The First Cohomology Groups of Infinite Dimensional Lie Algebras

By Nobutada NAKANISHI*

Introduction

Let V be a finite dimensional vector space. We denote by $D(V)$ the Lie algebra consisting of all formal vector fields over V. Let L be a Lie subalgebra of $D(V)$. We are interested in the first cohomology group $H^1(L)$ of a Lie algebra L with adjoint representation.

Let L be an infinite dimensional transitive simple Lie algebra, that is, L is one of $D(V)$, L_{s1}, L_{s2}, or L_{ct}. (For a notation, see §2.) It is known in T. Morimoto [5] that $H^1(D(V)) = H^1(L_{ct}) = 0$, and $\dim H^1(L_{s1}) = \dim H^1(L_{s2}) = 1$.

In this paper we will treat the following two types of infinite dimensional Lie algebras:

1. Infinite dimensional transitive graded Lie algebras $\mathfrak{g} = \sum_{p=-\infty}^{\infty} \mathfrak{g}_p$. (For a precise definition, see §1.)

2. Infinite dimensional intransitive Lie algebras $L[W^\ast]$ whose transitive parts L are infinite and simple. (In this case W is a subspace of V.)

In Section 3 and Section 4, we will give two criteria for $H^1(\mathfrak{g})$ to be of finite dimension. More precisely we will prove

Theorem A. Let $\mathfrak{g} = \sum_{p=-\infty}^{\infty} \mathfrak{g}_p$ be an infinite transitive graded Lie algebra with a semi-simple linear isotropy algebra \mathfrak{g}_0. Then $H^1(\mathfrak{g})$ is finite dimensional.

Theorem B. Let $\mathfrak{g} = \sum_{p=-\infty}^{\infty} \mathfrak{g}_p$ be an infinite transitive graded Lie algebra whose linear isotropy algebra \mathfrak{g}_0 contains an element e which satisfies $[e, x_p] = \ldots$
px_p for all $x_p \in g_p$. Then $H^1(g)$ is finite dimensional. Furthermore if g is derived from g_0, then $H^1(g)$ is isomorphic to $n(g_0)/g_0$, where $n(g_0)$ denotes the normalizer of g_0 in $gl(g_{-1})$.

It may well be doubted if every infinite transitive graded Lie algebra g has the finite dimensional cohomology group $H^1(g)$. But unfortunately this presumption is false. In Section 5 we will give an easy condition for g to be $\dim H^1(g) = \infty$. (For such a Lie algebra g, we can construct derivations of arbitrarily large negative degree.)

That is, we will prove

Theorem C. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra which satisfies $g^{(2)} = [g^{(1)}, g^{(1)}] = 0$, where $g^{(1)} = [g, g]$. Then $H^1(g)$ is infinite dimensional.

In Section 6 our objects are infinite intransitive Lie algebras $L[W^*]$. Let $V = U + W$ (direct sum). We denote by $S(W^*)$ the ring of formal power series over W. Let L be an infinite transitive simple Lie algebra over U. Then a Lie algebra $L[W^*]$ is obtained as a topological completion of $L \otimes S(W^*)$. These Lie algebras $L[W^*]$ are obtained as the result of the classification theorem of infinite intransitive Lie algebras [6]. In determining $H^1(L[W^*])$, V. Guillemin's work is essential. Using his results we will prove

Theorem D. Let $D(W)$ be a Lie algebra of all formal vector fields over W and let e be a basis of one dimensional center of $gl(U)$. Then we have

$$H^1(L[W^*]) \cong \begin{cases} D(W) & \text{for } L = D(U) \text{ or } L_{et}(U), \\ D(W) + S(W^*) \otimes e & \text{for } L = L_{et}(U) \text{ or } L_{ep}(U). \end{cases}$$

Above results can be considered as a formal version of Y. Kanie [3]. In a forthcoming paper, we will give an example of an infinite intransitive Lie algebra L such that $H^1(L) = 0$.

Throughout this paper, all vector spaces and Lie algebras are assumed to be defined over the field C of complex numbers.

§1. Infinite Transitive Graded Lie Algebras

In this section, we define transitive graded Lie algebras which we will study in the subsequent sections.
Definition 1.1. Let \(g \) be a Lie algebra. Assume that there is given a family \(\{g_p\}_{p \geq -1} \) of subspaces of \(g \) which satisfies the following conditions:

a) \(g = \bigoplus_{p=-1}^{\infty} g_p \) (direct sum);

b) \(\dim g_p < \infty \);

c) \([g_p, g_q] \subseteq g_{p+q} \);

d) For every non-zero \(x_p \in g_p, p \geq 0 \), there is an element \(x_{-1} \in g_{-1} \) such that \([x_p, x_{-1}] \neq 0 \). Under these conditions, we say that the direct sum \(g = \sum_{p=-1}^{\infty} g_p \) or simply \(g \) is a transitive graded Lie algebra.

By conditions c) and d), \(g_0 \) is considered as a Lie subalgebra of \(gl(g_{-1}) \). The Lie algebra \(g_0 \) is called the linear isotropy algebra of \(g \). A graded Lie algebra \(g \) is said to be irreducible if the representation of \(g_0 \) on the vector space \(g_{-1} \) given by \([g_0, g_{-1}] \subseteq g_{-1} \) is irreducible.

Definition 1.2. The space \(g^{(p)} \) which is called the \(p \)-th prolongation of \(g_0 \) is defined by

\[
g^{(p)} = g_0 \otimes S^p(g^*_1) \cap g_{-1} \otimes S^{p+1}(g^*_1),
\]

where \(S^p(g^*_1) \) denotes the \(p \)-times symmetric tensor of the dual space \(g^*_1 \) of \(g_{-1} \).

We say that \(g_0 \) is of finite type if \(g^{(p)}_0 = 0 \) for some (and hence for all larger) \(p \). Otherwise we say that \(g_0 \) is of infinite type. Put \(g^{-1}_0 = g_{-1}, g^{(0)}_0 = g_0 \) and \(g = \sum_{p=-1}^{\infty} g^{(p)}_0 \). Then \(g \) has a Lie algebra structure with respect to a canonical bracket operation. We say that the transitive graded Lie algebra \(\tilde{g} = \sum_{p=-1}^{\infty} g^{(p)}_0 \) thus obtained is derived from \(g_0 \). If \(g \) is an abstract transitive graded Lie algebra with a linear isotropy algebra \(g_0 \), then \(g \) is considered as a graded Lie subalgebra of \(\tilde{g} \). It is clear that if a transitive graded Lie algebra \(g \) is of infinite dimension, its linear isotropy algebra \(g_0 \) must be of infinite type.

Let \(A \) be a Lie algebra. A derivation \(c \) of \(A \) is a linear mapping from \(A \) to itself satisfying \(c[x, y] = [c(x), y] + [x, c(y)] \) for all \(x, y \in A \). We denote by \(\text{Der}(A) \) (resp. \(\text{ad}(A) \)) the derivation algebra (resp. the algebra of inner derivations of \(A \)). Then, by definition, the first cohomology group \(H^1(A) \) of \(A \) with adjoint representation is equal to the space \(\text{Der}(A)/\text{ad}(A) \). A derivation \(c \) of a graded Lie algebra \(g = \sum_{p=-1}^{\infty} g_p \) is said to be of degree \(r \) or \(\deg c = r \) if it satisfies \(c(g_p) \subseteq g_{p+r} \) for all \(p \).
§ 2. Infinite Transitive Simple Lie Algebras

It is well-known that there are the following four classes of infinite transitive simple Lie algebras over \mathbb{C} (see [5]).

(1) $L_{\mathfrak{g}1}(n)$: the Lie algebra of all formal (or better, formal power series) vector fields in n-variables x_1, x_2, \ldots, x_n.

(2) $L_{\mathfrak{g}1}(n)$: the Lie algebra of formal vector fields in n-variables x_1, x_2, \ldots, x_n, preserving the volume form $dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$.

(3) $L_{\mathfrak{g}2}(2n)$: the Lie algebra of formal vector fields in $2n$-variables $x_1, x_2, \ldots, x_{n}, y_1, y_2, \ldots, y_{n}$ preserving the symplectic form $\sum_{i=1}^{n} dx_i \wedge dy_i$.

(4) $L_{\mathfrak{g}3}(2n+1)$: the Lie algebra of formal vector fields in $(2n+1)$-variables $z, x_1, x_2, \ldots, x_{n}, y_1, y_2, \ldots, y_{n}$, preserving the contact form $dz + \sum_{i=1}^{n} x_i \cdot dy_i - y_i dx_i$, up to functional factors.

We will often write $D(V)$ for $L_{\mathfrak{g}1}(n)$, where V is an n-dimensional vector space with a basis $\partial/\partial x_1, \ldots, \partial/\partial x_n$. Let L be one of Lie algebras $D(V), L_{\mathfrak{g}1}$ and $L_{\mathfrak{g}2}$. Each L has the natural filtration $\{L_p\}_{p \in \mathbb{Z}}$ defined as follows.

- $L_p = L$ for $p \leq -1$;
- $L_0 = \{X \in L; \text{ the value } X(0) \text{ of } X \text{ at the origin } = 0\}$;
- $L_p = \{X \in L_{p-1}; [X, L] \subset L_{p-1}\}$ for $p \geq 1$.

Then the decreasing sequence of subspaces: $L = L_{-1} \supset L_0 \supset L_1 \supset L_2 \supset \cdots$ satisfies

(a) $\bigcap_{p=-1}^{\infty} L_p = 0$;
(b) $[L_p, L_{\mathfrak{q}2}] \subset L_{p+\mathfrak{q}2}$;
(c) $\dim L_p/L_{p+1} < \infty$.

Put $\mathfrak{g}_p(L) = L_p/L_{p+1}$. Then by (b), (c) and the definition of L_p, $p \geq 1$, we have the transitive graded Lie algebra $\mathfrak{g}(L) = \sum_{p=-1}^{\infty} \mathfrak{g}_p(L)$. We also have the Lie algebra $L' = \prod_{p=-1}^{\infty} \mathfrak{g}_p(L)$, which is the completion of $\mathfrak{g}(L)$.

Under these notations we will summarize a few useful properties of L.

(1) Each L is an infinite transitive irreducible Lie algebra and moreover L is isomorphic to L', where the word "irreducible" means that the action of $\mathfrak{g}_0(L)$ on $\mathfrak{g}_{-1}(L)$ is irreducible.

(2) The linear isotropy algebras $\mathfrak{g}_0(L)$ of $D(V), L_{\mathfrak{g}1}$ and $L_{\mathfrak{g}2}$ are $\mathfrak{gl}(n, \mathbb{C})$, $\mathfrak{gl}(n, \mathbb{C})$, and $\mathfrak{gl}(2n, \mathbb{C})$, respectively.
sl(n, C) and sp(n, C) respectively, and for \(p \geq 1 \) \(g_p(L) \) is isomorphic to the \(p \)-th prolongation \(g_0(L)^{(p)} \) of \(g_0(L) \).

(3) For \(g_0(L) = \text{sl}(n, C) \) or \(\text{sp}(n, C) \), it holds that

(i) \([g_0(L)^{(r)}, g_0(L)^{(s)}] = g_0(L)^{(r+s)} \) for \(r, s \geq 0 \),

(ii) \(g_0(L) \) acts irreducibly on \(g_0(L)^{(r)} \) for \(r \geq -1 \).

By the classification theorem of Kobayashi-Nagano [4], we know that there are only three classes of transitive simple irreducible Lie algebras of infinite type over \(C \), that is, they are \(D(V) \), \(L_{\text{et}} \) and \(L_{\text{gp}} \).

For the contact Lie algebra \(L_{\text{ct}}(2n + 1) \) (or simply \(L_{\text{ct}} \)), we must define another filtration.

\[
L_p = \begin{cases}
L_{\text{ct}} & \text{for } p \leq -2; \\
L_{-1} &= \{X \in L_{\text{ct}}; \langle X, \theta \rangle_0 = 0, \text{ where } \theta \text{ is the contact form} \}; \\
L_0 &= \{X \in L_{\text{ct}}; X(0) = 0 \}; \\
L_p &= \{X \in L_{p-1}; [X, L_{p-1}] \subseteq L_{p-1} \} & \text{for } p \geq 1.
\end{cases}
\]

Using this filtration, \(L_{\text{ct}} \) is isomorphic to \(\prod_{p=-2}^{\infty} g_p(L) \). For the subsequent discussion about \(L_{\text{ct}} \), we have only to recall that

(4) \(L_{-1} = [L_{\text{ct}}, L_{1}] \).

In Section 3 and Section 6, we essentially use the following facts which were proved by T. Morimoto [5].

Theorem 2.1. Let \(L \) be an infinite transitive simple Lie algebra over \(C \). Then

\[
H^1(L) \cong \begin{cases}
0 & \text{for } L = D(V) \text{ or } L_{\text{ct}} \\
C & \text{for } L = L_{\text{et}} \text{ or } L_{\text{gp}}.
\end{cases}
\]

Remark 1. Let \(L \) be one of Lie algebras \(L_{\text{et}} \) or \(L_{\text{gp}} \). Since \(L \) is isomorphic with the Lie algebra \(L' = \prod_{p=-1}^{\infty} g_p(L) \), their isotropy algebras \(\text{sl}(V) \) and \(\text{sp}(V) \) are considered to be subalgebras of them. Let \(e \) denote a unit matrix in \(\text{gl}(V) \). Then the above theorem asserts that \(\text{ad}(e) \) yields a basis of one dimensional space \(H^1(L) \).

Remark 2. Let \(\text{gr}(L) \) be a graded Lie algebra associated with an infinite transitive simple Lie algebra \(L \). Then we also have \(H^1(\text{gr}(L)) = 0 \) for \(L = D(V) \) or \(L_{\text{ct}} \), and \(H^1(\text{gr}(L)) \cong C \) for \(L = L_{\text{et}} \) or \(L_{\text{gp}} \). These facts are particularly used in Section 3.
§3. The First Cohomology Groups of Infinite Transitive
Graded Lie Algebras (I)

Throughout this section, let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite (dimensional) transitive graded Lie algebra over C and let its linear isotropy algebra g_0 be semi-simple. Put $g_{-1} = V$. Then g_0 is considered as a Lie subalgebra of $\text{gl}(V)$. First we will determine the type of g.

Since g_0 is semi-simple, we can decompose V into $V = V_1 + V_2 + \cdots + V_k$ (vector space direct sum), where each V_i $(i=1, 2, \ldots, k)$ is a g_0-invariant subspace and g_0 acts irreducibly on V_i. We denote by h_i the Lie algebra of linear transformations of V_i induced by g_0. By the natural inclusion, h_i is considered as a Lie subalgebra of $\text{gl}(V)$. We also denote it by the same letter h_i if there is no confusion. Put $n_i = \{t \in g_0; t(V_j) = 0 \text{ for all } j \neq i\}$. Then each n_i is an ideal of g_0 and $n_1 + \cdots + n_k$ is a direct sum as Lie algebras. It clearly holds

\begin{equation}
(3.1) \quad n_1 + \cdots + n_k \subset g_0 \subset h_1 + \cdots + h_k.
\end{equation}

Lemma 3.1. For $p \geq 1$, $g_0^{(p)} = n_1^{(p)} + \cdots + n_k^{(p)}$ (direct sum).

Proof. Let $t: V \times \cdots \times V \to V$ be an element of $g_0^{(p)}$. First note that $t(v_1, \ldots, v_{p+1}) = 0$ if $v_i \in V_i$, $v_j \in V_j$ for $i \neq j$. (It is easy to see that $t(v_1, \ldots, v_{p+1}) \in V_i \cap V_j$.) Let $v_1, \ldots, v_{p+1} \in V$ and $v_i = v_i^1 + \cdots + v_i^k$ with $v_i^1 \in V_1$, $v_i^2 \in V_2, \ldots, v_i^k \in V_k$ for $i=1, \ldots, p+1$. Then by the above remark, we have

\begin{equation}
(3.2) \quad t(v_1, \ldots, v_{p+1}) = t(v_1^1, \ldots, v_{p+1}^1) + \cdots + t(v_1^k, \ldots, v_{p+1}^k) = t_1(v_1^1, \ldots, v_{p+1}^1) + \cdots + t_k(v_1^1, \ldots, v_{p+1}^k),
\end{equation}

where t_i denotes an element of $n_i^{(p)}$ induced by t. (Since $t_i(\ast, v'_1, \ldots, v'_p) \in n_i$ for $v'_1, \ldots, v'_p \in V$, t_i is an element of $n_i^{(p)}$.) Since $n_1 + \cdots + n_k$ is a direct sum, our assertion is obvious.

q.e.d.

Since g is infinite dimensional and g_p is a subspace of $g_0^{(p)}$, g_0 must be of infinite type by Lemma 3.1. From now on, without loss of generality, we assume that n_1, \ldots, n_l $(l \leq k)$ are of infinite type and n_{l+1}, \ldots, n_k are of finite type.

Lemma 3.2. Let g_0 be a linear isotropy algebra of an infinite transitive graded Lie algebra g. Then there exists a Lie subalgebra g_0 of finite type of $h_{l+1} + \cdots + h_k$ and g_0 is written as
(3.3) \(g_0 = n_1 + \cdots + n_l + g_b \) \((\text{Lie algebra direct sum})\),
where each ideal \(n_i \) \((i = 1, \ldots, l)\) is isomorphic to either \(\mathfrak{sl}(V_i) \) or \(\mathfrak{sp}(V_i) \).

Proof. Let \(\pi : g_0 \to h_i \) \((i = 1, \ldots, l)\) be a natural projection. Since \(\pi \) is a Lie algebra homomorphism, \(g_0 / \text{Ker} \pi \) is isomorphic to \(h_i \). Recall that the quotient space of a semi-simple Lie algebra is also semi-simple. Thus \(h_i \) is semi-simple and its center is zero. Moreover each \(h_i \) acts irreducibly on \(V_i \) and is of infinite type. Hence by the classification theorem of transitive irreducible Lie algebras of infinite type, we know that \(h_i \) must be equal to either \(\mathfrak{sl}(V_i) \) or \(\mathfrak{sp}(V_i) \).

Since \(n_i \) is an ideal of \(h_i \), we have \(n_i = \mathfrak{sl}(V_i) \) or \(\mathfrak{sp}(V_i) \). (\(\mathfrak{sl}(V_i) \) and \(\mathfrak{sp}(V_i) \) are naturally imbedded in \(\mathfrak{gl}(V_i) \)). Note that \(n_1 = h_1, n_2 = h_2, \ldots, n_l = h_l \). Then we can find a subspace \(g_b \) such that \(n_{i+1} + \cdots + n_k \subseteq g_b \subseteq h_{i+1} + \cdots + h_k \). Considering (3.1), we obtain the expression of \(g_0 \) as (3.3). By Lemma 3.1, we also have \(g_0 = n_{i+1} + \cdots + n_k \). Thus \(g_b \) is of finite type. q.e.d.

Next we will determine the type of \(g_1 \). From (3.3) in Lemma 3.2, we have \(g_0 = n_1 + \cdots + n_l + g_b \), and \(g_1 \) is a subspace of \(g_0 \). Without loss of generality, we assume that \(g_1 \cap n_1 \neq 0, \ldots, g_1 \cap n_l \neq 0 \) and \(g_1 \cap n_{l+1} = 0, \ldots, g_1 \cap n_{m+1} = 0 \). Then we have

Lemma 3.3. \(g_1 \) has the following form:

\[
g_1 = n_1 + \cdots + n_m + H_1,
\]

where \(H_1 \) is a subspace of \(g_b \).

Proof. For \(i = 1, \ldots, m \), \(g_1 \cap n_i \) is an \(n_i \)-invariant subspace of \(n_i \). By the property (3) (ii) in Section 2, we have \(g_1 \supseteq n_1 + \cdots + n_m \). Hence there exists a subspace \(H_1 \) of \(n_1 + \cdots + n_m + g_b \) such that \(g_1 = n_1 + \cdots + n_m + H_1 \) and \(H_1 \cap n_i = 0 \). For \(j = m+1, \ldots, l \), decompose \(t \in H_1 \) into \(t = t_{m+1} + \cdots + t_l + t_b \) with \(t_m + \cdots + t_l + t_b \in g_b \). Define a subspace \(A_j \) of \(n_j \) by

\[
A_j = \{ t_j \in n_j; t = t_{m+1} + \cdots + t_l + t_b \in H_1 \}.
\]

For all \(x_j \in n_j \) and \(t_j \in A_j \), it holds that \([x_j, t_j] = [x_j, t] \in n_j \) \& \(g_t = \{ 0 \} \). This means that \(n_j, A_j = 0 \). Using the property (3) (ii), we have \(A_j = 0 \) for \(j = m+1, \ldots, l \). Hence \(H_1 \subseteq g_b \). q.e.d.

Since \(g_p \supseteq A_1, [A_1, \ldots, [A_1, g_1], \ldots \} \) for \(p > 1 \), \(g_p \) contains \(n_1 + \cdots + n_m \) by Lemma 3.3 and the property (3) (i) in Section 2. By the same argument as Lemma 3.3, we get
Lemma 3.4. For \(p > 1 \), \(g_p \) has the following form:
\[
g_p = n_1^{(p)} + \cdots + n_m^{(p)} + H_p,
\]
where \(H_p \) is a subspace of \(g_0^{(p)} \). (For sufficiently large \(p \), \(H_p = 0 \) since \(g_0 \) is of finite type.)

By Lemma 3.3 and Lemma 3.4, we can easily determine the form of the given infinite transitive graded Lie algebra \(g = \sum_{p=1}^{\infty} g_p \). That is, we have

Proposition 3.5. Let \(g = \sum_{p=1}^{\infty} g_p \) be an infinite transitive graded Lie algebra. Then \(g \) has the following form:
\[
g = G_1 + \cdots + G_m + G_{m+1} + \cdots + G_i + G_j \quad \text{(direct sum)},
\]
where \(G_i (i = 1, \ldots, m) \) is of the form \(gr(L_{g_1}(V_i)) \) or \(gr(L_{s_0}(V_i)) \), and \(G_j (j = m+1, \ldots, l) \) is of the form \(V_j + sl(V_j) \) or \(V_j + sp(V_j) \), and \(G_j \) is a finite dimensional Lie algebra. (From now on, we put \(G' = G'_{m+1} + \cdots + G_i + G_j \). Then \(G \) is a finite dimensional ideal of \(g \).)

For computing \(H^1(g) \), we need some lemmas.

Lemma 3.6. Let \(A \) be an abstract Lie algebra and let \(A_i (i = 1, \ldots, k) \) be perfect ideals of \(A \). If \(A = A_1 + \cdots + A_k \) (direct sum), then \(H^1(A) \cong H^1(A_1) + \cdots + H^1(A_k) \) (direct sum).

Proof. Let \(c \in \text{Der}(A) \). We denote by \(c_{ij} \) the \(\text{Hom}(A_i, A_j) \)-component of \(c \). For \(x, y \in A_i \), we have
\[
(3.4) \quad c[x, y] = [c(x), y] + [x, c(y)]
= \sum_{j=1}^k [c_{ij}(x), y] + \sum_{j=1}^k [x, c_{ij}(y)]
= [c_{ij}(x), y] + [x, c_{ij}(y)] \in A_i.
\]
Combined this with \(A_i = [A_i, A_i] \), we obtain \(c_{ij} = 0 \) for \(i \neq j \). Put \(c_{ii} = c_i \). By (3.4), \(c_i \) induces a derivation of \(A_i \). Hence \(\text{Der}(A) = \text{Der}(A_1) + \cdots + \text{Der}(A_k) \) (direct sum). Our assertion is now evident. q.e.d.

Lemma 3.7. Let \(A \) be an abstract Lie algebra such that \(A = A_1 + A_2 \) (direct sum) with \(A_1 = [A_1, A_1] \). Moreover assume that the center of \(A_1 \) is zero. Then \(H^1(A) \cong H^1(A_1) + H^1(A_2) \) (direct sum).

Proof. We can write \(c = c_{11} + c_{12} + c_{21} + c_{22} \) by using same notations as Lemma 3.6. Since \(A_1 \) is perfect, we have \(c_{12} = 0 \). Let \(x \in A_1 \) and \(y \in A_2 \). By the equation \(0 = c[x, y] = [c(x), y] + [x, c(y)] \), we get \([x, c_{21}(y)] = 0 \). This
means that $c_{21}(y) \in \{\text{center of } A_1\}$. Since the center of A_1 is zero, we have $c_{21}=0$. Now it is easy to verify the assertion.

Combined with Theorem 2.1, we obtain finally the following theorem.

Theorem 3.8. Let $g = \sum_{p=-1}^\infty g_p$ be an infinite transitive graded Lie algebra with a semi-simple linear isotropy algebra g_0. Then $H^1(g)$ is finite dimensional.

Proof. By Proposition 3.5, g has the following form: $g = G_1 + \cdots + G_m + G'$, where $\dim G' < \infty$. Since $G_1 + \cdots + G_m$ is perfect and has no non-trivial center, we have $H^1(g) \cong H^1(G_1 + \cdots + G_m) + H^1(G')$ by Lemma 3.7. On the other hand, $H^1(G_1 + \cdots + G_m) \cong H^1(G_1) + \cdots + H^1(G_m)$ by Lemma 3.6, and $\dim H^1(G_i) = 1$ or 0 for $i = 1, \ldots, m$ by Theorem 2.1. (See also Remark 2, and recall that $G_i = \text{gr}(L_{\pi_i}(V_i))$ or $\text{gr}(L_{\pi_i}(V_i))$. Thus we obtain $\dim H^1(g) < \infty$.

q.e.d.

§ 4. The First Cohomology Groups of Infinite Transitive Graded Lie Algebras (II)

In this section, we assume that the linear isotropy algebra g_0 of $g = \sum_{p=-1}^\infty g_p$ contains an element e which satisfies $[e, x_p] = px_p$ for all $x_p \in g_p$. Put $g_{-1} = V$. We can write $c(e) = \sum_{p=-1}^\infty x_p$ with $x_p \in g_p$. For all $v \in V$, we have

$$[c(e), v] + [e, c(v)] = c[e, v] = -c(v).$$

Comparing the V-components of this equation, we obtain $[x_0, v] = 0$, and hence $x_0 = 0$ by the transitivity condition of g. We now define a new derivation c' derived from c by

$$(4.1) \quad c' = c + \text{ad} \left(\sum_{p \neq 0} \frac{1}{p} x_p \right).$$

It is clear that $c'(e) = 0$.

Lemma 4.1. $\deg c' = 0$. (For the definition of "degree" of a derivation, see § 1.)

Proof. We must show that $c'(g_p) \subset g_p$ for all $p \geq -1$. Put $c'(x) = \sum_{q=-1}^\infty y_q$ ($y_q \in g_q$) for $x \in g_p$. Then we have

$$c'[e, x] = pc'(x) = p \sum_{q=-1}^\infty y_q = [e, c'(x)] = \sum_{q=-1}^\infty q y_q.$$
Hence $y_q = 0$ for $q \neq p$ and thus $c'(x) = y_p \in g_p$.

Lemma 4.2. If $c' = 0$ on V, then $c' = 0$ on g.

Proof. For $x \in g_0$ and $v \in V$, it holds that $[c'(x), v] + [x, c'(v)] = c'[x, v]$. By the assumption of c', we obtain $[c'(x), v] = 0$. Combining $c'(g_0) \subseteq g_0$ with the transitivity of g, we obtain $c'(x) = 0$. Repeating this procedure for all $p \geq 1$, we can also obtain that $c'(g_p) = 0$. Hence $c' = 0$ on g. q.e.d.

Let $[c] \in H^1(g)$ denote an equivalence class of a derivation c of g. Since $c' = c + \text{ad}(\sum_{p \geq 0} \frac{1}{p} x_p)$, we have $[c] = [c']$. By Lemma 4.1, a restriction of c' to V is an element of $\text{gl}(V)$. We denote this linear mapping by $c'|_V$.

Theorem 4.3. Let $g = \sum_{p = -1}^{\infty} g_p$ be an infinite transitive graded Lie algebra whose linear isotropy algebra g_0 contains an element e which satisfies $[e, x_p] = px_p$ for all $x_p \in g_p$. Then $\dim H^1(g) \leq (\dim V)^2$.

Proof. Let c be any derivation of g. We define a linear mapping $\psi: \text{Der}(g) \rightarrow \text{gl}(V)$ by $\psi(c) = c'|_V$. By Lemma 4.2, we obtain that if c is contained in $\text{Ker} \psi$, then c is an inner derivation. Hence our assertion is obvious. q.e.d.

In case that g is derived from g_0, we can get the more precise result. Let $n(g_0)$ denote the normalizer of g_0 in $\text{gl}(V)$. Then we have

Lemma 4.4. Let g be a Lie algebra derived from g_0. Then for all $x \in n(g_0)$, $\text{ad}(x)$ is a derivation of g.

Proof. It is sufficient to prove that $\text{ad}(x)(g_0^{(p)}) \subseteq g_0^{(p)}$ for all $p \geq 1$. Let $z \in g_0^{(1)}$ and $v \in V$. With respect to the bracket operation in $D(V)$, we have

$$[\text{ad}(x)(z), v] = \text{ad}(x)[z, v] + [z, [v, x]] \in g_0.$$

Hence we have $\text{ad}(x)(z) \in g_0^{(1)}$, that is, $\text{ad}(x)(g_0^{(1)}) \subseteq g_0^{(1)}$. Since $g_0^{(p+1)} = (g_0^{(p)})^{(1)}$, it can be inductively proved that $\text{ad}(x)(g_0^{(p)}) \subseteq g_0^{(p)}$ for all $p \geq 1$. q.e.d.

Theorem 4.5. Let g be an infinite transitive graded Lie algebra derived from g_0. Moreover assume that g_0 contains an element e which satisfies $[e, x_p] = px_p$ for all $x_p \in g_p$. Then $H^1(g)$ is isomorphic to $n(g_0)/g_0$.

Proof. By Lemma 4.4, we can define a linear mapping $f: n(g_0) \rightarrow H^1(g)$ by $f(x) = [\text{ad}(x)]$. We prove that f is surjective. Let c be any derivation of g. Recall that $[c] = [c']$. Since c' satisfies $c'(V) \subseteq V$, there exists an element x of $\text{gl}(V)$ such that $c' = \text{ad}(x)$ on V. Let $v \in V$ and $y \in g_0$. By the Jacobi identity
in \(D(V) \), we have

\[
(4.2) \quad \text{ad} (x)[v, y] = [\text{ad} (x)(v), y] + [v, \text{ad} (x)(y)].
\]

On the other hand, \(c' \) satisfies

\[
(4.3) \quad \text{c'}[v, y] = [\text{c'}(v), y] + [v, \text{c'}(y)].
\]

Note that \(\text{ad} (x)[v, y] = c'[v, y] \) and \(\text{ad} (x)(v) = c'(v) \). From equations (4.2) and (4.3), it holds that \([v, \text{ad} (x) - c')(y)] = 0 \). By the transitivity condition of \(g \), we obtain that \(\text{ad} (x) = c' \) on \(g_0 \) and hence \(x \in n(g_0) \). By Lemma 4.4, \(\text{ad} (x) \) is a derivation of \(g \), and \(c' - \text{ad} (x) \) vanishes on \(V \). Now by Lemma 4.2, we clearly have \(c' = \text{ad} (x) \) on \(g \). Thus we have proved that \(f \) is surjective. Since \(\text{Ker} f = g_0 \), we obtain that \(H^1(g) \) is isomorphic to \(n(g_0)/g_0 \). q. e. d.

§ 5. Example of Infinite Transitive Graded Lie Algebra \(g \) with \(\dim H^1(g) = \infty \)

As stated in Introduction, we give an example of \(g \) such that \(H^1(g) \) is of infinite dimension. Note that a derivation \(c \) of degree \(\leq -2 \) is necessarily an outer derivation. We define a sequence of derived ideals \(g^{(p)} \) of \(g \) inductively by \(g^{(1)} = [g, g], \ldots, g^{(p)} = [g^{(p-1)}, g^{(p-1)}] \). Then we prove

Theorem 5.1. Let \(g = \sum_{p=-1}^{\infty} g_p \) be an infinite transitive graded Lie algebra which satisfies \(g^{(2)} = 0 \). Then \(\dim H^1(g) = \infty \).

Proof. Put \(\varphi_k = \text{ad} (v_1) \cdots \text{ad} (v_k) \) for \(v_1, v_2, \ldots, v_k \in g_{-1} \). We show that \(\varphi_k (k \geq 1) \) is a derivation of \(g \) by induction. In the case of \(k = 1 \), \(\varphi_1 = \text{ad} (v_1) \) is an "inner" derivation. Let \(k \geq 1 \). Assume that \(\varphi_k[x, y] = [\varphi_k(x), y] + [x, \varphi_k(y)] \) for any \(x, y \in g \). Put \(\varphi_{k+1} = \varphi_k \circ \text{ad} (v_{k+1}) \) for \(v_{k+1} \in g_{-1} \). Then by the Jacobi identity, we have

\[
\varphi_{k+1}[x, y] = \varphi_k[v_{k+1}, [x, y]] = \varphi_k[[v_{k+1}, x], y] + \varphi_k[x, [v_{k+1}, y]].
\]

By the assumption of induction and by \(g^{(2)} = 0 \), this element is equal to

\[
\varphi_k[[v_{k+1}, x], y] + \varphi_k[x, [v_{k+1}, y]] = [\varphi_k[v_{k+1}, x], y] + [x, \varphi_k[v_{k+1}, y]] = [\varphi_{k+1}(x), y] + [x, \varphi_{k+1}(y)].
\]

Hence \(\varphi_k \) is a derivation for all \(k \geq 1 \). Now if \(\varphi_k = \text{ad} (v_1) \cdots \text{ad} (v_k) = 0 \) on \(g \) for all \(v_1, v_2, \ldots, v_k \in g_{-1} \), we would have \([g_{-1}, [g_{-1}, \ldots, [g_{-1}, g_k] \cdots] = 0 \).

By the transitivity condition of \(g \), we must have \(g_k = 0 \). This is a contradiction.
Thus there exist $v_1, v_2, \ldots, v_k \in \mathfrak{g}_{-1}$ for arbitrarily large k such that $\varphi_k = \text{ad}(v_1) \cdot \text{ad}(v_2) \cdots \text{ad}(v_k) \neq 0$. Since $\deg \varphi_k = -k$, φ_k is a non-trivial outer derivation of \mathfrak{g}, and hence $\dim H^1(\mathfrak{g}) = \infty$.

A typical example. Let \mathfrak{g}_{-1} be a two dimensional vector space with a basis $\partial/\partial x, \partial/\partial y$, and let \mathfrak{g}_p be a one dimensional vector space with a basis $x^{p+1}\partial/\partial y$ for $p \geq 0$. Then we have an infinite transitive graded Lie algebra $\mathfrak{g} = \sum_{p=-1}^{\infty} \mathfrak{g}_p$, which satisfies $\mathfrak{g}^{(2)} = 0$. In this case, $\varphi_k = \text{ad}(\partial/\partial x) \cdots \text{ad}(\partial/\partial x)$ are non-trivial derivations of \mathfrak{g} for all $k \geq 1$. Hence $H^1(\mathfrak{g})$ is of infinite dimension.

§ 6. The First Cohomology Groups of Infinite Intransitive Lie Algebras $L[W^\ast]$

6.1. First we explain a Lie algebra $L[W^\ast]$ which is a main object in this section. Let V be a finite dimensional vector space with $V = U + W$ (direct sum). We denote by $S(W^\ast)$ the ring of formal power series over W. Let L be an infinite transitive simple Lie algebra over U. Both L and $S(W^\ast)$ are complete topological vector spaces with respect to their natural topology induced by the filtrations. Then a Lie algebra $L[W^\ast]$ is obtained as a topological completion of $L \otimes S(W^\ast)$. Since $L[W^\ast]$ is a perfect Lie algebra, we know that each derivation c of $L[W^\ast]$ is continuous.

6.2. Let A be an abstract Lie algebra over \mathbb{C}. Then the commutator ring of A, which we denote by C_A, is defined as follows:

$$C_A = \{ \rho \in \text{Hom}_{\mathbb{C}}(A, A) ; \rho \circ \text{ad}(x) = \text{ad}(x) \circ \rho \text{ for all } x \in A \}.$$

In this sub-section we want to determine the commutator rings C_L and $C_{L[W^\ast]}$.

Proposition 6.1. For an infinite transitive simple Lie algebra L, it holds that $C_L = \mathbb{C}$.

For the proof of Proposition 6.1, we need three lemmas. First we rewrite the some properties of L stated in Section 2 in the following lemma.

Lemma 6.2. (1) $L_0 = [L, L_1]$, for $L = D(U)$, $L_{s1}(U)$ and $L_{s2}(U)$,
(2) $L_{-1} = [L, L_1]$, for $L = L_{ct}(U)$.

Lemma 6.3. (V. Guillemin [1]). C_L is a commutative field which canonically contains the field \mathbb{C}.
Proof. For $a \in C$, let ρ_a be a mapping such that $x \mapsto ax$ for $x \in L$. Then it is clear that ρ_a belongs to C_L. Through a mapping $a \mapsto \rho_a$, we can consider C is contained in C_L. Let ρ be a non-zero element of C_L. Since L is simple, we have $\rho(L) = L$ and $\text{Ker} \, \rho = 0$. Hence a non-zero ρ has an inverse. Let ρ_1, $\rho_2 \in C_L$. It is clear that $\rho_1 \circ \rho_2 \in C_L$. Now it is sufficient to show that $\rho_1 \circ \rho_2 = \rho_2 \circ \rho_1$. For all $x, y \in L$ we have $\rho_1 \circ \rho_2[x, y] = [\rho_1(x), \rho_2(y)] = \rho_2 \circ \rho_1[x, y]$. Combining this equation with $L = [L, L]$, we obtain $\rho_1 \circ \rho_2 = \rho_2 \circ \rho_1$. q.e.d.

Lemma 6.4. Each C_L has a faithful representation as a ring of endomorphisms as follows:

1. $C_L \subseteq \text{Hom}_C(L/L_0, L/L_0)$ for $L = D(U)$, $L_{s_1}(U)$ and $L_{s_2}(U)$.
2. $C_L \subseteq \text{Hom}_C(L/L_{-1}, L/L_{-1})$ for $L = L_{s_1}(U)$.

Proof. (1) Let ρ be an element of C_L. Since the filtration $\{L_p\}$ of L satisfies $L_0 = [L, L_1]$ by Lemma 6.2, we obtain $\rho(L_0) \subseteq L_0$. Hence a linear mapping $\rho \mapsto \bar{\rho} \in \text{Hom}_C(L/L_0, L/L_0)$ is naturally induced. Assume $\bar{\rho} = 0$. Then $\rho(L)$ is an ideal of L contained in L_0, and hence $\rho(L) = 0$. Thus a linear mapping $\rho \mapsto \bar{\rho}$ is faithful. The assertion (2) is proved by the same argument as (1). q.e.d.

Proof of Proposition 6.1. First let L be an infinite irreducible transitive Lie algebra. Then by Remark 1 in Section 2, the linear isotropy algebra g_0 of L is considered as a Lie subalgebra of $gl(U)$. Recall that g_0 of $L = D(U)$, $L_{s_1}(U)$ and $L_{s_2}(U)$ are $gl(n, \mathbb{C})$, $sl(n, \mathbb{C})$ and $sp(n, \mathbb{C})$ respectively. By Lemma 6.3 and Lemma 6.4, C_L can be regarded as an abelian Lie subalgebra of $gl(U)$. We will show that C_L is contained in the centralizer of g_0 in $gl(U)$. Let $\rho \in C_L$, $x \in g_0$ and $u \in U$. Then in $D(U)$ we clearly have

$$[[\rho, x], u] = [\rho, [x, u]] - [x, [\rho, u]] = (\rho \circ \text{ad}(x) - \text{ad}(x) \circ \rho)(u) = 0.$$

Since $[\rho, x] \in g_0$ and L is transitive, we obtain $[\rho, x] = 0$, and hence $[C_L, g_0] = 0$. Put $\tilde{g}_0 = g_0 + C_L$. Then \tilde{g}_0 yields a Lie subalgebra of $gl(U)$ and C_L is contained in the center of \tilde{g}_0. Since g_0 acts irreducibly on U, \tilde{g}_0 also acts irreducibly on U. Note that \tilde{g}_0 is of infinite type. By the classification theorem of Lie algebras of infinite type ([2] or [4]), \tilde{g}_0 must be equal to $gl(U)$ or $csp(U)$. Thus we have $C_L = C$.

Next let $L = L_{s_1}(U)$. Put $L/L_{-1} = U'$. Then U' is a one dimensional subspace of $gl(U')$, which contains C. Hence $C_L = C$. q.e.d.
Using Proposition 6.1, we can verify the following proposition originally proved by V. Guillemin [1].

Proposition 6.5. The commutator ring of $L[W^*]$, i.e., $C_{L[W^*]}$, is isomorphic to $S(W^*)$.

Outline of proof. We will regard L as imbedded in $L[W^*]$. Let ρ be an element of $C_{L[W^*]}$. We will denote by $\{f^s\}$ the monomial basis in $S(W^*)$. If $x \in L$, then we can write

$$\rho(x) = \sum_{z=0}^\infty \rho_z(x)f^z,$$

where ρ_z depends linearly on x. Since ρ is an element of $C_{L[W^*]}$, we clearly obtain $\rho_z \in C_L$. By Proposition 6.1, ρ_z is an element of C. Hence we can write

$$\rho(x) = x \otimes \prod_{z=0}^\infty \rho_z f^z, \quad \text{for all } x \in L.$$

Since L is simple, we have $[L, L[W^*]] = L[W^*]$. Hence if $\rho \in C_{L[W^*]}$, it is determined completely by its restriction to L. The isomorphism between $C_{L[W^*]}$ and $S(W^*)$ is given by $\rho \mapsto \prod_{z=0}^\infty \rho_z f^z$. This completes the proof. q.e.d.

By Proposition 6.5, $\text{Der}(C_{L[W^*]})$ is identified with $\text{Der}(S(W^*))$. Now we have a homomorphism: $\iota : \text{Der}(S(W^*)) \to \text{Der}(L[W^*])$. Let $X \in \text{Der}(L[W^*])$ and $\rho \in C_{L[W^*]}$. Then $X \circ \rho - \rho \circ X$ is an element of $C_{L[W^*]}$. We denote this element of $C_{L[W^*]}$ by $L_X \rho$. By an easy consideration, the mapping $X \mapsto L_X$ is a homomorphism of $\text{Der}(L[W^*])$ into $\text{Der}(C_{L[W^*]}) = \text{Der}(S(W^*))$. Hence there is a natural homomorphism

$$L : \text{Der}(L[W^*]) \longrightarrow \text{Der}(S(W^*)).$$

It is easy to see that $L \circ \iota = $ identity, which implies that a homomorphism L is surjective. Since any elements of the kernel of L are $S(W^*)$-linear mappings, the kernel of L is identified with the set of all mappings $c : L \to L[W^*]$ satisfying the identity

$$c[x, y] = [c(x), y] + [x, c(y)] \quad \text{for all } x, y \in L.$$

We denote this set by $\text{Der}(L, L[W^*])$.

Summarizing the above remarks, we have

Proposition 6.6 (V. Guillemin [1]). *There is a split exact sequence of Lie algebras:*
6.3. In this sub-section, we will determine the first cohomology group \(H^1(L[W^*]) \). By Proposition 6.6, we have a natural isomorphism:

\[
\text{Der}(L[W^*]) \cong \text{Der}(L, L[W^*]) + \text{Der}(S(W^*)) \quad \text{(direct sum)}.
\]

The space \(\text{Der}(S(W^*)) \) is canonically identified with \(D(W) \), the Lie algebra of all formal vector fields over \(W \). Hence it suffices to determine \(\text{Der}(L, L[W^*]) \) for calculating \(\text{Der}(L[W^*]) \).

Let \(x \in L \) and \(c \in \text{Der}(L, L[W^*]) \). We denote by \(f^* \) the basis of \(S(W^*) \) consisting of monomials. Then we can write:

\[
c(x) = \prod_{\alpha=0}^{\infty} x_\alpha \otimes f^*, \quad x_\alpha \in L.
\]

Put \(x_\alpha = c_\alpha(x) \). Then \(c_\alpha \) is a linear mapping of \(L \) into itself. For \(x, y \in L \), we have

\[
c[x, y] = \prod_{\alpha=0}^{\infty} c_\alpha[x, y] \otimes f^* = [c(x), y] + [x, c(y)]
\]

\[
= \prod_{\alpha=0}^{\infty} c_\alpha(x) \otimes f^*, \quad x_\alpha \in L
\]

Hence \(c_\alpha[x, y] = [c_\alpha(x), y] + [x, c_\alpha(y)] \), which implies that \(c_\alpha \) is an element of \(\text{Der}(L) \). By Theorem 2.1, there exists a unique element \(z_\alpha \) of \(L = D(U) \) or \(L_{st}(U) \) (resp. \(L = L_{st}(U) \) or \(L_{st}(U) \)).

Thus we have \(c = \text{ad}(\prod_{\alpha=0}^{\infty} z_\alpha \otimes f^*) \). Here the symbol \(e \) denotes a unit matrix, i.e. a basis of one dimensional center of \(\text{gl}(U) \). Now we easily obtain the following isomorphism:

\[
\text{Der}(L[W^*]) \cong \begin{cases}
L[W^*] + D(W) & \text{for } L = D(U) \text{ or } L_{st}(U) \\
(L[W^*] + S(W^*)) \otimes e + D(W) & \text{for } L = L_{st}(U) \text{ or } L_{st}(U).
\end{cases}
\]

Since \(L[W^*] \) has no non-trivial center, the space \(\text{ad}(L[W^*]) \) of all inner derivations of \(L[W^*] \) is naturally isomorphic to \(L[W^*] \).

Summarizing the above results, we have proved:

Theorem 6.7. Let \(D(W) \) be a Lie algebra of all formal vector fields over \(W \) and let \(e \) be a basis of one dimensional center of \(\text{gl}(U) \). Then we have the following isomorphism:
\[H^1(L[W^*]) \cong \begin{cases} D(W) & \text{for } L = D(U) \text{ or } L_{\text{ct}}(U) \\ D(W) + S(W^*) \otimes e & \text{for } L = L_{\text{et}}(U) \text{ or } L_{\text{et}}(U). \end{cases} \]

References

