A Note on the Intersection of Banach Subspaces

Dedicated to the memory of Klaus Floret

By

Gerardo Chacón, Vicente Montesinos, and Alfredo Octavio

Abstract

We show that reflexivity of a Banach space can be characterized by a simple property formulated in terms of the distance to the intersection of a decreasing countable family of closed subspaces. We provide some explicit examples of the failure of the property in the non-reflexive case.

§1. Introduction

A Banach space X is reflexive if the canonical injection $j : X \to X^{**}$ is an onto mapping. As it is well known, this is equivalent to say that B_X, the closed unit ball of X, is weakly compact. Many other characterizations of reflexivity have been given, maybe the most famous R. C. James’ ([J1]) on the norm-attaining of all elements in X^*, R. C. James’ ([J2]) and independently D. P. Milman and V. D. Milman’s ([MM]) on “almost” biorthogonal sequences and Klee’s ([Kl], see also [Ko], §24) on separation of disjoint closed convex sets by
real hyperplanes (see also, e.g., [F], [LT], [JL] or [FHHMPZ], and the references therein).

In this note we provide another characterization of reflexivity, this time in terms of the distance from a point to a decreasing sequence of closed subspaces. To be precise, let X be a Banach space. Given a non-empty subset M of X, denote by $d(x, M) := \inf \{\|x - m\| : m \in M\}$ the distance from $x \in X$ to M.

Let X_n, $n = 1, 2, 3, \ldots$ be a decreasing sequence of closed subspaces of X. We are interested in the validity of the formula

$$d \left(x, \bigcap_{n=1}^{\infty} X_n \right) = \lim_{n \to \infty} d(x, X_n), \quad x \in X.$$

We shall prove (Theorem 2.1) that this equation holds if and only if X is a reflexive space. So, if X is not reflexive, there exists a decreasing sequence (X_n) of closed subspaces and a point $x \in X$ such that $\lim_{n \to \infty} d(x, X_n) < d(x, \bigcap_{n=1}^{\infty} X_n)$. We shall provide in Section 3, for the sake of completeness, examples of such sequences and points in particular instances.

Our characterization is close to the one given by V. N. Nikolsky [N, p.123] and another one by I. S. Tyuremskih [T, thm. 4] (see also [S], pp.153–154). A Banach space X is said to have property B_f if for every increasing sequence

$$\{0\} = X_0 \subset X_1 \subset X_2 \subset \cdots$$

of distinct closed linear subspaces of X and every sequence

$$d_0 \geq d_1 \geq d_2 \geq \cdots \geq d_n \geq d_{n+1} = d_{n+2} = \cdots = 0,$$

there exists an element $x \in X$ such that $d(x, X_k) = d_k$, $k = 0, 1, 2, \ldots$.

Theorem 1.1 (V. N. Nikolsky [N]). A Banach space is reflexive if and only if it has property (B_f).

Theorem 1.2 (I. S. Tyuremskih [T]). A Banach space X is reflexive if and only if it has the property that for every decreasing sequence of distinct closed linear subspaces

$$X \supset X_1 \supset X_2 \supset \cdots$$

and every sequence of numbers $\{d_n\}_{n=1}^{\infty}$ such that

$$0 \leq d_1 \leq d_2 \leq \cdots \leq c < \infty$$

there exists an element $x \in X$ satisfying

$$\|x\| = \lim_{n \to \infty} d_n, \quad d(x, X_k) = d_k, \quad k = 1, 2, \ldots.$$
We follow the standard notation, as can be found, e.g., in [FHHMPZ].

§2. A Characterization of Reflexivity

We now state our main result.

Theorem 2.1. A Banach space X is reflexive if and only if the following holds:

Given any $x \in X$ and any decreasing sequence X_n, $n = 1, 2, \ldots$ of closed linear subspaces of X,

\[d \left(x, \bigcap_{n=1}^{\infty} X_n \right) = \lim_{n \to \infty} d(x, X_n). \tag{1} \]

Proof. The fact that in the reflexive case equation (1) holds is an easy consequence of the weak lower semicontinuity of the norm and the weak compactness of the closed unit ball.

In order to prove the reverse implication, assume X is separable and nonreflexive. Let $x^{**} \in X^{**} \setminus X$ and $x \in S_X$ such that $\|x^{**} - x\| < 1$. Let $H := (x^{**})^{-1}\{0\}$. (B_X, w^*) is compact and metrizable, so (B_H, w^*) is separable. Let (h^*_n) be a dense sequence of (B_H, w^*). Define $X_n := \{h^*_1, h^*_2, \ldots, h^*_n\}_\perp \subset X$, $n = 1, 2, \ldots$ (where $(\cdot)_\perp$ denotes the orthogonal set in X), so (X_n) is a decreasing sequence of closed subspaces of X and $\bigcap_{n=1}^{\infty} X_n = \{0\}$. Now,

\[d(x, X_n) = \|q_n(x)\|, \]

where $q_n : X \mapsto X/X_n$ is the canonical mapping. Observe that $(X/X_n)^*$ is isometrically isomorphic to $X_n^\perp = \text{lin}\{h^*_1, h^*_2, \ldots, h^*_n\}_\perp \subset H$, so

\[\|q_n(x)\| = \sup\{\langle x, x^* \rangle; x^* \in B_{X_n^\perp}\}. \]

Given $x^* \in B_{X_n^\perp}$,

\[|\langle x, x^* \rangle| = |\langle x^{**} - x, x^* \rangle| \leq \|x^{**} - x\| < 1, \]

so $d(x, X_n) \leq \|x^{**} - x\| < 1$, $n = 1, 2, \ldots$. However,

\[d \left(x, \bigcap_{n=1}^{\infty} X_n \right) = d(x, \{0\}) = \|x\| = 1. \]

This proves the result in the separable case. Now, given any nonreflexive Banach space, by the Eberlein-Šmulian Theorem (see, for example, [FHHMPZ, Thm. 3.59]) there exists a nonreflexive separable subspace and the first part of the proof applies. \hfill \Box
§3. Examples

We present two non-reflexive Banach spaces and corresponding decreasing sequences of closed subspaces violating equation (1). Both are concrete realizations of the construction in the proof of Theorem 2.1.

Example 1. Let \(X \) be the space \(c \) of all convergent sequences of real numbers, endowed with the norm \(\|x\| := \|x\|_\infty + \lim_{n \to \infty} |x_n| \). This norm is obviously equivalent to the norm \(\| \cdot \|_\infty \) induced by \(\ell_\infty \), so \((X, \| \cdot \|)\) is a Banach space. Let \(X_n := \{ x \in c : x_i = 0, \; i = 1, \ldots, n \}, \; n = 1, 2, \ldots \) (so \(\cap_{n=1}^\infty X_n = \{0\} \)). Now \(d(x, X_n) = \| (x_1, x_2, \ldots, x_n, 0, 0, \ldots) \|_\infty \), so \(\lim_{n \to \infty} d(x, X_n) = \|x\|_\infty \), while \(d(x, \cap_{n=1}^\infty X_n) = \|x\| \). As a consequence,

\[
d \left(x, \cap_{n=1}^\infty X_n \right) > \lim_{n \to \infty} d(x, X_n),
\]

holds for every \(x \notin c_0 \).

Example 2. The second example concerns spaces of holomorphic functions. Let \(\mathcal{W} \) be the space of all Lebesgue integrable complex valued functions \(\hat{f} \) which are defined on the unit circle \(T \) and have absolutely convergent series of Fourier coefficients \(f(n) \), i.e.

\[
\hat{f}(\zeta) = \sum_{n=-\infty}^{\infty} f(n) \zeta^n, \quad \sum_{n=-\infty}^{\infty} |f(n)| < \infty.
\]

The space \(\mathcal{W} \) is a subspace of \(\mathcal{C}(T) \), the space of continuous functions on \(T \), and it is a Banach space endowed with the norm

\[
\| \hat{f} \|_\mathcal{W} = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|,
\]

as it is linearly isometric to the Banach space

\[
l_1(\mathbb{Z}) = \left\{ \{a_n\}_{n=-\infty}^{\infty} : \sum_{n=-\infty}^{\infty} |a_n| < \infty \right\}
\]

(the linear isometry \((l_1(\mathbb{Z}), \| \cdot \|_1) \to (\mathcal{W}, \| \cdot \|_\mathcal{W})\) being the inverse Fourier transform \(f \to \hat{f} \)).
We will use the following notions:

Definition 3.1 ([R, (see, e.g. Def. 5.1.1)]). A subset E of T is said to be independent if E has the following property: for every choice of distinct points ζ_1, \ldots, ζ_k of E and integers n_1, \ldots, n_k, either

$$\zeta_1^{n_1} = \zeta_2^{n_2} = \cdots = \zeta_k^{n_k} = 1,$$

or

$$\zeta_1^{n_1} \zeta_2^{n_2} \cdots \zeta_k^{n_k} \neq 1.$$

Definition 3.2 ([R, (see, e.g. Def. 5.6.1)]). A compact subset P in T is a Helson set if, given $F \in C(P)$, $F = \pi(\hat{f})$ for some $\hat{f} \in W$, where $\pi : W \to C(P)$ is the restriction mapping.

The previous definition is reformulated in the following form (cf. [R, Th. 5.6.2]): For any compact set $P \subset T$ let $\pi : W \to C(P)$ be the restriction mapping and $q : W \to W/k\text{r}(\pi)$ the quotient mapping. We have $\|\pi\| \leq 1$.

By definition, P is a Helson set if and only if π in an onto map. In this case, $\pi : W/k\text{r}(\pi) \to C(P)$ is an isomorphism, where $\pi \circ q = \pi$. If P is a countable, compact, independent set in T, then P is a Helson set and it is showed in the proof of [R, Th. 5.6.7] that $\| (\pi^*)^{-1} \| \leq 2$, where $\pi^* : M(P) \to (W/k\text{r}(\pi))^*$ is the adjoint mapping of π (so $\|\pi^{-1}\| \leq 2$).

Let $X = W$ and let $\{\zeta_1, \zeta_2, \ldots\}$ be a dense set in T such that $P_N := \{\zeta_1, \zeta_2, \ldots, \zeta_n\}$ is an independent set for each n. Let

$$\pi_n : W \to C(P_n)$$

be the restriction mapping, as before, and define

$$X_n := k\text{r}(\pi_n), \quad n = 1, 2, \ldots$$

Let $q_n : W \to W/X_n$ be the canonical mapping.

Since $\{\zeta_j\}_{n=1}^\infty$ is dense in T, we have that

$$\bigcap_{n=1}^\infty X_n = \{0\}.$$
On the other side, $\|\pi_n(f)\| \leq 1$, and $d(f, X_n) = \|q_n(f)\| = \|((\pi_n)^{-1}(\pi_n(f))) \leq 2\|\pi_n(f)\| \leq 2$, $n = 1, 2, \ldots$. Then f and $\{X_n\}$ have the properties that we requested.

Open problem. We do not know of any similar characterization of superreflexive Banach spaces.

Acknowledgements

We thank the referee for kindly pointing out the reference to Singer’s book [S] and Theorems 1.1 and 1.2 appearing there (pages 153–154) and to Prof. López-Pellicer for a remark concerning the proof of Theorem 2.1.

References

