On some fields of meromorphic functions on fibers

By

Takashi Okano*

§1. Introduction

1.1. In this paper we consider the extension problem of meromorphic functions on fibers of complex analytic fiber spaces to neighborhoods of the fibers.

Let \(X \rightarrow Y \) be a complex analytic fiber space, where \(X \) and \(Y \) are normal and connected complex spaces and \(\pi \) is a proper holomorphic mapping of \(X \) onto \(Y \) with irreducible fibers. We denote by \(K_t \) the meromorphic function field of a fiber \(X_t := \pi^{-1}(t) \), and by \(K'_t \) the subfield of \(K_t \) consisting of all elements of \(K_t \) which can be extended to some neighborhoods of \(X_t \). By [6] or [9], the field \(K_t \) is isomorphic to a finite algebraic extension of a rational function field.

We discuss here the following problem.

Let \(f_1, \ldots, f_l \) be meromorphic functions on \(X \) and \(g \) be a meromorphic function on a fiber \(X_t \) which is dependent on \(f_1, \ldots, f_l \), where \(f_i, (i = 1, \ldots, l) \) is the analytic restriction of \(f_i \) to \(X_t \). Then, can we extend the function \(g \) to a meromorphic function on some neighborhood of \(X_t \)?

We can answer this problem as follows.

(1) The complement of the set \(\{ t \in Y \mid \text{any meromorphic function on } X, \text{which is dependent on } f_1, \ldots, f_l, \text{can be extended to some neighborhoods of } X_t \} \) is nowhere dense in \(Y \).

The proof of this theorem is essentially due to the Stein factorization of a proper holomorphic mapping. This notion (or the
notion of complex base is useful to research dependency of holomorphic or meromorphic mappings (for example, see [5], [6], [8], [9]).

Using (I) we obtain:

(II) The set \(\{ t \in Y | K_t \text{ is not algebraically closed in } K \} \) is nowhere dense in \(Y \).

Furthermore, by a similar method to the proof of (I) we have:

(III) If the transcendence degree of \(K_t \) over the complex number field \(\mathbb{C} \) is equal to the (complex) dimension of the fiber \(X_h \), then \(K_t = K_r \).

1.2. In this paper, we assume all complex spaces to be reduced, and we denote the complex projective space of dimension \(m \) by \(P_m \), and the Osgood space of dimension \(l \) by \(P_l \).

We recall here the concepts of rank and of degeneracy of mappings.

Let \(\sigma: M \to N \) be a holomorphic mapping of an irreducible complex space \(M \) to a complex space \(N \). We define the local rank of \(\sigma \) at a point \(x \) of \(M \) by \(\dim_x M - \dim_x \sigma^{-1}(\sigma(x)) \) and denote it by \(r_x(\sigma) \). Further we define the rank of \(\sigma \) by \(\sup_{x \in M} r_x(\sigma) \) and denote it by \(r(\sigma) \).

Now, if \(r_x(\sigma) = r(\sigma) \) for a point \(x \) of \(M \), we call this point \(x \) a point of degeneracy of \(\sigma \). By R. Remmert [8], the set of all points of degeneracy is an analytic subset, and any holomorphic mapping without points of degeneracy (we say such a mapping is non-degenerated or is of constant rank) to a normal complex space whose dimension is equal to the rank of the mapping is an open mapping.

§2. Some remarks on fiber spaces and meromorphic mappings

2.1. Let \(X \) and \(Y \) be complex spaces and \(\{ X_i \} \) be the set of irreducible components of \(X \).

Now let \(f \) be a correspondence between \(X \) and \(Y \). We denote the graph of \(f \) by \(G \) and the natural projections of \(G \) to \(X \) and \(Y \) by \(\tilde{f} \) and \(\tilde{f} \) respectively. Conforming to [9], we call the correspondence \(f \) to be a meromorphic mapping of \(X \) to \(Y \) if the following condi-
tions are satisfied;

(a) there is a dense open set of X on which f defines a holomorphic mapping to Y,

(b) the graph G is an analytic subset of $X \times Y$, and $f^{-1}(X_i)$ is an irreducible component of G for each X_i,

(c) the projection \tilde{f} is proper.

Let f be a meromorphic mapping of X to Y. We call a point x of X a singular point of f if f is not holomorphic at x, and call f to be proper (resp. surjective) if \tilde{f} is proper (resp. surjective). Further we define the rank of f by $r(\tilde{f})$ and denote it by $r(f)$. Moreover we say that a meromorphic mapping f of X to Y is bimeromorphic if the correspondence f defines a meromorphic mapping of Y to X.

Next, we recall some fundamental properties of meromorphic mappings.

(i) The set of all singular points of a meromorphic mapping is an analytic subset.

(ii) A meromorphic mapping of a certain complex space X to the complex projective space P^1 which maps X not constantly to ∞ is nothing but a meromorphic function in the usual sense.

(iii) Let X, Y and Z be complex spaces and f and g be meromorphic mappings of X to Y and of Y to Z respectively. We define naturally a correspondence between X and Z such that a point x of X corresponds to the subset $g(f(x))$ of Z. If there is a dense open set U of X on which the above correspondence between X and Z is single-valued, then we can define naturally one meromorphic mapping h of X to Z such that $h(x) = g(f(x))$ for $x \in U$. We denote it by $g \circ f$. In particular, if X is a subspace of Y and f is the inclusion map, we denote $g \circ f$ by $g\|X$.

(iv) Let X, Y_1, \ldots, Y_l be complex spaces and f_i be a meromorphic mapping of X to Y_i ($i=1, \ldots, l$). Then we can naturally define one meromorphic mapping of X to the product space $Y_1 \times \cdots \times Y_l$. We denote it by $f_1 \times \cdots \times f_l$.

(v) Let X and Y be irreducible complex spaces of the same
dimension and f be a proper and surjective meromorphic mapping of X to Y. Then there is a thin analytic subset N of Y such that f is holomorphic on $X - \tilde{f}(\tilde{f}^{-1}(N))$ and the map $f \| (X - \tilde{f}(\tilde{f}^{-1}(N)))$ is a proper holomorphic covering map of $X - \tilde{f}(\tilde{f}^{-1}(N))$ to $Y - N$. We call such a meromorphic mapping to be a \textit{meromorphic covering}.

Next, we recall the notion of \textit{dependency} of meromorphic mappings. Let X, Y and Z be complex spaces and f and g be meromorphic mappings of X to Y and of X to Z respectively. Then we say that g depends on f if $r(f \times g) = r(f)$. Further let f_1, \ldots, f_i be meromorphic functions on X. Then we say that the system \{f_1, \ldots, f_i\} is independent if $r(f_1 \times \cdots \times f_i) = 1$.

\section{2.2} Let X and Y be complex spaces and π be a proper holomorphic mapping of X to Y. We denote the set of all connected components of all fibers of the map π by X'. By [1] we can define on the set X' a topology and a complex structure which have the following properties:

\begin{itemize}
 \item[(a)] the natural maps $\pi_1: X \rightarrow X'$ and $\pi_2: X' \rightarrow Y$ are holomorphic.
 \item[(b)] an arbitrary map h of X' to a complex space Z such that $h \circ \pi_1$ is holomorphic is holomorphic.
\end{itemize}

We call this sequence $X' \xrightarrow{\pi_1} X' \xrightarrow{\pi_2} Y$ the \textit{Stein factorization} of π.

\textbf{Proposition 1.} Let X be a compact irreducible complex space, and f_1, \ldots, f_i be meromorphic functions on X. We put $F = f_1 \times \cdots \times f_i$, $G =$ the graph of F. Let $\tilde{G} \xrightarrow{\alpha} G$ be the normalization of G and $\tilde{G} \xrightarrow{\beta} H \xrightarrow{\lambda} P^i$ be the Stein factorization of the proper holomorphic mapping $\tilde{F} \circ \mu$, where \tilde{F} is the natural projection of G to P^i.

Then, for any meromorphic function g on X dependent on F, there is a meromorphic function g' on H such that $g = g' \circ h_1 \circ \mu^{-1} \circ \tilde{F}^{-1}$.

\textbf{Proof.} Since X and \tilde{G} are bimeromorphically equivalent, we may assume that X is normal and connected and F is holomorphic on X. Under these assumptions we may identify the sequence $\tilde{G} \xrightarrow{\beta_1} H \xrightarrow{\lambda} P^i$ with the Stein factorization $X \xrightarrow{\beta_1} X' \xrightarrow{\lambda} P^i$ of the proper holomorphic mapping F.

\textit{Takashi Okano}
Let $S(g)$ be the singular set of g. Since X is compact and g depends on F, there is a polynomial $P_r(X_0, \ldots, X_t)X^r + \cdots + P_0(X_0, \ldots, X_t)$, where $s > 0$, such that $P_r(f_1, \ldots, f_t)g^r + \cdots + P_0(f_1, \ldots, f_t)$ $= 0$ on X and $P_r(f_1, \ldots, f_t) \equiv 0$ on X (see [9], p. 864). Now we take a point $z = (z_0, \ldots, z_t)$ of $F(X)$ such that $z_i \neq \infty$ for all i and $P_r(z_0, \ldots, z_t) \neq 0$. Let x be a point of $F^{-1}(z)$. Then $g(x)$ is a finite set in P^1 since $P_r(z_0, \ldots, z_t) \neq 0$. This fact and the normality of X yield the holomorphy of g at x (see [9], Prop. 3.1.3). Hence $F(S(g)) \neq F(X)$.

Since $F(X)$ is an irreducible complex space, $F(S(g))$ is a thin analytic subset of $F(X)$ and so $F^{-1}(F(S(g)))$ is a thin analytic set of X. We put $X_b = X - F^{-1}(F(E) \cup F(S(g)))$, where E is the set of degeneracy of F. ($F^{-1}(F(E))$ is thin in X.) We denote the Stein factorization of the proper holomorphic mapping $F|X_b$ by $X_b \to X'_b \to F(X_b)$. Then we may consider that $X'_b = h_b(X_b) \subset X'$. For a point x of X_b, $r_x(F) = r_x(F \times g)$ because $r_x(F) \leq r_x(F \times g) \leq r(F \times g) = r(F) = r_x(F)$. Hence g is constant along each connected component of $F^{-1}(z)$ for any z of $F(X_b)$ (see [8], p. 300). Therefore we obtain a holomorphic function g'_b on X'_b such that $g|X_b = g'_b \circ h_b$.

Put $G(g) =$ the graph of g, and $G' =$ the Image of $G(g)$ by the map $h_b \times 1$ of $X \times P^1$ to $X' \times P^1$. Then G' gives a morphomorphic function g' on X' such that $g'|X_b = g'_b$.

Remark. Proposition 1 can be generalized as follows:

Let $\pi: X \to Y$ be a proper holomorphic mapping, where X is irreducible, and f_1, \ldots, f_t be meromorphic functions on X. We put $\sigma = f_1 \times \cdots \times f_t \times \pi$, $G =$ the graph of σ, and $\tilde{\sigma}, \tilde{\sigma} = \sigma$ the natural projections of G to $P^t \times Y$ and to X. Let $\tilde{G} \to G$ be the normalization of G and $\tilde{G} \to H \to P^t \times Y$ be the Stein factorization of $\tilde{\sigma} \circ \mu$.

Then, for any meromorphic function g on X dependent on σ, there is a meromorphic function g' on H such that $g = g' \circ h_\sigma \circ \mu^{-1} \circ \tilde{\sigma}^{-1}$.

Proposition 2. Let V be an irreducible analytic subspace of P_m. Then any element of the field $K(V)$ of all meromorphic functions on V is the restriction of a rational function of P_m.

On some fields of meromorphic functions on fibers 57
Furthermore let \(\{f_1, \ldots, f_i\} \) be a transcendence base of \(K(V) \) over the complex number field \(\mathbb{C} \). Then the degree of \(K(V) \) over the field \(C(f_1, \ldots, f_i) \) is equal to the number of sheet of the meromorphic covering map \(F : V \to P' \), where \(F=f_1 \times \cdots \times f_i \).

Proof. Let \(K_s(V) \) be the subfield of \(K(V) \) consisting of all elements of \(K(V) \) which can be extended to a rational function of \(P_m \). Then the transcendence degrees of \(K(V) \) and \(K_s(V) \) over \(\mathbb{C} \) are equal to the dimension of \(V \). Let \(\{f_1, \ldots, f_i\} \) be a transcendence base of \(K_s(V) \) over \(\mathbb{C} \) and \(F \) be the meromorphic mapping \(f_1 \times \cdots \times f_i \) of \(V \) to \(P' \). Then \(F \) is a meromorphic covering map, because \(\dim V = l = \dim P' \) and the system \(\{f_1, \ldots, f_i\} \) is independent. So there is an analytic subset \(N \) of \(P' \) such that \(F \) is holomorphic on \(V - F^{-1}(N) \) and \(F|[V-V^{-1}(N)] \) is a proper unramified holomorphic covering map to \(P' - N \). We put \(b=\) the number of sheet of \(F|[V-V^{-1}(N)] \), \(d=[K(V): C(f_1, \ldots, f_i)] \) and \(d'=[K_s(V): C(f_1, \ldots, f_i)] \). Then clearly \(b \geq d \geq d' \), because any element \(f \) of \(K(V) \) satisfies; \(f^i + H_{i-1}f^{i-1} + \cdots + H_0 = 0 \), where \(H_i (i=0,1,\ldots,b-1) \) is a suitable rational function of \(P' \) which is considered as an element of \(C(f_1, \ldots, f_i) \).

On the other hand, we can find an element \(g \) of \(K_s(V) \) whose degree over \(C(f_1, \ldots, f_i) \) is not smaller than \(b \). In fact, fix a point \(p \) of \(P' - N \), and put \(F^{-1}(p) = \{p_1, \ldots, p_i\} \). Then we can easily find two linear forms \(w_i=a_0z_0+\cdots+a_nz_n, w_i=b_0z_0+\cdots+b_nz_n \), for a system of homogeneous coordinate \(\{z_1, \ldots, z_n\} \) of \(P_m \), such that \(w_i(p_i) \neq 0 \) for all \(i \), and \(\frac{w_i(p_i)}{w_i(p_i)} = \frac{w_i(p_i)}{w_i(p_i)} (\text{for } i \neq j) \). Now we put \(\alpha = \frac{w_2}{w_1} \) and \(\alpha = \frac{w_2}{w_1} \). Then it can be easily proved that the degree of \(\alpha \) over \(C(f_1, \ldots, f_i) \) is not smaller than \(b \).

Theorem. (H. Grauert and R. Remmert, [2], [4]). Let \(X \) and \(Y \) be complex spaces and \(\sigma \) be a proper holomorphic mapping of \(X \) to the product space \(\mathbb{P}_m \times Y \) with discrete fibers. Let \(U \) be a relatively compact Stein open set of \(Y \). We put \(X_U = \sigma^{-1}(\mathbb{P}_m \times U) \).

Then, there is a natural number \(N \) and a biholomorphic mapping \(\omega \) of \(X_U \) to an analytic subspace of the product space...
On some fields of meromorphic functions on fibers

$P_n \times U \times P_n$ such that $\sigma| X_o = p \circ \omega$, where p is the natural projection of $P_n \times Y \times P_n$ to $P_n \times Y$.

Proposition 3. Let $\pi : X \to Y$ be a proper holomorphic mapping of a normal complex space X onto a complex space Y. Then the set \{ $t \in Y$ | the space $\pi^{-1}(t)$ is not locally irreducible \} is nowhere dense in Y.

The proof of this proposition is essentially due to W. Thimm [11]. We prove this in the next section.

§3. Proof of Proposition 3

To prove our proposition we use local descriptions of the normal complex space X. Therefore we start by setting the following notations. We put;

$$T = \{(t_1, \ldots, t_n) \in \mathbb{C}^n | \sum |t_i| < \varepsilon, \quad i = 1, \ldots, n\},$$

$$Z_m = \{z_1, \ldots, z_m \in \mathbb{C}^n | \sum |z_j| < \zeta, \quad j = 1, \ldots, m\},$$

$$D_m = T \times Z_m,$$

$p = \text{the natural projection of } D_m \text{ to } T,$

$$Z_m,t = p^{-1}(t), \text{ where } t \text{ is a point of } T.$$

Now let A be an analytic set of D_m and T_o be the set \{ $t \in T$ | $Z_m,t \cap A = Z_m \}$. We consider the following condition ($*$) for a point x of D_m with respect to A:

$(*)$ The point $p(x)$ does not belong to T_c and there is a fundamental system of neighborhoods $\{ U_i \}$ of the point x which satisfies the following condition (C):

(C) for a curve C in U_i such that $C \cap A = \phi$ and $p(C(0)) = p(C(1)) = p(x)$, there is a deformation of the curve C to a curve in $U_i \cap Z_m,x$, through the space $U_i - A$, with the end points $C(0)$ and $C(1)$ fixed.

Lemma 3.1. Let M be a connected normal complex space and r be a proper holomorphic covering map of M to D_m which is unramified over $D_m - A$. If, for a point x of M, the point $r(x)$
satisfies the condition (*) with respect to A, then \(x\) is an irreducible point of the fiber \((p \circ r)^{-1}(\{p \circ r\}(x))\).

Proof. Suppose that \(r(x)\) satisfies the condition (*) with respect to \(A\). We put \(M_s=(p \circ r)^{-1}(p \circ r)(x)\). Then \(M_s \cap r^{-1}(A)\) is a thin analytic set of \(M_s\) and \(M_s-r^{-1}(A)\) is non-singular. Hence \(x\) is an irreducible point of \(M_s\) if and only if there is a fundamental system of neighborhoods \(\{U'_i\}\) of the point \(x\) in the space \(M_s\) such that \(U'_i-r^{-1}(A)\) is connected.

Take a connected neighborhood \(V\) of \(x\) in the space \(M\) such that \(V \cap M_s\) is sufficiently small and,

(a) the open set \(r(V)\) satisfies the condition (C) with respect to \(A\) at \(r(x)\),

(b) the mapping \(r| V: V \to r(V)\) is proper.

We put \(U'=V \cap M_s\). Then from the above (a) and (b) \(U'-r^{-1}(A)\) is connected. In fact, let \(x_1\) and \(x_2\) be points of \(U'-r^{-1}(A)\). Since \(V\) is connected and normal, we can connect \(x_1\) to \(x_2\) by a curve \(\tilde{C}\) in \(V-r^{-1}(A)\). We put \(C=r(\tilde{C})\). By (a), \(C\) can be deformed to a curve in \(Z_{m-1,r(x)} \cap (r(V)-A)\) through the space \(r(V)-A\), fixing the end points. On the other hand, the map \(r| V\) is a proper unramified covering over \(r(V)-A\). Hence we can deform \(\tilde{C}\) to a curve of \(U'-r^{-1}(A)\) through the space \(V-r^{-1}(A)\), by lifting the deformation of the curve \(C\). Hence \(U'-r^{-1}(A)\) is connected.

Lemma 3.2. We put: \(Z_{m-1}=(z_1, \ldots, z_{m-1}) \in \mathbb{C}^{m-1} | |z_j|<\zeta_j; j=1, \ldots, m-1\), and \(D_{m-1}=T \times Z_{m-1}\) and \(q=\text{the natural projection of } D_m\ to\ D_{m-1}\).

Suppose that \(q| A\) is a proper holomorphic covering map onto \(D_{m-1}\) and it is unramified over \(D_{m-1}-B\), where \(B\) is a thin analytic set of \(D_{m-1}\).

Then, for a point \(x\) of \(D_m\) if \(q(x)\) satisfies the condition (*) with respect to \(B\) then \(x\) also satisfies the condition (*) with respect to \(A\).
Proof. Let W be a neighborhood of x. Then we can find a neighborhood U of x having the following properties;

(a) $U \subset W$,

(b) U is of the form $q(U) \times D$, where D is a disk of \mathbb{C}^1,

(c) $q(U)$ satisfies the condition (C) at $q(x)$ with respect to B, and

(d) $q|_{A \cap U}: A \cap U \to q(U)$ is proper.

Then we can prove that the open set U satisfies the condition (C) at x with respect to A by the same methods as in [11]. We give only an outline of the proof.

Let C be a curve in $U - A$ with the end points $C(0)$ and $C(1)$ such that $p(C(0)) = p(C(1)) = p(x)$. Without loss of generality, we may assume that $q(C(0))$ and $q(C(1))$ do not belong to B, because $Z_{m-1, \rho(x)} \cap B \neq Z_{m-1, \rho(x)}$ by above (c) and so we can replace the end points by two suitable points in $U \cap Z_{m, \rho(x)} - (A \cup q^{-1}(B))$ which are connected to $C(0)$ and $C(1)$ by arcs in $U \cap Z_{m, \rho(x)} - A$ respectively. Moreover we may assume that $q(C)$ is disjoint with B, because the curve C can be deformed, fixing the end points, to a curve which is sufficiently near to C and whose projection to $q(U)$ is disjoint with B (see [11], §2). Under these assumptions, $q(C)$ can be deformed by the above property (c) to a curve of $q(U) \cap q(Z_{m, \rho(x)})$ though the space $q(U) - B$ with the end points fixed. On the other hand, since $q|_A$ is proper and unramified over $D_{m-1} - B$, we can construct a deformation of C in $U - A$ with the desired properties lying above the deformation of $q(C)$ (see [10], §2 and [11], §2).

Lemma 3.3. We suppose that A is purely 1-codimensional in D_m, and put $D_m^* = \{x \in D_m | x$ satisfies the condition (*) with respect to $A\}$.

Then $p(K_m - D_m^*)$ is nowhere dense in T for any relatively compact subset K_m of D_m.

Proof. We prove the lemma by induction on m. If $m=0$, it is
trivial. So we suppose that \(m > 0 \) and that the result holds for \(m - 1 \).

We denote the \(\varepsilon \)-neighborhood of the set \(T_0 \) by \(T_0(\varepsilon) \). Then \(p(K_m - D^*_m) \) is nowhere dense in \(T \) if and only if it is nowhere dense in \(T - T_0(\varepsilon) \) for any positive number \(\varepsilon \). We put \(K_\varepsilon(\varepsilon) = K_\varepsilon - p^{-1}(T_\varepsilon(\varepsilon)) \).

Now let \(x \) be a point of \(D_m \). If \(x \in A \), take a neighborhood \(U_\varepsilon(x) \) of \(x \) such that \(U_\varepsilon(x) \cap A = \emptyset \). Then any point of \(U_\varepsilon(x) \) satisfies the condition \((*)\) with respect to \(A \). Next we suppose \(x \in A - p^{-1}(T_\varepsilon) \). Then, since \(A \) is purely codimensional 1, we can find a neighborhood \(V_\varepsilon(x) \) of \(x \) satisfying the following properties:

(a) \(V_\varepsilon(x) \) is the product of two polycylinders \(T(x) \) and \(Y_\varepsilon(x) \), where \(T(x) \) and \(Y_\varepsilon(x) \) are defined as follows;

\[
T(x) = \{(t'_i, \cdots, t'_m) \in \mathbb{C}^m | \ |t'_i| < r'_i; \ i = 1, \cdots, m\},
\]

\[
Y_\varepsilon(x) = \{(y_j, \cdots, y_m) \in \mathbb{C}^n | \ |y_j| < r_j; \ j = 1, \cdots, m\},
\]

where \(t_i = t_i - t_i(p(x)) \) and \(y_j = \sum_{k=1}^{m} c_{jk} z_k + d_j \) such that \(y_j(x) = 0 \) (for any \(j \)) and the matrix \((c_{jk}) \) is non-singular, and \(r_i \) and \(r_j \) are suitable positive numbers.

(b) Let \(Y_{m-1}(x) = \{(y, \cdots, y_{m-1}) \in \mathbb{C}^{m-1} | \ |y_j| < r_j; \ j = 1, \cdots, m-1\} \) and \(V_{m-1}(x) = T(x) \times Y_{m-1}(x) \) and \(q \) is the natural projection of \(V_\varepsilon(x) \) to \(V_{m-1}(x) \). In this situation, \(q | V_\varepsilon(x) \cap A \) is a proper covering map and unramified over \(V_{m-1}(x) - B \), where \(B \) is an analytic subset of \(V_{m-1}(x) \) purely of codimension 1.

We denote the natural projection of \(V_{m-1}(x) \) to \(T(x) \) by \(p_{m-1} \), and the set \(\{s \in V_{m-1}(x) | s \text{ satisfies the condition } (*) \text{ with respect to } B \} \) by \(V_{m-1}^*(x) \). Let now \(U_{m-1}(x) \) be an arbitrarily fixed relatively compact open neighborhood of \(q(x) \) in \(V_{m-1}(x) \). Then, by the hypothesis of induction, \(p_{m-1}(U_{m-1}(x) - V_{m-1}^*(x)) \) is nowhere dense in \(T(x) \). Hence, by Lemma 3.2, \(p(U_\varepsilon(x) - D^*_\varepsilon) \) is nowhere dense in \(T(x) \), where \(U_\varepsilon(x) \) is the set \(q^{-1}(U_{m-1}(x)) \).

For each point \(x \) of \(K_\varepsilon(\varepsilon) \) we take such an open neighborhood \(U_\varepsilon(x) \) mentioned above. Since \(K_\varepsilon(\varepsilon) \) is compact, it is covered by a finite system of such neighborhoods \(U_\varepsilon(x_i) \) and hence \(p(K_\varepsilon(\varepsilon) - D^*_\varepsilon) \).
is nowhere dense in T.

Proof of Proposition 3. We may assume that Y is non-singular and π is of constant rank. For, our assertion is of local character about Y and the π-image of the set of degeneracy of π is a thin analytic set in Y. Moreover we may assume; $Y = \{(t_1, \cdots, t_n) \in \mathbb{C}^n \mid |t_i| < r_i; i = 1, \cdots, n\}$. Then, for each point x of X, we can find a connected open neighborhood $U(x)$ such that there is a proper holomorphic covering map r of $U(x)$ to D_m, where D_m is a polycylinder which is obtained by replacing t_i by $t_i - t_i(\pi(x))$ in D_m of the beginning of this section.

Let A be a purely one codimensional analytic set in D_m such that r is unramified over $D_m - A$. Further let W be a relatively compact open set of D_m containing $r(x)$ and $V(x)$ be the open set $r^{-1}(W) \cap U(x)$. Then, by Lemma 3.3, $p(W - D_m)$ is nowhere dense in $T(G \subset Y)$ and hence $X_t \cap V(x)$ is locally irreducible by Lemma 3.1 for any point t of $p(W) - p(W - D_m)$.

For each point x of X, we take such a neighborhood $V(x)$. Let Q be a relatively compact open set of Y. Then the set $\pi^{-1}(Q)$ is compact and so it is covered by a finite system of open sets $V(x_t)$. Hence the set \{\(t \in Y \mid X_t \text{ is not locally irreducible}\)} is nowhere dense in Y.

§4. Meromorphic function fields on fibers

In this section, we consider a fiber space $X \rightarrow Y$, where X and Y are complex spaces and π is a proper surjective holomorphic mapping. We put $\text{dim} Y = n$ and $\text{dim} X = m + n$. Furthermore we assume;

(a) X and Y are normal and connected,

(b) π is of constant rank, n,

(c) for every $t \in Y$, the fiber X_t is irreducible.

These assumptions imply,

(d) $\pi^{-1}(U)$ is connected for any connected open set U of Y.

From now on, we use occasionally a notation h_t instead of $h_t\mid X_t$.

On some fields of meromorphic functions on fibers
where \(h \) is a meromorphic mapping of \(X \) to a certain complex space and \(t \) is a point of \(Y \) such that \(h\|X_t \) is defined.

Lemma 4.1. Let \(f_1, \ldots, f_l \) be meromorphic functions on \(X \). We put \(F=f_1 \times \cdots \times f_l \) and \(S(F)=\) the singular set of \(F \). Then the set \(\{ t \in Y \mid X_t \cap S(F) \} \) is a dense open subset of \(Y \).

Let \(t \) be a point of \(Y \) such that \(X_t \cap S(F) \). We suppose that \(\{ f_i, \ldots, f_l \} \) is independent. Then there is an open neighborhood \(U \) of \(t \) such that \(f_i \psi_i(t) \) is defined and \(\{ f_i, \ldots, f_l \} \) is independent for any \(t' \) of \(U \). (In this case, \(r(F \times \pi)=n+l \) and \((F \times \pi)(X)=P^l \times Y \).)

Proof. The first assertion is trivial.

Suppose that \(\{ f_i, \ldots, f_l \} \) is independent. We can find a point \(x \) of \(X \), such that \(x \in S(F) \) and \(r_i(F)=r(F)=l \) (here we consider \(F \) as a holomorphic mapping on a neighborhood of \(x \)). Then \(r_i(F \times \pi)=r(F \times \pi)=n+l \) because \(\dim(F \times \pi)^{-1}((F \times \pi)(x))=\dim F_i^{-1}(F_i(x)) \)
\[= m-r_i(F_t)=m-l, \] and so \((F \times \pi)(X)=P^l \times Y \).

Take a neighborhood \(Q \) of \(x \) such that \(Q \cap S(F)=\emptyset \) and \(r_i'(F \times \pi)=n+l \) for any point \(x' \) of \(Q \). Put \(\pi=\pi(Q) \). Since \(\pi \) is of constant rank, \(U \) is an open set and clearly has our desired properties.

Theorem I. Let \(t_0 \) be a point of \(Y \) and \(f_1, \ldots, f_l \) be meromorphic functions on \(X \) such that \(f_i, t_0 \) is defined for any \(i \) and the system \(\{ f_1, \ldots, f_l \} \) is independent. We put \(F=f_1 \times \cdots \times f_l, \)
\(\varphi=F \times \pi, G=\) the graph of \(\varphi, \) and \(G_{t_0}=\) the graph of \(F_{t_0}, \) and we denote the normalization of \(G \) by \(\tilde{G} \rightarrow G \).

We suppose that;

1. the complex space \(\tilde{G} \mid X_{t_0} =\) the restriction of \(\tilde{G} \) over \(X_{t_0} \) is locally irreducible.

Then there is an open neighborhood \(U \) of \(t_0 \) such that any meromorphic function defined on \(X_{t_0} \) which is dependent on \(F_{t_0} \) can be extended to a meromorphic function on \(\pi^{-1}(U) \).

Proof. Since \(X \) is normal, every fiber of the map \(\tilde{G} \rightarrow X \) is connected, and \(X_t \) is irreducible by the assumption. Hence \(\tilde{G} \mid X_t \) is con-
On some fields of meromorphic functions on fibers

Let \(\widetilde{G} \to H \to P^1 \times Y \) be the Stein factorization of the proper holomorphic mapping \(\tilde{\alpha} \circ \mu_t \), where \(\tilde{\alpha} \) is the natural projection of \(G \) to \(P^1 \times Y \), and \(\widetilde{G}_t \to H_t \to P^1 \) be the Stein factorization \(\tilde{F}_t \circ \mu_t \), where \(\mu_t \) is the normalization map \(\widetilde{G}_t \to G_t \) and \(\tilde{F}_t \) is the natural projection of \(G_t \) to \(P^1 \). From above, \(h_t^{-1}(P^1 \times t) \) is also naturally homeomorphic and bimeromorphic to \(H_t \), so we may identify \(H_t \) with \(h_t^{-1}(P^1 \times t) \).

By proposition 1, we can find a meromorphic function \(g' \) on \(H_t \) such that \(g = g' \circ h_t \circ \mu_t^{-1} \circ \tilde{F}_t^{-1} \), where \(\tilde{F}_t \) is the natural projection of \(G_t \) to \(X_t \).

On the other hand, the map \(h_t : H \to P^1 \times Y \) is proper (and surjective) with discrete fibers. Hence, by Theorem of §2, there is a neighborhood \(U \) of \(t_0 \) and a biholomorphic mapping \(\omega \) of \(h_t^{-1}(P^1 \times U) \) to an analytic subspace \(L_u \) of \(P^1 \times U \times P_N \).

We put \(g'' = g' \circ (\omega \| H_t)^{-1} \) on \(L_t \). By proposition 2, there is a rational function \(g''' \) on \(P^1 \times P_N (\equiv P^1 \times t \times P_N) \) such that \(g''' \| L_t = g'' \). Further we put \(\tilde{g}''' = g''' \circ \tau \), where \(\tau \) is the natural projection of \(P^1 \times U \times P_N \) to \(P^1 \times P_N \), and put \(\tilde{g}'' = \tilde{g}''' \| L_u \). Finally we set \(\tilde{g} = \tilde{g}''' \circ (\omega \circ h_t \circ \mu_t^{-1} \circ \tilde{F}_t^{-1})^{-1} \) on \(\pi^{-1}(U) \). Then \(\tilde{g} \) is a meromorphic function with \(g = \tilde{g} \| X_t \).

Remark. By the construction of \(\tilde{g} \), it is easily shown that there is a polynomial \(P(t)(X_0, X_1, \ldots, X_t) \) with holomorphic functions on \(U \) as coefficients (if necessary, replace \(U \) with a smaller neighborhood of \(t_0 \)) such that \(P(t)(g, f_1, \ldots, f_t) = 0 \) on \(\pi^{-1}(U) \) and \(P(t_0)(X_0, X_1, \ldots, X_t) \neq 0 \).

We use the following notations:

- \(K_t \) = the field of all meromorphic functions on the fiber \(X_t \),
- \(K'_t \) = the subfield of \(K_t \) consisting of all elements of \(K_t \), which
can be extended to neighborhoods of \(Y \),
\[
Y(k) = \{ t \in Y \mid \text{there is a neighborhood } U \text{ of } t \text{ in } Y \text{ such that the transcendence degree of } K'_j = k \text{ for any } t_1 \text{ of } U \}, \quad \text{and} \quad Y' = Y(0) \cup Y(1) \cup \cdots \cup Y(m).
\]

Corollary. Let \(f_1, \ldots, f_i \) be meromorphic functions on \(X \) such that \(f_1, \ldots, f_i \) is defined for any \(i \) and the system \(\{ f_1, \ldots, f_i \} \) is independent for any \(t \) of \(Y \). We set \(K'_j(f) \) as the algebraic closure of the field \(C(f_1, \ldots, f_i) \) in \(K_j \). Then the set \(\{ t \in Y \mid K'_j(f) \subseteq K'_j \} \) is nowhere dense in \(Y \).

Proof. By Proposition 3 there is a nowhere dense set \(Y_0 \) of \(Y \) such that any point of \(Y - Y_0 \) satisfies the condition (I) of Theorem I. Hence our assertion is proved by Theorem I.

Theorem II. The set \(Y_i = \{ t \in Y \mid K'_j \text{ is not algebraically closed in } K_i \} \) is nowhere dense in \(Y \).

Proof. The assertion is of local character about \(Y \), and \(Y' \) is a dense open set of \(Y \). So we may assume that \(Y = Y(k) \), and there are \(k \) meromorphic functions on \(X \) such as in the above corollary. Hence \(Y_i \) is nowhere dense in \(Y \) by corollary of Theorem I.

Lastly we discuss the case \(Y = Y(m) \) (where \(m \) is the dimension of fibers).

Lemma 4.2. Let \(Z \) be a complex space and \(W \) be a compact irreducible analytic subspace of \(Z \) of dimension \(m \), and \(f_1, \ldots, f_n \) be meromorphic functions on \(Z \) such that \(f_i \mid W \) is defined for any \(i \) and \(\{ f_1 \mid W, \ldots, f_n \mid W \} \) is independent. We put \(F = f_1 \times \cdots \times f_n, \quad F_0 = F \mid W, \quad G = \text{the graph of } F, \quad G_0 = \text{the graph of } F_0, \text{ and } G_1 = G \mid W \) (the restriction of \(G \) over \(W \)).

Now \(\lambda \) be the natural projection of \(G_1 \) to \(\mathbb{P}^n \) and \(G_1 \to G_1 \to \mathbb{P}^n \) be the Stein factorization of \(\lambda \). Then the holomorphic mapping \(\lambda_i | G_0 : G_0 \to \lambda_i(G_0) \) is bimeromorphic and \(\lambda_i(G_0) \) is an irreducible component of \(G_1 \).
Proof. The graph G_0 of F_0 is an irreducible component of G_1. Let G_2 be the union of all the irreducible components of G_1 which are distinct from G_0. Since $\{f_i\| W, \ldots, f_w\| W\}$ is independent and $\dim W = m$, the proper holomorphic mapping $\lambda|G_0: G_0 \to \mathbb{P}^n$ is surjective and of rank m. From this, it follows that $\lambda(G_0 \cap G_2) = \mathbb{P}^n$, for $\lambda(G_0 \cap G_2) = \mathbb{P}^n$ implies $G_1 \subset G_2$. Hence our assertion is proved.

Theorem III. If the transcendence degree of the field K_1 is equal to the (complex) dimension of the fiber, then $K_1 = K_i$.

Proof. By Lemma 4.1, we may assume that $Y = Y(m)$ and that there are m meromorphic functions f_i, \ldots, f_m on X such that f_i, \ldots, f_m is defined $(i = 1, \ldots, m)$ and the system $\{f_i, \ldots, f_m\}$ is independent. We put $F = f_1 \times \cdots \times f_m$, and $G = \text{the graph of } F \times \pi$ and $G_i = \text{the graph of } F_i$, and denote the Stein factorization of $F \times \pi$ by $G \to G' \to \mathbb{P}^n \times Y$. Then, by Lemma 4.2, G_i is bimeromorphically equivalent to an irreducible component of $G' \times X_i$. Hence we can prove this theorem similarly to Theorem I.

REFERENCES
