On Quasifree States of the Canonical Commutation Relations (I)

By

Huzihiro Araki and Masafumi Shiraiishi

Abstract

A self-dual CCR algebra is defined and arbitrary quasifree state is realized in a Fock type representation of another self-dual CCR algebra of a double size as a preparation for a study of quasi-equivalence of quasifree states.

§ 1. Introduction

A necessary and sufficient condition for the quasi-equivalence of two quasifree representations of the canonical anticommutation relations (CAR) has been derived in [11] for the gauge invariant case and in [3] for the general case. We shall derive an analogous result for the canonical commutation relations (CCR) in this series of papers.

A quasifree state of CCR and Bogoliubov automorphisms have been extensively studied ([5]-[10], [12], [13]). We shall use the formulation developed in [2].

In section 2, we review the formulation in [2]. A self-dual algebra is defined when a linear space K, an antilinear involution Γ of K and a hermitian form γ on K satisfying $\gamma(\Gamma f, \Gamma g)=-\gamma(f, g)^*$ are given. In section 3, we define a quasifree state in terms of a nonnegative hermitian form S on K such that $S(f, g)-S(\Gamma g, \Gamma f)=\gamma(f, g)$. In section 4, the structure of S relative to (K, γ, Γ) is analyzed.

In section 5, basic properties of a Fock representation are stated and a result in [1] is quoted. A Fock type representation is defined as a generalization of a Fock representation to the case of degenerate γ (i.e. Received December 25, 1970.
the case with nontrivial center). In section 6, a quasifree state is realized as the restriction of Fock type state of a CCR algebra for \((\hat{K}_s, \hat{\tau}_s, \hat{F}_s)\) where \(\hat{K}_s\) is about twice as large as \(K\).

An application to the quasi-equivalence of quasifree states will be made in a subsequent paper \([5]\).

§ 2. Basic Notions

Let \(K\) be a complex linear space and \(\tau(f, g)\) be a hermitian form for \(f, g \in K\). Let \(\Gamma\) be an antilinear involution \((\Gamma^2 = 1)\) satisfying \(\tau(\Gamma f, \Gamma g) = -\tau(g, f)\). A self-dual CCR algebra \(\mathfrak{H}(K, \tau, \Gamma)\) over \((K, \tau, \Gamma)\) is the quotient of the complex free * algebra generated by \(B(f), f \in K\), its conjugate \(B(f)^*\), \(f \in K\) and an identity \(1\) over (the two-sided * ideal generated by) the following relations:

1. \(B(f)\) is complex linear in \(f\),
2. \(B(f)^*B(g) - B(g)B(f)^* = \tau(f, g)1\),
3. \(B(\Gamma f)^* = B(f)\).

Any one-to-one linear mapping \(U\) of \(K\) onto \(K_s\) satisfying \(\tau(Uf, Ug) = \tau(f, g)\) and \(\Gamma U = U\Gamma\) preserves the above relations (1)~(3) and hence there exists a unique * automorphism \(\tau(U)\) of \(\mathfrak{H}(K, \tau, \Gamma)\) satisfying \(\tau(U)B(f) = B(Uf)\). \(U\) and \(\tau(U)\) shall be called a Bogoliubov transformation and a Bogoliubov * automorphism.

Any operator \(P\) on \(K\) satisfying

1. \(P^2 = P\),
2. \(\tau(f, Pf) > 0\), if \(Pf \neq 0\),
3. \(\tau(Pf, g) = \tau(f, Pg)\),
4. \(\Gamma Pf = 1 - P\),

is called a basis projection. Such \(P\) is linear.

Let \(L\) be a complex pre-Hilbert space. A CCR algebra \(\mathfrak{A}_{CCR}(L)\) over \(L\) is the quotient of the free * algebra generated by \((a^\dagger, f), (f, a), f \in L\) and an identity by (the two-sided * ideal generated by) the following relations:

1. \((a^\dagger, f)\) is complex linear in \(f\),
2. \((f, a) = (a^\dagger, f)^*\),
(3) \[(f, a), (a^\dagger, g)\] = \[(f, g), L, g, a\].

Let \(P \) be a basis projection. Then the mapping \(\alpha(P) \) from \(\mathfrak{V}(K, \gamma, \Gamma) \) to \(\mathfrak{V}_{\text{CCR}}(PK) \) defined by

\[
(2.1a) \quad \alpha(P, B(f_1) \ldots B(f_n)) = (\alpha(P)B(f_1)) \ldots (\alpha(P)B(f_n)),
\]

\[
(2.1b) \quad \alpha(P)B(f) = (a^\dagger, Pf) + (Pf, a)
\]
is a \(*\) isomorphism of \(\mathfrak{V}(K, \gamma, \Gamma) \) onto \(\mathfrak{V}_{\text{CCR}}(PK) \).

Let \(\mathfrak{V} \) be a \(*\) algebra with an identity. A state \(\varphi \) of \(\mathfrak{V} \) is a complex valued linear functional over \(\mathfrak{V} \) satisfying \(\varphi(1) = 1 \) and \(\varphi(A^*A) \geq 0 \) for all \(A \in \mathfrak{V} \). Associated with every state \(\varphi \), there exists a triplet \(\mathfrak{H}_\varphi, \pi_\varphi, \Omega_\varphi \) of a Hilbert space, a representation of \(\mathfrak{V} \) by densely defined closable operators \(\pi_\varphi(A), A \in \mathfrak{V} \) and a unit vector \(\Omega_\varphi \), cyclic for \(\pi_\varphi(\mathfrak{V}) \), such that \(\varphi(A) = (\pi_\varphi(A)\Omega_\varphi) \), \(\pi_\varphi(A)^* \supset \pi_\varphi(A^*) \) and the domain of \(\pi_\varphi(A) \) is \(\pi_\varphi(\mathfrak{V}) \).

Let \(\text{Re } K \) denote the set of \(f \in K \) such that \(\Gamma f = f \). It is a real linear space. \(f \in \text{Re } K \) if and only if \(B(f)^* = B(f) \).

Let \(\varphi \) be a state of \(\mathfrak{V}(K, \gamma, \Gamma) \) such that \(\pi_\varphi(B(f)) \) is essentially selfadjoint for all \(f \in \text{Re } K \). Let \(W_\varphi(f) = \exp i \pi_\varphi(B(f)) \), \(f \in \text{Re } K \). We shall call such state \(\varphi \) over \(\mathfrak{V}(K, \gamma, \Gamma) \) as a regular state if \(W_\varphi(f) \) satisfies the Weyl-Segal relations:

\[
(2.2) \quad W_\varphi(f)W_\varphi(g) = W_\varphi(f + g)\exp \frac{1}{2} \gamma(g, f).
\]

Let \(\varphi \) be a regular state over \(\mathfrak{V}(K, \gamma, \Gamma) \). Let \(N_\varphi \) be the set of \(f \in K \) with \(\pi_\varphi(B(f)) = 0 \), which is a linear subset of \(K \). Let \(\text{Re } N_\varphi = \text{Re } K \cap \text{Re } N_\varphi \). The collection of distances

\[
(2.3) \quad d_{\mathcal{T}}(f, f') = \sup_{\|T\| \leq 1} \|W_\varphi(tf) - W_\varphi(tf')\|, \quad T \in \mathfrak{H}_{\pi_\varphi},
\]
defines a vector topology on \(\text{Re } K/\text{Re } N_\varphi \), which we shall denote by \(\tau_\varphi \). It also induces a vector topology on \((\text{Re } K/\text{Re } N_\varphi) + i(\text{Re } K/\text{Re } N_\varphi) = K/\text{N}_\varphi \), which will be denoted again by \(\tau_\varphi \). The topology induced by one distance \(d_{\mathcal{T}} \) for a cyclic \(T \) is mutually equivalent and is equivalent to \(\tau_\varphi \) [4].

(The cyclicity here refers to \(W_\varphi(f), f \in \text{Re } K \).)
§ 3. Quasifree States

Definition 3.1. A state \(\varphi \) on \(\mathfrak{F}(K, \gamma, \Gamma) \) satisfying the following relations is called a quasifree state:

\[
\begin{align*}
(3.1) & \quad \varphi(B(f_1) \cdots B(f_{2n-1})) = 0 \\
(3.2) & \quad \varphi(B(f_1) \cdots B(f_{2n})) = \sum_{s} \prod_{j=1}^{n} \varphi(B(f_{s(j)} B(f_{s(j+n)}))
\end{align*}
\]

where \(n = 1, 2, \ldots \) and the sum is over all permutations \(s \) satisfying \(s(1) < s(2) < \cdots < s(n) \), \(s(j) < s(j+n) \), \(j = 1, \ldots, n \).

Lemma 3.2. For any state over \(\mathfrak{F}(K, \gamma, \Gamma) \), the hermitian form defined by

\[
\begin{align*}
(3.3) & \quad \varphi(B(f)\star B(g)) = S(f, g),
\end{align*}
\]

is positive semidefinite (i.e. \(S(f, f) \geq 0 \)) and satisfies

\[
\begin{align*}
(3.4) & \quad \gamma(g, f) = S(g, f) - S(\Gamma f, \Gamma g).
\end{align*}
\]

Proof. The positivity of \(\varphi \) implies the positive semidefiniteness of \(S \).

\[
\begin{align*}
S(\Gamma f, \Gamma g) = \varphi(B(f)\star B(g)^*) = \varphi(B(g)^* B(f)) - \gamma(g, f)1
= S(g, f) - \gamma(g, f).
\end{align*}
\]
Q. E. D.

Lemma 3.3. The hermitian form

\[
\begin{align*}
(3.5) & \quad (g, f)_S = S(g, f) + S(\Gamma f, \Gamma g)
\end{align*}
\]

is positive semi-definite and satisfies

\[
\begin{align*}
(3.6) & \quad (\Gamma g, \Gamma f)_S = (f, g)_S, \\
(3.7) & \quad |\gamma(g, f)|^2 \leq (f, f)_S S(g, g)_S.
\end{align*}
\]

It is positive definite if \(\gamma \) is non-degenerate.

Proof. From Lemma 3.2,

\[
S(f, f) \geq 0, \quad S(\Gamma f, \Gamma f) \geq 0.
\]

Hence \((g, f)_S\) is positive semidefinite. We also have
By the Schwarz inequality,
\[
|\tau(g, f)| \leq |S(g, f)| + |S(\Gamma f, \Gamma g)|
\leq S(g, g)^{1/2} S(f, f)^{1/2} + S(\Gamma f, \Gamma f)^{1/2} S(\Gamma g, \Gamma g)^{1/2}
\leq (S(g, g) + S(\Gamma g, \Gamma g))^{1/2} (S(f, f) + S(\Gamma f, \Gamma f))^{1/2}
= (g, g)^{1/2} (f, f)^{1/2}.
\]

If \((f, f)_S = 0\), we have \(\tau(f, g) = 0\) for all \(g\). If \(\tau\) is non-degenerate, we have \(f = 0\). Therefore, \((f, g)_S\) is positive definite. Q.E.D.

Lemma 3.4. The set \(N_S\) of \(f \in K\) satisfying \((f, f)_S = 0\) is a \(\Gamma\)-invariant subspace of \(K\) such that \(S(f, g) = \tau(f, g) = 0\) for any \(f \in N_S\) and any \(g \in K\). If \(S\) is related to a state \(\phi\) by (3.3), then \(\pi_\phi(B(f)) = 0\) is equivalent to \(f \in N_S\). (\(N_S = N_\phi\) for a regular \(\phi\).)

Proof. From the positive semidefiniteness of \((g, f)_S\), it follows that \((g, f)_S = 0\) for any \(g \in K\) whenever \(f \in N_S\). Hence \(N_S\) is a subspace of \(K\). By (3.6), \(N_S\) is \(\Gamma\)-invariant. From (3.7), \(\tau(f, g) = 0\) for any \(g \in K\) whenever \(f \in N_S\). This implies that \(B(f), f \in N_S\) commutes with all \(B(g), g \in K\). In addition, \(0 \leq S(f, f) \leq (f, f)_S = 0\) which implies \(\|\pi_\phi(B(f))Q_\phi\|^2 = S(f, f) = 0\) for \(f \in N_S\). Therefore \(f \in N_S\) implies \(\pi_\phi(B(f)) = 0\). Conversely, \(\pi_\phi(B(f)) = 0\) implies \(S(f, f) = \|\pi_\phi(B(f))Q_\phi\|^2 = 0\), \(S(\Gamma f, \Gamma f) = \|\pi_\phi(B(f))^*Q_\phi\|^2 = 0\), and hence \((f, f)_S = 0\). Q.E.D.

Lemma 3.5. For any positive semidefinite hermitian \(S(g, f)\) on \(K \times K\) satisfying (3.4), there exists a unique quasifree state \(\phi_S\) satisfying (3.3). Any quasifree state is regular.

Proof. The existence will be seen from Lemma 5.3 and Corollary 6.2. The uniqueness is immediate from (3.1) and (3.2). The regularity will be seen from Corollary 5.6.

Definition 3.6. Let \(S, \pi, Q\) denote the Hilbert space, the repre-
sentation and the cyclic unit vector canonically associated with the quasifree state φ_s through the relation

$$\varphi_s(A) = (\Omega_s, \pi_s(A) \Omega_s), \quad A \in \mathcal{A}(K, \gamma, \Gamma).$$

If S commutes with a Bogoliubov transformation U, then a unitary operator $T_s(U)$ on \mathcal{Q}_s is defined by

$$T_s(U) \pi_s(A) \Omega_s = \pi_s(\tau(U) A) \Omega_s$$

and the continuity. (S is defined in Lemma 4.2.)

§ 4. Structure of (S, K, γ, Γ)

Definition 4.1. K_s denotes the completion of K/N_s with respect to the positive hermitian form induced on K/N_s by $(f, g)_s$. K/N_s is identified with a dense subset of K_s. The Hilbert space topology on K/N_s is denoted by τ_s.

Lemma 4.2. (1) There exists an antiunitary involution Γ_s on K_s such that $\bar{\Gamma} f = \Gamma_s f$ for all $f \in K$ where $\bar{f} = f + N_s \in K/N_s$.

(2) There exists a bounded operator γ_s on K_s such that

$$\gamma(f, g) = (\bar{f}, \gamma_s \bar{g})_s$$

for $f, g \in K$. It satisfies

$$\gamma_s^8 = \gamma_s, \quad \Gamma_s \gamma_s \Gamma_s = -\gamma_s \quad \text{and} \quad \|\gamma_s\|_s \leq 1.$$

(3) There exists a bounded operator S on K_s such that

$$S(f, g) = (\bar{f}, S \bar{g})_s$$

for $f, g \in K$. It satisfies

$$S^* = S, \quad \Gamma_s S \Gamma_s = 1 - S, \quad 0 \leq S \leq 1,$$

and

$$S - \Gamma_s S \Gamma_s = \gamma_s.$$

Proof. Due to the Γ-invariance of N_s and (3.6), $\bar{\Gamma}_s f = \bar{\Gamma} f$ defines an antilinear isometric operator on K/N_s and hence the closure Γ_s of
Γ_s is defined on all vectors in K_s and $(\Gamma_s f, \Gamma_s g)_s = (f, g)_s$ for all $f, g \in K_s$. Since $\Gamma^2 = 1$, we have $\Gamma_s^2 = 1$ and hence Γ_s is an antiunitary involution on K_s.

(3.7) and Lemma 3.4 imply the existence of γ_s satisfying (4.1) and $\|\gamma_s\|_s \leq 1$. Since $\gamma(f, g)$ is hermitian, we have $\gamma_s^* = \gamma_s$. Since $\gamma(\Gamma f, \Gamma g) = -\gamma(g, f)$, we have $\Gamma_s \gamma_s \Gamma_s = -\gamma_s$.

From the positivity $S(\Gamma f, \Gamma f) \geq 0$ of S, we have $0 \leq S(f, f) \leq \|f\|^2$ for $f \in K$. This together with Lemma 3.4 imply the existence of S satisfying (4.3), $S^* = S$ and $0 \leq S \leq 1$. From (3.5), we have $S + \Gamma_s S \Gamma_s = 1$ and from (3.4), we have (4.5). Q. E. D.

Definition 4.3. Let E_+, E_- and E_0 be the spectral projection of γ_s for $(0, +\infty)$, $(-\infty, 0)$ and $\{0\}$, respectively. Let $K_{\pm} = E_{\pm} K_s$ and $K_0 = E_0 K_s$.

Lemma 4.4. $\Gamma_s E_\pm \Gamma_s = E_\pm$, $\Gamma_s E_0 \Gamma_s = E_0$, $\Gamma_s K_{\pm} = K_\pm$ and $\Gamma_s K_0 = K_0$

Proof. This follows from $\Gamma_s \gamma_s \Gamma_s = -\gamma_s$. Q. E. D.

§ 5. Fock Representations

Definition 5.1. A quasifree state φ_s is called a Fock state if the operator S of Lemma 4.2 is a basis projection on K_s. S in such a case will be written generally as P. The associated representation π_P is called a Fock representation.

Lemma 5.2. If P is a basis projection of (K, γ, Γ), then the quasifree state φ_P of $\mathfrak{F}(K, \gamma, \Gamma)$ for $P(f, g) = \gamma(f, Pg)$, if it exists, is a Fock state.

Remark. In this case γ is automatically non-degenerate and $N_p = 0$. P originally given on K is a restriction to K of the operator P on K_P defined by Lemma 4.2 and we have $\gamma(f, Pg) = (f, \gamma_p Pg)_P = (f, Pg)_P$ for $f, g \in K$. Therefore the appearance of two P is probably not confusing.

We shall summarize known properties of a Fock state in the following
Lemma 5.3. Let P be a basis projection for (K, γ, Γ). A state φ of $\mathcal{A}(K, \gamma, \Gamma)$ satisfying

$$(5.1) \quad \varphi(B(f)B(\Gamma f)) = 0, \quad f \in PK,$$

exists, is unique and is a quasifree state φ_P.

Proof. By splitting $B(f)$ as a sum $B(Pf) + B((1-P)f)$ and bringing $B(Pf)$ to the left of any other $B((1-P)^k f')$ with a help of the commutation relations, any element A in $\mathcal{A}(K, \gamma, \Gamma)$ can be written as $A = \sum \varphi_i B(f_i) + \sum \varphi_j (1-P)K$, $g_j \in PK$. Since (5.1) implies $\varphi(QB(f)) = \varphi(B(g)Q) = 0$ for $f \in (1-P)^k K$, $g \in PK$ and $Q \in \mathcal{A}(K, \gamma, \Gamma)$ by the Schwarz inequality, we have $\varphi(A) = \lambda$. Hence the uniqueness.

The well known Fock state of $\mathcal{A}_{CCR}(PK)$ gives the quasifree state φ_P through the identification of $\mathcal{A}_{CCR}(PK)$ with $\mathcal{A}(K, \gamma, \Gamma)$ via $\alpha(P)$. φ_P clearly satisfies (5.1). Q. E. D.

Lemma 5.4. Let $f \in \text{Re} K$ and $D_0 = \pi_P[\mathcal{A}(K, \gamma, \Gamma)] \mathcal{O}_P$. D_0 is a dense set of entire analytic vectors of $B(f)$. The sum

$$(5.2) \quad \sum_{n=0}^{\infty} n!^{-1} i^n \pi_P(B(f))^n$$

converges on D_0. Its closure, denoted by $W_P(f)$, is unitary and satisfies

$$(5.3) \quad W_P(f_1)W_P(f_2) = W_P(f_1 + f_2) \exp(1/2)\gamma(f_2, f_1),$$

$$(5.4) \quad (\mathcal{O}_P, W_P(f)\mathcal{O}_P) = \exp(-1/2)\gamma(f, Pf).$$

$f \mapsto W_P(f)$ is continuous with respect to a norm $\gamma(f, Pf)^{1/2}$ on $\text{Re} K$ and the strong operator topology on \mathcal{O}_P.

Proof. Let $(\mathcal{O}_P)_n$ be the subspace of \mathcal{O}_P generated by $\pi_P(B(g_j))\mathcal{O}_P$, $g_j \in PK$. If $\mathcal{V} \in \sum_{n=0}^{N} (\mathcal{O}_P)_n$, then

$$(5.5) \quad ||\pi_P(B(f))\mathcal{V}|| \leq \sqrt{2} (N+1)^{1/2} \gamma(f, (2P-1)f)^{1/2}||\mathcal{V}||.$$

This follows from a well known calculation: Let $\{f_j\}$ be a complete orthonormal basis of PK with $f_0 = Pf$. Then $\Phi = \sum_{n=1}^{N} \pi_P(B(f_j))\mathcal{O}_P(n \leq N)$
is a complete orthonormal basis of $\sum_{n=0}^{N} (\mathcal{S}_{n})$, for which $\pi_P(B(Pf))\Phi$ is also mutually orthogonal and $\|\pi_P(B(Pf))\Phi\| = (k+1)^{1/2} \gamma(f, Pf)^{1/2}\|\Phi\|$ where k is the number of ν with $j_\nu = 0$. Hence $\|\pi_P(B(Pf))\Psi\| \leq (N+1)^{1/2} \gamma(f, Pf)^{1/2} ||\Psi||$. A similar calculation with $f_0 = I^*(1-P)f$ leads to $\|\pi_P(B(1-P)f)f)f)||\Psi||$.

From (5.5) we have $\lim_{f_0 \to \infty} \|\pi_P(B(f))^n\Psi||^{1/n} = 0$ for $\Psi \in D_0 = \bigcup N_{n=0}^{N} (\mathcal{S}_{n})$. Hence all such Ψ is an entire analytic vector for $\pi_P(B(f))$, $f \in \text{Re} K$, (5.2) applied on Ψ converges absolutely, the closure $\pi_P(B(f))$ of $\pi_P(B(f))$ is selfadjoint, $W_P(f) = \exp i \pi_P(B(f))$, and $W_P(f)$ is unitary.

By the commutation relations, we have

$$n!^{-1}B(f_1 + f_2)^n = \sum_{k+l+2m=n} k!^{-1}B(f_1)^k f_1^{-1}B(f_2)^l f_1^{-l}B(f_2)^m f_2^{-m} \gamma(f_2, f_1)^m.$$

From the previous result and the Schwarz inequality, $\sum k!^{-1}l!^{-1}(B(f_1)^k, B(f_2)^l)^2$ is absolutely convergent for $\Phi, \Psi \in D_0$ and hence we obtain from (5.6) the equality (5.3) for a matrix element between two vectors Φ and Ψ in a dense set D_0. Hence (5.3) holds.

From (5.3) and (5.4), we have

$$d_P(f_1, f_2)^2 = \|\{W_P(f_1) - W_P(f_2)\} \Omega_P\|^2$$

$$= 2 \{1 - (\exp(-1/4)\|f_2 - f_1\|_p) \cos(i/2) \gamma(f_2, f_1)\}$$

where $||f||_p = \gamma(f, \frac{1}{2}P - 1)f)$, which is $2\gamma(f, Pf)$ for $f \in \text{Re} K$, and $\gamma(f_2, f_1) = \gamma(f_2, f_1) = -\gamma(f_2, f_1)^*$ is pure imaginary for $f_1, f_2 \in \text{Re} K$. Since $\gamma(f_1, f_1) = 0$ for $f_1 \in \text{Re} K$, we have from (3.7)

$$\gamma(f_2, f_1) = \gamma(f_2 - f_1, f_1) \leq \|f_2 - f_1\|_p \|f_1\|_p.$$

Hence $f \to W_P(f)\Omega_P$ is continuous. By (5.3) and (3.7), this implies the continuity of $f \to W_P(f)\Omega_P$ for $\Psi = W_P(g)\Omega_P$, $g \in \text{Re} K$. Since $\pi_P(B(g)) = \lim_{r \to 0} (it)^{-1}(W(tg) - 1)$ on D_0 for $f \in \text{Re} K$, and since $W_P(g_1)W_P(g_2)\cdots W_P(g_n)$ Ω_P is a multiple of $W_P(\sum g)\Omega_P$, finite linear combinations of $W_P(g)\Omega_P$, $g \in \text{Re} K$, are dense in \mathcal{S}_P. Therefore $f \to W_P(f)\Omega_P$ is continuous. Q. E. D.

Lemma 5.5. Let $\text{Re} K_\rho$ be the real Hilbert space obtained by the
completion of $Re K$ with respect to the inner product $(f_1, f_2)_P = \gamma(f_1, (2P-1)f_2)$, $f_1, f_2 \in Re K$. If $f = \lim f_n, f_n \in Re K$, then $W_P(f) = \lim W_P(f_n)$ exists and does not depend on $\{f_n\}$ for a fixed f.

Let H_1 be a linear subset of $Re K_P$. Denote by H_1^\perp the set of vectors $f \in Re K_P$ such that $(f, \gamma_P g)_P = 0$ for all $g \in H_1$. Let $R_P(H_1)$ be the von Neumann algebra generated by $W_P(f), f \in H_1$. Let \bar{H}_1 denote the closure of H_1 in $Re K_P$. Then

(0) $R_P(Re K_P)$ is irreducible and $R_P(0)$ is trivial,
(i) $R_P(H_1) = R_P(\bar{H}_1),$
(ii) $R_P(H_1)^\perp = R_P(H_1^\perp),$
(iii) $(R_P(H_1) \cup R_P(H_2))^\perp = R_P(H_1 + H_2),$
(iv) $(R_P(H_1) \cap R_P(H_2))^\perp = R_P(H_1 \cap H_2),$
(v) Ω_P is cyclic for $R_P(H_1)$ if and only if $\bar{P}(H_1 + iH_1)$ is dense in PK_P. (P is the closure of P on K_P.)
(vi) Ω_P is separating for $R_P(H_1)$ if and only if $\bar{P}(H_1^\perp + iH_1^\perp)$ is dense in PK_P.
(vii) $R_P(H_1)$ is a factor if and only if $\bar{H}_1 \cap H_1^\perp$ is 0.

Proof. The existence of the unique limit $W_P(f)$ for $f \in Re K_P$ follows from Lemma 5.4. The von Neumann algebra $R_P(H_1)$ is $R(\bar{H}_1/Re K_P)$ in the notation of [1], where $(f_1, f_2)_S$ and $\gamma(f_1, f_2)$ are respectively (f_1, f_2) and $(f_1, \beta f_2)$. (i)~(iv) and (vii) follow from Theorem 1 of [1]. (0) and (v) follow from Lemma 5.1 of [1]. (vi) follows from (v) and (ii).

Q. E. D.

Corollary 5.6. A Fock representation is regular and irreducible.

This is due to Lemmas 5.4 and 5.5.

The Fock representation defined above is applicable only for the case of non-degenerate γ. We now consider its generalization to the case of degenerate γ.

Definition 5.7. A quasifree state φ_S is called a Fock type state if $N_S = 0$ and the spectrum of the operator S in Lemma 4.2 is contained in $\{0, 1/2, 1\}$. The corresponding representation is called a Fock type
representation.

Lemma 5.8. Let K, γ, Γ be given. Let $\Pi(f_1, f_2)$ be a positive semidefinite hermitian form on K satisfying (3.4), where S is to be replaced by Π. Assume that $N_n = 0$ and the spectrum of the operator Π defined by Lemma 4.2 is contained in $\{0, 1/2, 1\}$. Let E_+, E_0 be defined as in Definition 4.3. Let

\[(5.9)\quad \tilde{K}_n = K_n \oplus E_0 K_n,\]

\[(5.10)\quad \tilde{\Gamma}_n(f \oplus g) = \Gamma_n f \oplus \Gamma_n g,\]

\[(5.11)\quad \tilde{\gamma}_n(f_1 \oplus g_1, f_2 \oplus g_2) = (f_1, \tilde{\gamma}_n f_2)_n + i\{(g_1, f_2)_n - (f_1, g_2)_n\}.\]

Let $\mathfrak{A} = \mathfrak{A}(K, \gamma, \Gamma)$ with the subalgebra $\mathfrak{A}(K \oplus 0, \tilde{\gamma}_n, \tilde{\Gamma}_n)$ of \mathfrak{A}. Let

\[(5.12)\quad \tilde{\mathfrak{H}}(f \oplus g) = \{E_+ f + (E_0 f - ig)/2\} \oplus \{(iE_0 f + g)/2\},\]

\[(5.13)\quad \tilde{\mathfrak{H}}(h_1, h_2) = \tilde{\gamma}_n(h_1, \tilde{\mathfrak{H}} h_2).\]

Then $\varphi_{\tilde{\mathfrak{H}}}$ is a Fock state of \mathfrak{A} and its restriction to \mathfrak{A} is the Fock type state φ_{Π}.

Proof. $\tilde{\Gamma}_n$ is an antiunitary involution of \tilde{K}_n and $\tilde{\gamma}_n$ is a hermitian form satisfying $\tilde{\gamma}_n(\tilde{\Gamma}_n h_1, \tilde{\Gamma}_n h_2) = -\tilde{\gamma}_n(h_1, h_2)^\ast$. From (5.12), it follows that $\tilde{\Gamma}_n \tilde{\mathfrak{H}} \tilde{\Gamma}_n = 1, \tilde{\mathfrak{H}}^2 = \tilde{\mathfrak{H}}$,

\[(5.14)\quad \tilde{\gamma}_n(f_1 \oplus g_1, \tilde{\mathfrak{H}}(f_2 \oplus g_2))
= (f_1, \Pi f_2)_n + (g_1, \Pi g_2)_n + i\{(g_1, \Pi f_2)_n - (f_1, \Pi g_2)_n\}
= \tilde{\gamma}_n(\tilde{\mathfrak{H}}(f_1 \oplus g_1), f_2 \oplus g_2),\]

and

\[(5.15)\quad \tilde{\gamma}_n(f \oplus g, \tilde{\mathfrak{H}}(f \oplus g)) \geq 0.\]

Therefore $\tilde{\mathfrak{H}}$ is a basis projection and $\varphi_{\tilde{\mathfrak{H}}}$ is a Fock state.

The restriction of $\varphi_{\tilde{\mathfrak{H}}}$ to \mathfrak{A} is φ_{Π} as is seen from (5.14). Q. E. D.

Corollary 5.9. For any Π in Lemma 5.8, the Fock type state φ_{Π}
exists. The commutant $\pi(H)(B)$ is abelian and is generated by $\pi(H)(B(f))$, $f \in E_0K_H$.

Proof. From Lemmas 5.8 and 5.5 (ii), the following computation suffices: If $f \oplus g \in (K \oplus 0)^+$, then $(f, \gamma(H)(1-E_0)f)_H = (g, E_0f)_H = 0$ for all $f, g \in K$ and hence $f \in E_0K_H$ and $g = 0$. Q. E. D.

§ 6. A Realization of a Quasifree State on a Fock Type Representation

Lemma 6.1. (1) Let

$$K'_S = K_S \oplus K_S,$$

$$\gamma'_S(f_1 \oplus g_1, f_2 \oplus g_2) = (f_1, \gamma S f_2)_S - (g_1, \gamma S g_2)_S,$$

$$\Gamma'_S = \Gamma'_S \oplus \Gamma'_S.$$

Then Γ'_S is an antilinear involution and γ'_S is a hermitian form satisfying $\gamma'_S(\Gamma'_S h_1, \Gamma'_S h_2) = -\gamma'_S(h_1, h_2)^*$. If $N_S = N'_S$ and $\gamma_S = \gamma'_S$, then there exists a one-to-one linear map U of K'_S onto K'_S such that $Uh = h$ for $h = (f + N_S) \oplus (g + N_S)$, $f, g \in K$. It satisfies $U\Gamma'_S = \Gamma'_S U$ and $\gamma'_S(h_1, h_2) = \gamma'_S(Uh_1, Uh_2)$.

(2) Let

$$\gamma'_S(f_1 \oplus g_1, f_2 \oplus g_2)_S = (f_1, f_2)_S + (g_1, g_2)_S$$

$$+ 2(f_1, S^{1/2}(1-S)^{1/2} g_2)_S$$

$$+ 2(g_1, S^{1/2}(1-S)^{1/2} f_2)_S.$$

Then it is a Γ'_S-invariant positive semidefinite form satisfying

$$|\gamma'_S(h_1, h_2)| \leq ||h_1||_S ||h_2||_S.$$

The kernel N'_S (i.e. the set of h satisfying $||h||_S = 0$) consists of $f \oplus -f$, $f \in E_0K_S$. If $N_S = N'_S$ and $\gamma_S = \gamma'_S$, then $N'_S = UN'_S$.

(3) (6.4), γ'_S and Γ'_S induce on K'_S/N'_S a positive definite inner product $(\hat{h}_1, \hat{h}_2)_{\hat{S}} = (h_1, h_2)'_S$, a hermitian form $\hat{\gamma}_S(\hat{h}_1, \hat{h}_2) = \gamma'_S(h_1, h_2)$ and an antilinear involution $\hat{\Gamma}_S \hat{h} = (\Gamma'_S h)^*$ satisfying $\hat{\Gamma}_S \hat{h}_1, \hat{\Gamma}_S \hat{h}_2)_{\hat{S}} = (\hat{h}_2, \hat{h}_1)'_{\hat{S}}$ and $\hat{\gamma}_S(\hat{\Gamma}_S \hat{h}_1, \hat{\Gamma}_S \hat{h}_2) = -\hat{\gamma}_S(\hat{h}_2, \hat{h}_1)$ where $\hat{h} = h + N'_S \in K'_S/N'_S$. The closure
of $\hat{\tau}_S$ and $\hat{\tau}'_S$ on the completion \hat{K}_S of K'_S/N'_S, denoted by the same letter, satisfy the same properties. $\hat{\tau}'_S$ is antiunitary and there exists an operator $\hat{\tau}'_S$ such that

$$(6.6) \quad \hat{\tau}'_S(h_1, h_2) = (h_1, \hat{\tau}'_S h_2),$$

$$(6.7) \quad \hat{\tau}'_S^* = \hat{\tau}'_S, \quad \hat{\tau}'_S \hat{\tau}'_S = -\hat{\tau}'_S.$$

If $N_S = N'_S$ and $\tau_S = \tau'_S$, then U of (2) induces a one-to-one linear map of \hat{K}_S onto \hat{K}'_S such that $\hat{U}\hat{\tau}'_S = \hat{\tau}'_S \hat{U}$ and $\hat{\tau}_S(\hat{U}h_1, \hat{U}h_2) = \hat{\tau}_S(h_1, h_2)$.

(4) Let

$$(6.8) \quad \Pi_S = (1/2)(1 + \hat{\tau}_S).$$

Then $\hat{\tau}'_S \Pi S \hat{\tau}'_S = 1 - \Pi S$, $\Pi S^* = \Pi S$ and the spectrum of ΠS is contained in $\{0, 1/2, 1\}$.

(5) For $f \in K$, let $[f] = (\langle f, 0 \rangle + N'_S$ and identify K'_S/N'_S with a dense subset of \hat{K}_S. Then

$$(6.9) \quad \hat{\tau}_S([f], [g]) = \tau(f, g).$$

$$(6.10) \quad (\langle f \rangle, \Pi S \langle g \rangle) = S(f, g).$$

(6) If $N_S = N'_S$ and $\tau_S = \tau'_S$, then $\tau_{II_S} = \tau_{II'_S}$ and eigenspaces of ΠS and Π'_S for an eigenvalue $1/2$ are mapped by \hat{U}.

Proof. (1) The properties of Γ'_S and $\hat{\tau}'_S$ are immediate. Since K_S and K'_S is the completion of $K/N_S = K/N'_S$ with respect to $\tau_S = \tau'_S$, there is a natural identification map U which is linear. If $f_j, g_j \in K$ and $h_j = (f_j + N_S) \oplus (g_j + N_S)$, then

$$\hat{\tau}'_S(h_1, h_2) = \tau(f_1, f_2) - \tau(g_1, g_2) = \tau'_S(h_1, h_2),$$

$$\Gamma'_S h_1 = (\Gamma f_1 + N_S) \oplus (\Gamma g_1 + N_S) = \Gamma'_S h_1.$$

Since such f_j and g_j are dense in K_S, these equalities imply $U \Gamma S = \Gamma'_S U$ and $\gamma_S(h_1, h_2) = \gamma'_S(Uh_1, Uh_2)$.

(2) (6.4) is obviously a Γ'_S-invariant hermitian form. We have

$$(6.11) \quad (f \oplus g, f \oplus g)'_S = \|S^{1/2}f + (1 - S)^{1/2}g\|^2_S + \|(1 - S)^{1/2}f + S^{1/2}g\|^2_S \geq 0.$$

We also have

$$(6.12) \quad \tau'_S(f_1 \oplus g_1, f_2 \oplus g_2) = (S^{1/2}f_1 + (1 - S)^{1/2}g_1, S^{1/2}f_2 + (1 - S)^{1/2}g_2)_S$$
due to \(\gamma_s = 2S - 1 \), which implies
\[
\| \tau_s(f_1 \oplus g_1, f_2 \oplus g_2) \| \leq \| S^{1/2} f_1 + (1 - S)^{1/2} g_1 \|_s \| S^{1/2} f_2 + (1 - S)^{1/2} g_2 \|_s \\
+ \| (1 - S)^{1/2} f_1 + S^{1/2} g_1 \|_s \| (1 - S)^{1/2} f_2 + S^{1/2} g_2 \|_s \\
\leq \| f_1 \oplus g_1 \|_s \| f_2 \oplus g_2 \|_s.
\]

By (6.11), \(\| f \oplus g \|_s = 0 \) is equivalent to \((2S - 1)f = 0 \) and \(f + g = 0 \). Namely \(N_s \) consists of \(\tau_s = \tau_s' = 0 \) and \(f = g \in E \). \(E_0 \) is the set of \(f \in K_s \) such that \((f, \tau_s g)_s = 0 \) for all \(g \in K_s \). If \(N_s = N_s' \) and \(\tau_s = \tau_s' \), then there is a natural identification of \(K_s \) with \(K_{s} \) which identifies \(E_0 K_s \) with \(E_0' K_{s} \) due to \((f, \tau_s g)_s = \tau(f, g) = (f, \tau_s' g)' \) for \(f, g \in K \). (\(E_0 \) and \(E_0' \) are orthogonal projections of \(S \) and \(S' \) for an eigenvalue \(1/2 \). Since the orthogonality refers to different inner product, \(E_0 \) and \(E_0' \) need not be the same.) This implies \(N_s' = UN_s' \).

(3) Immediate from (1) and (2).

(4) Let \(\hat{\mathcal{K}}_s \), \(\hat{\mathcal{K}}_{s} \), and \(\hat{\mathcal{K}}_s' \) be the subspace of \(\hat{\mathcal{K}}_s \) generated by \(\{ \| f \|_s \} \), \(\{ (1 - S)^{1/2} f \} \), and \(\{ E_0 f \|_s \} \), respectively, where \(f \) runs over \(K_s \). It is easily seen that they are mutually orthogonal and altogether generate \(\hat{\mathcal{K}}_s \). For \(h_s, h_s' \in \hat{\mathcal{K}}_s \), we have \(\hat{\tau}_s(h_s, h_s') = \sigma \delta_{a_s}(h_s, h_s') \) where \(\sigma = +, - \) or 0. Therefore \(\hat{\tau}_s h_s = \sigma h_s \) and the spectrum of \(\Pi_s \) is contained in \(\{ 0, 1/2, 1 \} \).

(5) Immediate from definitions.

(6) From the proof of (4) and the last part of the proof of (2), it follows that \(\hat{\mathcal{K}}_s \) for \(S \) and \(S' \) are mapped by \(U \) if \(N_s = N_s', \pi_s = \pi_{s}' \).

The topology \(\tau_{\pi_s} \) is the strong topology of \(\hat{\mathcal{K}}_s \). Let \(\{ f_a \|_s \} \) be a Cauchy net relative to \(\tau_{\pi_s} \) where \(f_a, g_a \in K_{s} \). \(S^{1/2} f_a + (1 - S)^{1/2} g_a = F_a \) and \((1 - S)^{1/2} f_a + S^{1/2} g_a = G_a \) are Cauchy in \(K_{s} \). Therefore \(f_a + g_a = \{ S^{1/2} + (1 - S)^{1/2} \}^{-1} (F_a + G_a) \) and \((2S - 1)(f_a - g_a) = \{ S^{1/2} + (1 - S)^{1/2} \}^{-1} (F_a - G_a) \) are Cauchy. Conversely, if \(f_a + g_a \) and \((2S - 1)(f_a - g_a) \) are Cauchy in \(K_{s} \), then \(F_a \) and \(G_a \) are Cauchy and hence \(\{ f_a \|_s \} \) is Cauchy in \(\hat{\mathcal{K}}_s \).

If \(N_s = N_s' \) and \(\pi_s = \pi_{s}' \), then the properties of a net \(f_a \) being Cauchy relative to \(\pi_s \) and \(\pi_{s}' \) are the same. Furthermore, \(\gamma_s = 2S - 1 \)
and \((f, \tau_S g)_S = (f, \tau_{S'} g)_{S'}\) imply that \((2S-1)g_a\) is Cauchy relative to \(\tau_S\) if and only if \((2S'-1)g_a\) is Cauchy relative to \(\tau_{S'}\) by the duality.

Combining above two sets of arguments, we see that \((f_a \oplus g_a)^\wedge\) is Cauchy relative to \(\tau_{\pi S}\) if and only if \((f_a \oplus g_a)^\wedge\) is Cauchy relative to \(\tau_{\pi S'}\).

Q. E. D.

Corollary 6.2. The map \(f \in K \rightarrow \lfloor f \rfloor \in K_S\) induces a \(*\) homomorphism \(\alpha_S\) of \(\mathfrak{A}(K, \tau, \Gamma)\) into \(\mathfrak{A}(\hat{K}_S, \hat{\tau}_S, \hat{\Gamma}_S)\). The restriction of a Fock type state \(\varphi_{\pi S}\) of \(\mathfrak{A}(\hat{K}_S, \hat{\tau}_S, \hat{\Gamma}_S)\) to \(\alpha_S \mathfrak{A}(K, \tau, \Gamma)\) gives a quasifree state \(\varphi_S\) of \(\mathfrak{A}(K, \tau, \Gamma)\) through \(\varphi_{\pi S}(\alpha_S A) = \varphi_S(A)\).

This is immediate from Lemma 6.1.

Remark 6.3. It is possible to realize \(\varphi_S\) directly in a Fock representation in the following manner: Define \(K_S^\wedge = K_S \oplus K_S, \Gamma_S^\wedge = \Gamma_S \oplus \Gamma_S,\)

\[
\tau_S^\wedge(f_1 \oplus g_1, f_2 \oplus g_2) = (f_1, \tau_S f_2)_S - (g_1, \tau_S g_2)_S + i\{(g_1, E_0 f_2)_S - (f_1, E_0 g_2)_S\}
\]

and

\[
(6.13) \quad (f_1 \oplus g_1, f_2 \oplus g_2)^\wedge_S = (f_1, f_2)_S + (g_1, g_2)_S + 2(f_1, (1-E_0) S^{1/2}(1-S)^{1/2} g_2)_S + 2(g_1, (1-E_0) S^{1/2}(1-S)^{1/2} f_2)_S.
\]

Then (6.13) is positive definite and

\[
|\tau_S^\wedge(h_1, h_2)| \leq ||h_1||_S^\wedge ||h_2||_S^\wedge.
\]

Let \(K_S^\wedge\) be the completion of \(K_S^\prime\) relative to \(||h||_S^\prime\), \(\tau_S^\wedge\) and \(\Gamma_S^\wedge\) be the closure of \(\tau_S^\prime\) and \(\Gamma_S^\prime\), \(\tau_S^\wedge(h_1, h_2) = (h_1, \tau_S^\prime h_2)_S^\prime\) and \(P_S = (\tau_S^\wedge + 1)/2\). Then \(P_S\) is a basis projection. Let \(\alpha_S^\wedge\) be the \(*\) homomorphism of \(\mathfrak{A}(K, \tau, \Gamma)\) into \(\mathfrak{A}(K_S^\wedge, \tau_S^\wedge, \Gamma_S^\wedge)\) induced by \(f \rightarrow \hat{f} \oplus 0\). Then the restriction of the Fock state \(\varphi_{P_S}\) of \(\mathfrak{A}(K_S^\wedge, \tau_S^\wedge, \Gamma_S^\wedge)\) to \(\alpha_S^\wedge \mathfrak{A}(K, \tau, \Gamma)\) induces the quasifree state \(\varphi_S\) of \(\mathfrak{A}(K, \tau, \Gamma)\).

This method has a defect that a canonical identification map \(U\) can not be defined between \(K_S^\wedge, \tau_S^\wedge, \Gamma_S^\wedge\) and \(K_S^\prime, \tau_S^\prime, \Gamma_S^\prime\) even if \(N_S = N_S^\prime\) and \(\tau_S = \tau_{S'}\), due to the dependence of the operator \(E_0\) on \(S\).
Lemma 6.4. Let φ_γ be a quasifree state of $\mathcal{H}(K, \gamma, \Gamma)$. The induced topology τ_{φ_γ} on K is the same as τ_γ of Definition 4.1.

Proof. Denote $W_{\varphi_\gamma}(f)$ by $W_\gamma(f)$. Since Q_γ is cyclic for $\mathcal{H}(K, \gamma, \Gamma)$ and $\pi_\gamma(A)Q_\gamma, A \in \mathcal{H}(K, \gamma, \Gamma)$, is entire for $\pi_\gamma(B(f)) = \lim_{t \to 0} W_\gamma(tf) - 1, f \in \text{Re } K$, Q_γ is cyclic for R_γ.

By [5], it is known that τ_γ is a vector topology and is given by one distance $d_\gamma(f_1, f_2)$ for a cyclic \mathcal{V}. Therefore it is enough to show the equivalence of $\|f\|_3 \to 0$ and
\[d_\gamma(f, 0) = 2\{1 - \exp(-\|f\|_3^2/4)\} \to 0, \]
where (5.7) is used. This equivalence is obvious. Q. E. D.

References

[8] ————, C^*-algèbre de relations de commutation, ibid. 139-161.