)|} \int_{P_N^j(o)} h(y) \, dy, \quad (j_i = -1, 0, 1).
\]

For each choice of \(j\) we apply Proposition 2 to \(U_N^j\) to get, using (4.15) and (4.16),

\[
\sum_{N > N_i} a^N \gamma_0 \{ x \in Q : U_{N, k} g(x) > a^N \beta \}
\]

\[
\leq \sum_{\eta = 0}^{\infty} \sum_{N > N_i} a^N \epsilon^{-\eta} \left\{ x \in Q \cap Q_\eta : \sum_j U_N^j(g|_{Q_\eta})(x) > c a^N \beta \epsilon^{-\eta} \prod 2^{-k_i} \right\}
\]
\[A_k \approx \sum_{i=0}^{\infty} \frac{1}{\beta} \left(\prod_{i=0}^{\infty} 2^{k_i} \right) \| g \|_{L^1(\partial \phi)} \leq \frac{\left(\sum_{i=0}^{N_1} 2^{k_i} \right) \left(\prod_{i=0}^{N_1} 2^{k_i} \right)}{\beta} \| g \|_{L^1(\partial \phi)}. \]

This proves that the inequality in (4.14), for \(\sum_{N=0}^{\infty} \) replaced by \(\sum_{N > N_1} \), holds with

(4.17)
\[A_k \approx \prod_{i=1}^{n} 2^{2k_i}. \]

Step 4: Proof of (4.14) restricted to \(N \leq N_1 \)

Let \(N \) be fixed, \(0 \leq N \leq N_1 \), and let
\[
Q(z) = \{ y \in \mathbb{R}^n_+ : |y_i - z_i| < 2^{k_i + N_i - N}, i = 1, \ldots, n \}
\]
\[K(z) = \text{con}(Q(z)) \]

where con \((A)\) means the conical hull of \(A \), i.e. the intersection of all cones containing \(A \). With these notations we have,

\[
U_{N,k} g(x) = \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \exp \left(\sum_{i=1}^{n} x_i \right) \sup_{Q(x/\gamma)} \int_{Q(x/\gamma)} g(y) \, dy \leq \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \exp \left(\sum_{i=1}^{n} x_i \right) \int_{K(x)} g(y) \, dy = \bar{U}_{N,k} g(x).
\]

Let \(l_i = 2 \cdot 2^{k_i + N_i - N} \) be the sidelengths of \(Q(x) \).

Our method of estimating

(4.18)
\[\gamma_0 \{ x \in Q : \bar{U}_{N,k} g(x) > \beta \} \]

depends on whether \(l_i \) is larger or smaller (up to a constant) than the sidelength of \(Q \) in the \(x_i \)-direction. We get two cases.

Case 1: \(2^{k_1} > 2^{N_1 + N_i(D - 1)/D^2} \).

In this case we may estimate the integral in the definition of \(\bar{U}_{N,k} g(x) \) by \(\| g \|_{L^1(\partial \phi)} \). Set

\[\beta' = \beta \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \| g \|_{L^1(\partial \phi)}. \]

Using the fact that the area of \(Q \cap \left\{ \sum_{i=1}^{n} x_i = t \right\} = \sum_{i=2}^{n} 4^{N_i} \) and that \(N_i \leq N_i \) for all \(i \), we get
Weak Type (1,1) Estimates of the Maximal Function for the Laguerre Semigroup 113

\[\gamma_0 \{ x \in Q \colon U_{N, k} g(x) > \beta \} \leq \gamma_0 \{ x \in Q \colon \exp \left(\sum x_i \right) > \beta \} \]

\[\leq \left(\prod_{i=2}^{n} 4^{N_i} \right) \int_{\ln \beta}^{\infty} e^{-t} \, dt \]

\[\leq \frac{1}{\beta} \left(\prod_{i=2}^{n} 4^{N_i} \right) \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \| g \|_{L^1(\phi)} \]

\[\leq \frac{1}{\beta} 2^{(n-1)(N+N_i)} 2^{N-N_i} \| g \|_{L^1(\phi)}. \]

Thus, in Case 1 we can estimate (4.18) by

(4.19) \[\frac{c}{\beta} 2^{(n-1)k_1} 2^{N - N_i} \| g \|_{L^1(\phi)}. \]

Case 2: \[2^{k_1} \leq 2^{N_1 + N (D - 1)/D^2}. \]

In Step 5 we will construct a covering of \(Q \), consisting of pairwise disjoint convex cones \(K_j, j \in \mathbb{N}, \) such that

(i) If \(x \in Q \cap K_j \) then \(\bar{Q} \cap K(x) \subseteq K_j \), where \(\bar{K}_j \) is the union of a bounded number of cones «near» \(K_j \).

(ii) \[\left| K_j \cap \left\{ \sum_{i=1}^{n} x_i = t \right\} \right|_{n-1} \leq \left(\sum_{i=1}^{n} 2^{2k_i} \right)^{n-1} \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \text{ if } 0 < t \leq T = \sum_{i=1}^{n} 4^{N_i}. \]

Here \(| \cdot |_{n-1} \) denotes \((n-1)\)-dimensional area. Set

\[\beta_j = \beta \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \int_{K_j} g(y) \, dy. \]

Assuming this covering, we get

\[\gamma_0 \{ x \in Q \colon U_{N, k} g(x) > \beta \} = \sum_j \gamma_0 \{ x \in Q \cap K_j \colon U_{N, k} g(x) > \beta \} \]

\[\leq \sum_j \gamma_0 \{ x \in Q \cap K_j \colon \exp \left(\sum x_i \right) > \beta \} \]

\[\leq \sum_j \int_{(T \cap \ln \beta) \cap (T/D)} e^{-t} \left| K_j \cap \left\{ \sum_{i=1}^{n} x_i = t \right\} \right|_{n-1} dt \]

\[\leq \left(\sum_{i=1}^{n} 2^{k_i} \right)^{n-1} \left(\prod_{i=2}^{n} 2^{N_i - N_i} \right) \left(\prod_{i=1}^{n} 2^{N_i - N_i} \right) \frac{1}{\beta} \sum_j \int_{K_j} g(y) \, dy \]

\[\leq \left(\sum_{i=1}^{n} 2^{k_i} \right)^{n-1} 2^{N-N_i} \frac{1}{\beta} \| g \|_{L^1(\phi)}. \]
Combining this with the estimate in Case 1, (4.19), we get that (4.18) is less than or equal to
\[
\frac{c_1}{\beta} \left(\sum_{i=1}^{n} 2^{k_i} \right)^{n-1} 2^{N - N_1} \| g \|_{L^1(\mathbb{R}^d)}.
\]
Since this quantity is summable over \(N \leq N_1 \), the inequality in (4.14), for \(\sum_{N \geq 0} \) replaced by \(\sum_{N = 0}^{N_1} \), follows with
\[
A_k \sim \prod_{i=1}^{n} 2^{(n-1)k_i}.
\]
Together with the result in Step 3 (see (4.17)), this yields (4.14), with
\[
A_k \sim \prod_{i=1}^{n} 2^{k_i \max(2, n - 1)}.
\]
Obviously, \(A_k \) is good enough.
Apart from the covering, this proves the lemma.

Step 5: The covering
Let
\[
K = \text{con}(\bar{Q}), \quad L = K \cap \{ x_i = 4^{N_i}/D^2 \}.
\]
Notice that \(x_i \sim 4^{N_i} \), \(i = 1, \ldots, n \), for all \(x \in L \).

Cover \(L \) with pairwise disjoint \((n - 1)\)-dimensional rectangles \(\bar{R}_j \), \(j \in \mathbb{N} \),
with sides parallel to the axes and of length
\[
L_i = \bar{u}_i \left(\sum_{i=1}^{n} 2^{k_i} \right)^{2^{k_i}}, \quad i = 2, \ldots, n.
\]
Next, let
\[
R_j = \bar{R}_j \cap L, \quad K_j = \text{con}(R_j).
\]
We have to verify (i) and (ii).

(i) Assume \(x \in Q \cap K_j \). For arbitrary \(y \) and \(z \) in \(L \cap K(x) \), the conditions
\(2^{k_i} \leq 2^{N_i + N(D - 1)/D^2} \) and \(N_i \geq N_j \) imply that \(y_i - z_i \leq L_i \). Hence,
\[
L \cap K(x) \subseteq \bigcup_{n \in I(j)} R_n,
\]
where \(I(j) \) represents a bounded number of the \(R_n \)'s near \(R_j \). This clearly implies
\[
Q \cap K(x) \subseteq \bigcup_{n \in I(j)} K_n = \bar{K}_j.
\]
(ii) Take $0 < t \leq T$, $j \in \mathbb{N}$, and let

$$A = K_j \cap \left\{ \sum_{i=1}^{n} x_i = t \right\}.$$

Let A' be the orthogonal projection of A into the hyperplane $\{x_1 = 0\}$ and let R' be the smallest rectangle, with sides parallel to the axes, in $\{x_1 = 0\}$ containing A'. The sidelengths, L'_i, of R' are given by

$$L'_i = \max_{x \in A'} x_i - \min_{x \in A'} x_i = t \left(\max_{x \in R'} \left\{ \sum_{j=1}^{n} x_j - \min_{x \in R'} \left\{ \sum_{j=1}^{n} x_j \right\} \right\} \right), \quad (i = 2, \ldots, n).$$

Suppose the function $x_i/\sum x_i$ takes its maximum and minimum (over R') at a and b, respectively. Set $b_i = a_i + r_i$, $l = 1, \ldots, n$. Then

$$L'_i = t \left(\sum a_i \sum r_i - \sum a_i \right) / \left(\sum a_i \sum b_i - \sum a_i \sum r_i \right)$$

where we used the fact that $t \leq T - \sum b_i$.

By assumption, $N_i \leq N_j$ if $l > i$. Therefore,

$$a_i L'_i \leq a_i \sum a_i \leq L_i, \quad l > i.$$

On the other hand, if $l \leq i$ then $N_i \geq N_j$ implies

$$a_i L'_i \leq a_i L_i / a_i \leq 4^{N_i - N_j} \left(\sum_{j=1}^{l} 2^{k_j} \right) 2^{N_i - N_j} \leq L_i, \quad l \leq i.$$

Thus $L'_i \leq L_i$ ($i = 2, \ldots, n$) and, finally,

$$|A|_{n-1} = \sqrt{n} |A'|_{n-1} \leq \prod_{i=2}^{n} L'_i \leq \prod_{i=2}^{n} L_i = \left(\sum_{i=1}^{n} 2^{k_i} \right)^{n-1} 2^{N_i - N_j}.$$

The proof of Lemma 5 is complete.

5. The Case $0 < r < 1/2$

The following lemma completes the proof of Theorem 1.
Lemma 6. The operator

\[M_\alpha^r f(x) = \sup_{0 < r < 1/2} |M_\alpha^r f(x)| \]

maps \(L'(\gamma_\alpha) \) boundedly into \(L^{1,\infty}(\gamma_\alpha) \) for all \(\alpha > -1 \).

Proof. Since \(D_\alpha^r(x_i, y_i) \leq c \) for \(0 < r < 1/2 \), we may replace \(K_\alpha^r(x, y) \) (see (3.2)) by

\[E_\alpha^r(x, y) = \prod_{i} E_\alpha^r(x_i, y_i). \]

Let

\[E_\alpha^r f(x) = \sup_{0 < r < 1/2} \left| \int E_\alpha^r(x, y) f(y) \, dy \right|. \]

We claim that \(0 < r < 1/2 \)

\[E_\alpha^r(s, t) \leq c \quad \text{if} \quad \alpha \leq -1/2, \quad s < 1 \quad \text{or} \quad \alpha > -1/2, \quad s < \alpha + 1/2. \]

Assuming \(s < 1 \), we get

\[\frac{-r(s + t) + 2\sqrt{rst}}{1 - r} \leq -\frac{\sqrt{rst}}{1 - r} + \frac{-rt + 3\sqrt{r}}{1 - r} \leq -\sqrt{rst} + C, \]

and, if also \(\alpha \leq -1/2, \)

\[E_\alpha^r(s, t) \leq c(rst)^{-\alpha/2 - 1/4} \exp \left(-\sqrt{rst} \right) \leq C. \]

Next, assume \(\alpha > -1/2, \ s < \alpha + 1/2 \). The derivative \((\partial/\partial t)E_\alpha^r(s, t) (t \geq (1 - r)^2/4sr) \) equals a positive factor times

\[-rt + \sqrt{rst} - \left(\frac{\alpha}{2} + \frac{1}{4} \right) (1 - r), \]

which is negative for all \(r, s, t \) under consideration. Hence,

\[E_\alpha^r(s, t) \leq E_\alpha^r(s, (1 - r)^2/4sr) \leq C \]

and (5.1) holds.

Because of (5.1) and Proposition 1 we may, when measuring the level sets \(\{x \in \mathbb{R}^d : E_\alpha^r f(x) > \beta \} \), neglect the region where any \(x_i < 1 \) if \(\alpha \leq -1/2 \) or any \(x_i < \alpha + 1/2 \) if \(\alpha > -1/2 \). Therefore, we assume \(x_i \geq c = c(\alpha), \)

\[i = 1, \ldots, d. \]

In the interval \(2^{i-1} \sqrt{x_i}/r \leq |y_i - x_i/r| \leq 2^i \sqrt{x_i}/r (l_i = 0, 1, \ldots) \), a simple calculation where we use \(x_i \geq c(\alpha) \) gives the following estimate

\[E_\alpha^r(x_i, y_i) \leq a_i x_i^{-\alpha - 1/2} e^{\epsilon_i}, \]
Weak Type \((1,1)\) Estimates of the Maximal Function for the Laguerre Semigroup

with

\[a_i = 4^{i(\alpha + 1/2)} \exp(-c2^i). \]

Thus, for \(f \geq 0 \), we get

\[E^\alpha f(x) \leq \sum_{i'=0}^{\infty} \left(\prod_{i=1}^{d} a_i \right) \left(\prod_{i=1}^{d} x_i^{-\alpha - 1/2} e^{x_i} \right) \sup_{0 < r < 1/2} \int_{|y_i - x_i|/r \leq 2^i \sqrt{x_i}/r} f(y) \, d\gamma_\alpha(y). \]

Let

\[Q(x) = \{ y \in \mathbb{R}_+^d : |y_i - x_i| \leq 2^i \sqrt{x_i} \text{ for all } i \}. \]

Then the conical hull of \(Q(x) \), \(\text{con}(Q(x)) = K(x) \), contains the domain of integration in (5.2) for all \(r > 0 \). Set, for \(f \geq 0 \),

\[A_if(x) = \left(\prod_{i} x_i^{-\alpha - 1/2} e^{x_i} \right) \int_{K(x)} f(y) \, d\gamma_\alpha(y). \]

By Theorem B, Lemma 6 follows if we prove that, for some \(M \),

\[\gamma_\alpha \{ x \in \mathbb{R}_+^d : A_if(x) > \beta \} \leq \frac{C}{\beta} \left(\prod_{i=1}^{d} 2^i \right)^M \| f \|_{L^1(\gamma_\alpha)}. \]

For \(k \in \mathbb{Z}^d \) let \(Q^k = \{ x \in \mathbb{R}_+^d : 2^k \leq x_i < 2^{k+1}, \text{ for all } i \} \). Of course, (5.3) would follow from

\[\gamma_\alpha \{ x \in Q^k : A_if(x) > \beta \} \leq \frac{c_{k,l}}{\beta} \| f \|_{L^1(\gamma_\alpha)}, \]

with

\[\sum_k c_{k,l} \leq \left(\prod_{i=1}^{d} 2^i \right)^M. \]

Depending on whether a sidelength of \(Q^k \) is greater or smaller than the corresponding sidelength of \(Q(x) \), \(x \in Q^k \), we will treat the coordinates in different ways. Therefore, for fixed \(k \) and \(l \), we let

\[I' = \{ i : k_i \geq 2(l_i + 1) \}, \quad I'' = \{ 1, \ldots, d \} \setminus I', \]

and write \(x = (x', x'') \in \mathbb{R}_+^d \), \(Q^k = Q^{k'} \times Q^{k''} \) in the obvious way. Further, with \(d' = \# I' \), we define \(K(x') \) and \(A_i F \) quite analogously as above, for \(x' \in \mathbb{R}_+^{d'} \) and functions \(F \geq 0 \) on \(\mathbb{R}_+^{d'} \). Let

\[F(y') = \int f(y', y'') \, d\gamma_\alpha(y''). \]

Then

\[A_i f(x', x'') \leq \left(\prod_{i \in I'} x_i^{-\alpha - 1/2} e^{x_i} \right) A_i F(x'). \]
Notice that

\begin{equation}
\int_{Q^{d'}} \left(\prod_{i \in I} x_i^{-\alpha - 1/2} e^{\xi_i} \right) d\gamma_\alpha(x') \sim \prod_{i \in I'} 2^{k_i/2}.
\end{equation}

To prove (5.4) we will prove that (for \(d' = 1, \ldots, d \))

\begin{equation}
\gamma_\alpha \{ x' \in Q^{d'} : A_i F(x') > \beta \} \leq \frac{c_{k', t}}{\beta} \left| F \right|_{L^1(\mu_{\alpha}(\Omega'))}.
\end{equation}

According to Proposition 1, (5.4) follows from (5.5) and (5.6), with

\begin{equation}
c_{k', t} = c_{k', t} \prod_{i \in I'} 2^{k_i/2}.
\end{equation}

(We interpret products and constants with indices over empty sets as 1.)

We will construct a covering of \(Q^{d'} \) consisting of pairwise disjoint convex cones \(\{ K_j \} \) such that, for \(c_t = \prod_{i} 2^{k_i} \),

(i) If \(x' \in Q^{d'} \cap K_j \) then \(K(x') \subseteq \hat{K}_j \), where \(\hat{K}_j \) is the union of \(\sim c_t^{d' - 1} \) cones \(\sim c_t^{d' - 1} \) cones «near» \(K_j \).

(ii) \(| K_j \cap \left\{ \sum_{i \in I} x_i = t \right\}|_{d' - 1} \leq c_t^{d'} \prod_{i \in I' \setminus \{ i_0 \}} 2^{k_i/2} \) if \(0 < t \leq \sum_{i \in I'} 2^{k_i + 1} = T \) and \(i_0 \) is given by \(k_{i_0} = \max k_i \).

Suppose we have this covering. Then, with

\begin{equation}
\beta_j = c_\beta 2^{(\alpha + 1/2) \sum_{i \in I} \gamma_i},
\end{equation}

we get

\begin{align*}
\gamma_\alpha \{ x' \in Q^{d'} : A_i F(x') > \beta \} &\leq \sum_{j} \gamma_\alpha \left\{ x' \in Q^{d'} \cap K_j : \exp \left(\sum_{i \in I} x_i \right) > \beta_j \right\} \\
&\leq 2^{\sum_{i \in I} \gamma_i} \sum_{j} \int_{(T \setminus \ln \beta_j) \vee (T/2)} e^{-t} | K_j \cap \left\{ \sum_{i \in I} x_i = t \right\}|_{d' - 1} dt \\
&\leq 2^{\sum_{i \in I} \gamma_i} c_{d'} \left(\prod_{i \in I' \setminus \{ i_0 \}} 2^{k_i/2} \right) \frac{1}{\beta} 2^{-(\alpha + 1/2) \sum_{i \in I} \gamma_i} \sum_{j} \int_{K_j} F d\gamma_\alpha \\
&\leq \frac{1}{\beta} \left(\prod_{i \in I'} 2^{-k_i/2} \right) | F |_{L^1(\mu_{\alpha})} \\
&\leq \frac{1}{\beta} \left(\prod_{i \in I'} 2^{-k_i/2} \right) | F |_{L^1(\mu_{\alpha})}.
\end{align*}
Hence, the covering would imply (5.4), with (see (5.6) and (5.7))

\[c_{k,l} \sim \left(\prod_i 2^{t_i} \right)^{2d-1} \left(\prod_i 2^{-k_{i+1}/2d} \right) \left(\prod_i 2^{k_i/2} \right). \]

Since

\[\sum_{k \in \mathbb{Z}^d} \left(\prod_{k_j \geq 2(t_j+1)} 2^{-k_j/2d} \right) \left(\prod_{k_j < 2(t_j+1)} 2^{k_j/2} \right) \leq \prod_{i=1}^d 2^{t_i}, \]

this would complete the proof.

It remains to construct the covering. This will be very similar to the construction in the proof of Lemma 5. Therefore, after describing the cones, we just sketch the verifications of (i) and (ii).

From now on everything takes place in \(\mathbb{R}^d \), so we drop the primes on the elements. Let

\[\bar{Q} = \bigcup_{x \in Q^s} Q(x), \quad K = \text{con} (\bar{Q}), \]

and

\[L = K \cap \{ x : x_{i_0} = 2k_{i_0} - 2l_{i_0} + k_{i_0}/2 \}. \]

Next, cover \(L \) with pairwise disjoint \((d'-1)\)-dimensional rectangles \(\bar{R}_j, j \in \mathbb{N} \),

with sides parallel to the axes and of length

\[L_i = 2^{t_i + k_i/2}, \quad i \in I', \quad i \neq i_0. \]

Let

\[R_j = \bar{R}_j \cap L \quad \text{and} \quad K_j = \text{con} (R_j). \]

(i) Suppose \(x \in Q^s \cap K_j \). The condition \(k_i \geq 2(t_i+1) \) ensures that \(y_i \sim 2^{k_i}, \quad i \in I', \quad \) for all \(y \in \bar{Q} \). This and the choice of \(i_0 \) imply that \(y_i - z_i \leq c_i L_i \), whenever \(y \) and \(z \) are points in \(K(x) \cap L \). This gives (i).

(ii) Let \(A = K_j \cap \left\{ \sum x_i = t \right\} \) and let \(A' \) be the orthogonal projection of \(A \) into \(\{ x_{i_0} = 0 \} \). Further, let \(R' \) be the smallest rectangle, with sides parallel to the axes, in \(\{ x_{i_0} = 0 \} \) containing \(A' \). Imitating the verification of (ii) in Lemma 5, we get

\[L'_i \leq c_i L_i, \quad i \in I', \quad i \neq i_0, \]

where \(L'_i \) are the sidelengths of \(R' \). This gives (ii).

The proof of Lemma 6 is complete.

Acknowledgement. This paper is a part of my thesis and I thank my advisor Peter Sjögren for suggesting the topic, for his constant support and interest in my work.
References

Recibido: 12 de diciembre de 1990.

Ulla Dinger
Department of Mathematics
Chalmers University of Technology
S-41296 Göteborg
SWEDEN