Group splittings and integrality of traces

Ioannis Emmanouil*

Abstract. In this paper, we elaborate on Connes’ proof of the integrality of the trace conjecture for free groups, in order to show that any action of a group G on a tree leads to a similar integrality assertion concerning the trace on the group algebra $\mathbb{C}G$, which is associated with the set of group elements that stabilize a vertex.

Mathematics Subject Classification (2000). 19A31, 20E08.

Keywords. Traces, K_0-group, group actions on trees.

Introduction

Given a torsion-free group G, the integrality of the trace conjecture is the assertion that the image of the additive map

$$\tau_*: K_0(C_r^*G) \longrightarrow \mathbb{C},$$

which is induced by the canonical trace τ on the reduced C^*-algebra C_r^*G of G, is the group \mathbb{Z} of integers. Some evidence for the validity of that conjecture is provided by Zalesskii’s theorem [18], which states that for any group G (possibly with torsion) the values of τ_* on K-theory classes that come from the group algebra $\mathbb{C}G$ are rational. By a standard argument, the integrality of the trace conjecture can be shown to imply the triviality of idempotents in C_r^*G. In the case where G is a free group, Connes proved in [5, §IV.5] the integrality of the trace conjecture by using a free action of G on a tree and the associated representations of C_r^*G on the Hilbert space ℓ^2V, where V is the set of vertices of the tree. We also note that, in the case of a torsion-free abelian group G, the integrality of the trace conjecture is an immediate consequence of the connectedness of the dual group \hat{G} (cf. [16, Theorem 2]).

In the case where the group G has non-trivial torsion elements, Baum and Connes had conjectured in [3] that the image of τ_* is the subgroup of \mathbb{Q} generated by the inverses of the orders of the finite subgroups of G. This latter conjecture was disproved by Roy [14]. Subsequently, Lück [10] formulated a modified version of that

*Research funded by the University of Athens Special Research Account, grant 704/6413.
conjecture, according to which the image of \(\tau_* \) is contained in the subring of \(\mathbb{Q} \) generated by the inverses of the orders of the finite subgroups of \(G \), and showed that this is indeed the case if the so-called Baum–Connes assembly map is surjective.

In this paper, we are interested in traces defined on the group algebra \(\mathbb{C}G \) and examine integrality properties of the induced additive maps on the K-theory group \(K_0(\mathbb{C}G) \). If \(S \subseteq G \) is a subset closed under conjugation, then the linear map (partial augmentation)

\[
\tau_S : \mathbb{C}G \to \mathbb{C},
\]

which is defined by letting \(\tau_S \left(\sum_{g \in G} a_g g \right) = \sum_{g \in S} a_g \) for any element \(\sum_{g \in G} a_g g \in \mathbb{C}G \), is a trace. As such, it induces an additive map

\[
(\tau_S)_* : K_0(\mathbb{C}G) \to \mathbb{C}.
\]

In the special case where \(S = G \), the additive map \((\tau_S)_* \) is that induced by the augmentation homomorphism \(\mathbb{C}G \to \mathbb{C} \). The map \((\tau_S)_* \) is then referred to as the homological (or naive) rank and its image is the group \(\mathbb{Z} \) of integers (cf. [4, Chapter IX, Exercise 2.5]). On the other hand, if \(S = \{1\} \), then the map \((\tau_S)_* \) is the Kaplansky rank, whose values are rational in view of Zaleskii’s theorem [18]. In fact, if \(G \) is torsion-free then a weak version of Bass’ trace conjecture [2] asserts that the Kaplansky rank coincides with the homological rank; if this is true, then we must have \(\text{im}(\tau_S)_* = \mathbb{Z} \) in this case as well.

We can now state our main result.

Theorem. Let \(G \) be the fundamental group of a connected graph of groups with vertex groups \((G_v)_{v} \) and edge groups \((G_e)_{e} \), and consider the subset \(S \subseteq G \) which consists of the conjugates of all elements of the set \(\bigcup_v G_v \). Then, \(\text{im}(\tau_S)_* = \mathbb{Z} \).

Equivalently, we may state the result above in terms of the universal trace defined by Hattori and Stallings, as follows: If \(x \in K_0(\mathbb{C}G) \) is a K-theory class and \(r_{[S]}(x) \in \mathbb{C} \) the coefficient of the Hattori–Stallings rank \(r_{HS}(x) \) that corresponds to the conjugacy class \([g] \) of an element \(g \in G \), then \(\sum_{[g] \in [S]} r_{[S]}(x) \in \mathbb{Z} \), where \([S] \) is the set of conjugacy classes of the elements of \(S \).

We observe that our integrality result would follow immediately if one could show that the additive map

\[
\bigoplus_v K_0(\mathbb{C}G_v) \to K_0(\mathbb{C}G),
\]

which is induced by the inclusion of the vertex groups \(G_v \) into \(G \), is surjective. Indeed, for any vertex \(v \) the composition

\[
K_0(\mathbb{C}G_v) \to K_0(\mathbb{C}G) \xrightarrow{(\tau_S)_*} \mathbb{C}
\]

is the additive map induced by the restriction of the trace \(\tau_S \) on \(\mathbb{C}G_v \) (cf. Remark 1.1 (ii) below). But \(S \) contains \(G_v \) and hence the restriction of \(\tau_S \) on \(\mathbb{C}G_v \).
is the augmentation homomorphism $\mathbb{C}G_v \rightarrow \mathbb{C}$. Therefore, the composition (2) is the homological rank associated with G_v; in particular, its image is the group \mathbb{Z} of integers. In view of the assumed surjectivity of (1), we conclude that the image of $(\tau_S)_*$ is the group \mathbb{Z} as well.

We note that if G is the fundamental group of a graph of groups as above, then any finite subgroup $H \subseteq G$ is contained in a conjugate of G_v for some vertex v of the graph (cf. [15, Chapitre I, Exemple 6.3.1]). Since conjugation by any element of G induces the identity map on $K_0(\mathbb{C}G)$, we conclude that the map (1) is surjective if this is the case for the additive map

$$\bigoplus_H K_0(\mathbb{C}H) \longrightarrow K_0(\mathbb{C}G).$$

Here, the direct sum is over all finite subgroups H of G and the map is induced by the inclusion of the H’s into G. In particular, it follows that the map (1) is surjective if the so-called isomorphism conjecture for $K_0(\mathbb{C}G)$ holds (cf. [11, Conjecture 9.40]). On the other hand, we may consider the special case where the graph has one edge e and two distinct vertices v_1 and v_2. In that case, G is the amalgamated free product $G_{v_1} * G_e G_{v_2}$, and a sufficient condition that guarantees the surjectivity of (1) has been given by Waldhausen (see the discussion following [17, Corollary 11.5]).

From the point of view presented above, there is a formal resemblance between our result and those described in [1] and [12], where it is proved that a certain statement is true for G if it is true for all G_v’s.

We also observe that our integrality result would follow if one could show that the group G satisfies (the strong version of) Bass’ trace conjecture [2]. Indeed, the latter conjecture asserts that for any $x \in K_0(\mathbb{C}G)$ the coefficient $r_{\text{HS}}(x)$ of the Hattori–Stallings rank $r_{\text{HS}}(x)$ vanishes if $g \in G$ is an element of infinite order. Since S contains all group elements of finite order (as we have already noted above), this would imply that $(\tau_S)_*(x)$ is the homological rank of x; in particular, it would follow that $(\tau_S)_*(x) \in \mathbb{Z}$.

The contents of the paper are as follows: In Section 1, we recall certain well-known facts concerning traces on an algebra and the induced additive maps on the K_0-group. In the following section, we consider a group G acting on a tree and examine certain representations of the group algebra $\mathbb{C}G$. In Section 3, we prove our main result and explicit the integrality assertions in the special cases where G is an amalgamated free product or an HNN extension. Finally, in the last section, we examine whether our integrality result can be extended from the group algebra $\mathbb{C}G$ to the reduced group \mathbb{C}^*-algebra $\mathbb{C}^* G$ of G.

It is a pleasure to thank M. Karoubi, P. Papasoglu, O. Talelli and M. Wodzicki for some helpful comments, as well as the referee, whose suggestions improved the article.
1. Traces and the K_0-group

Let R be a unital ring, V an abelian group and $\tau: R \to V$ a trace, i.e. an additive map which vanishes on the commutators $xy - yx$ for all $x, y \in R$. Then, for any positive integer n the map

$$\tau_n: M_n(R) \to V,$$

which is defined by letting $\tau_n(A) = \sum_{i=1}^{n} \tau(a_{ii})$ for any matrix $A = (a_{ij})_{i,j} \in M_n(R)$, is a trace as well. These traces induce an additive map

$$\tau_*: K_0(R) \to V,$$

by mapping the K-theory class of any idempotent matrix $E \in M_n(R)$ onto $\tau_n(E)$.

Remarks 1.1. (i) Let R be a ring and $f: V \to V'$ an abelian group homomorphism. We consider a trace $\tau: R \to V$ and the V'-valued trace $f \circ \tau$ on R. Then, the induced additive map $(f \circ \tau)_*: K_0(R) \to V'$ is the composition

$$K_0(R) \xrightarrow{\tau_*} V \xrightarrow{f} V',$$

where $\tau_*: K_0(R) \to V$ is the additive map induced by the trace τ.

(ii) Let $\varphi: R \to S$ be a ring homomorphism and V an abelian group. We consider a trace $\tau: S \to V$ and the V-valued trace $\tau \circ \varphi$ on R. Then, the induced additive map $(\tau \circ \varphi)_*: K_0(R) \to V$ is the composition

$$K_0(S) \xrightarrow{\tau_*} K_0(R) \xrightarrow{\varphi} V,$$

where $\tau_*: K_0(S) \to V$ is the additive map induced by the trace τ.

(iii) Let R be a ring and $[R, R]$ the additive subgroup of it generated by the commutators $xy - yx$, $x, y \in R$. Then, the quotient map $p: R \to R/[R, R]$ is the universal trace defined on R and induces the Hattori–Stallings rank map

$$r_{\text{HS}}: K_0(R) \to R/[R, R];$$

see also [4, Chapter IX, §2].

(iv) In the special case where $R = CG$ is the group algebra of a group G, the quotient group $R/[R, R] = CG/[CG, CG]$ is a complex vector space with basis the set $\mathcal{C}(G)$ of conjugacy classes of elements of G. If $[g] \in \mathcal{C}(G)$ is the conjugacy class of an element $g \in G$, then the linear functional (partial augmentation) $\sum_{h \in G} a_h h \mapsto \sum_{h \in [g]} a_h$, $\sum_{h \in G} a_h h \in CG$, is a trace and hence induces an additive map

$$r_{[g]}: K_0(CG) \to \mathbb{C}.$$

These maps determine the Hattori–Stallings rank of any K-theory class $x \in K_0(CG)$, since we have $r_{\text{HS}}(x) = \sum_{[g] \in \mathcal{C}(G)} r_{[g]}(x)[g] \in CG/[CG, CG]$.
We now consider a non-unital ring I and let I^+ be the associated unital ring. Here, $I^+ = I \oplus \mathbb{Z}$ as an abelian group, whereas the product of any two elements $(x, n), (y, m) \in I^+$ is equal to $(xy + n y + mx, nm) \in I^+$. The K_0-group of I is defined by means of the split extension

$$0 \longrightarrow I \longrightarrow I^+ \overset{\pi}{\longrightarrow} \mathbb{Z} \longrightarrow 0,$$

where π is the projection $(x, n) \mapsto n, (x, n) \in I^+$. More precisely, $K_0(I)$ is the kernel of the induced additive map $K_0(\pi): K_0(I^+) \rightarrow K_0(\mathbb{Z})$. Let $\tau: I \rightarrow V$ be a V-valued trace on I; by this, we mean that τ is an additive map which vanishes on the commutators $xy - yx$ for all $x, y \in I$. Then, τ extends to an additive map τ^+ on the associated unital ring I^+, by letting $\tau^+(0, 1) = 0$; in fact, τ^+ is a trace. The induced additive map $\tau_*: K_0(I) \rightarrow V$ is defined as the restriction of $(\tau^+)_*: K_0(I^+) \rightarrow V$ to the subgroup $K_0(I) \subseteq K_0(I^+)$.

Example 1.2. Let U be a complex vector space with basis $(\xi_i)_i$ and $L(U)$ the algebra of linear endomorphisms of U. We consider the ideal $\mathfrak{F} \subseteq L(U)$ consisting of those endomorphisms of U that have finite rank. Then, for any $a \in \mathfrak{F}$ the family of complex numbers $(a(\xi_i), \xi_i^*)_i$ has finite support. Here, we denote for all i by ξ_i^* the linear functional on U which maps ξ_i onto 1 and vanishes on ξ_j for $j \neq i$, whereas $[\ ,]$ denotes the standard pairing between U and its dual. Moreover, the map

$$\text{Tr}: \mathfrak{F} \longrightarrow \mathbb{C},$$

which is defined by letting $\text{Tr}(a) = \sum_i [a(\xi_i), \xi_i^*]$ for all $a \in \mathfrak{F}$, does not depend upon the choice of the basis $(\xi_i)_i$, and vanishes on the elements of the form $ab - ba, a \in \mathfrak{F}, b \in L(U)$. In particular, Tr is a trace on \mathfrak{F}. In view of the Morita invariance and the continuity of the functor K_0 (cf. [13, Chapter 1, §2]), the induced additive map

$$\text{Tr}_*: K_0(\mathfrak{F}) \longrightarrow \mathbb{C}$$

identifies $K_0(\mathfrak{F})$ with the subgroup $\mathbb{Z} \subseteq \mathbb{C}$. More generally, let R be a complex algebra and consider a linear trace τ on R with values in a complex vector space V. Then, the linear map

$$\text{Tr} \otimes \tau: \mathfrak{F} \otimes R \longrightarrow \mathbb{C} \otimes V \simeq V,$$

which is defined by letting $a \otimes x \mapsto \text{Tr}(a)\tau(x)$ for all elementary tensors $a \otimes x \in \mathfrak{F} \otimes R$, is also a trace. Moreover, the induced additive map

$$(\text{Tr} \otimes \tau)_*: K_0(\mathfrak{F} \otimes R) \longrightarrow V$$

is identified with the additive map

$$\tau_*: K_0(R) \longrightarrow V,$$

which is induced by τ, in view of the Morita isomorphism $K_0(\mathfrak{F} \otimes R) \simeq K_0(R)$.

A proof of the following result may be found in [9, Proposition 1.44].

Proposition 1.3. Let \(\psi, \varphi : A \to B \) be two homomorphisms of non-unital rings and \(I \subseteq B \) an ideal such that \(\psi(a) - \varphi(a) \in I \) for all \(a \in A \). We consider an abelian group \(V \) and an additive map \(\tau : I \to V \) that vanishes on elements of the form \(xy - yx \) for all \(x \in I \) and \(y \in B \); in particular, \(\tau \) is a trace on \(I \). Let \(t : A \to V \) be the additive map which is defined by letting \(t(a) = \tau(\psi(a) - \varphi(a)) \) for all \(a \in A \). Then:

(i) The map \(t \) is a trace on \(A \).

(ii) The image of the additive map \(t : K_0(A) \to V \) is contained in the image of the additive map \(\tau : K_0(I) \to V \). \(\square \)

2. Trees and group actions

Let \(X \) be a graph and denote by \(V, E \) or the set of vertices and oriented edges of it respectively. A path on \(X \) is a finite sequence \(e_1, \ldots, e_n \) of oriented edges such that the terminus \(v_i \) of \(e_i \) is the origin of \(e_{i+1} \) for all \(i = 1, \ldots, n - 1 \). We say that a path as above has origin \(v_0 \) equal to the origin of \(e_1 \), terminus \(v_n \) equal to the terminus of \(e_n \) and passes through the vertices \(v_1, \ldots, v_{n-1} \). The path is reduced if there is no \(i \) such that \(e_{i+1} \) is equal to the reverse edge of \(e_i \). The graph \(X \) is a tree if for any two vertices \(v, v_0 \in V \) with \(v \neq v_0 \) there is a unique reduced path with origin \(v \) and terminus \(v_0 \); this path, denoted by \([v, v_0] \), is called the geodesic joining \(v \) and \(v_0 \).

Let \(X \) be a tree and denote by \(E \) the corresponding set of un-oriented edges. It is well known that the number of vertices exceeds the number of un-oriented edges by one. More precisely, having fixed a vertex \(v_0 \in V \), we consider for any \(v \in V \setminus \{v_0\} \) the geodesic \([v_0, v] = (e_1, \ldots, e_n) \) and define the map

\[
\lambda : V \setminus \{v_0\} \to E,
\]

by letting \(\lambda(v) \) be the un-oriented edge associated with the oriented edge \(e_n \). The proof of the next result is straightforward.

Lemma 2.1. Let \(X \) be a tree and fix a vertex \(v_0 \in V \).

(i) The map \(\lambda \) defined above is bijective.

(ii) For another vertex \(v'_0 \in V \) consider the corresponding map \(\lambda' : V \setminus \{v'_0\} \to E \).

If the geodesic \([v_0, v'_0] \) passes through the vertices \(v_1, \ldots, v_{n-1} \), then we have \(\lambda(v) = \lambda'(v) \) for all vertices \(v \in V \setminus \{v_0, v_1, \ldots, v_{n-1}, v'_0\} \). \(\square \)

Let \(\alpha \) be an automorphism of the tree \(X \) and denote by \(\alpha V \) (resp. \(\alpha E \)) the corresponding bijection of the set of vertices (resp. edges) of \(X \). We fix a vertex \(v_1 \in V \)
We now assume that \(v_2 = \alpha_V(v_1) \in V \) and the associated bijection \(\lambda_2 : V \setminus \{v_2\} \to E \). Then, it is easily seen that
\[
\alpha_E \circ \lambda_1 = \lambda_2 \circ \alpha'_V,
\]
where \(\alpha'_V \) denotes the restriction of \(\alpha_V \) to the subset \(V \setminus \{v_1\} \subseteq V \). The automorphism \(\alpha \) is said to have no inversions if there is no edge \(e \in E^\circ \) such that \(\alpha(e) \) is the reverse edge of \(e \).

Proposition 2.2. Let \(X \) be a tree, \(v_0 \in V \) a vertex and \(\lambda : V \setminus \{v_0\} \to E \) the associated bijection. We consider a group \(G \) acting on \(X \) and fix an element \(g \in G \).

(i) If \(g \cdot v_0 = v_0 \), then we have \(g \cdot \lambda(v) = \lambda(g \cdot v) \) for all \(v \in V \setminus \{v_0\} \).

(ii) If \(g \cdot v_0 \neq v_0 \) and the geodesic \([v_0, g^{-1} \cdot v_0] \) passes through the vertices \(v_1, \ldots, v_{n-1} \), then \(g \cdot \lambda(v) = \lambda(g \cdot v) \) for all \(v \in V \setminus \{v_0, v_1, \ldots, v_{n-1}, g^{-1} \cdot v_0\} \).

Proof. We consider the vertex \(g^{-1} \cdot v_0 \) and let
\[
\lambda' : V \setminus \{g^{-1} \cdot v_0\} \to E
\]
be the associated bijection. The element \(g \in G \) induces an automorphism of the tree \(X \), which maps the vertex \(g^{-1} \cdot v_0 \) onto \(v_0 \), and hence Equation (3) above implies that \(g \cdot \lambda'(v) = \lambda(g \cdot v) \) for all \(v \in V \setminus \{g^{-1} \cdot v_0\} \). This completes the proof in the case where \(g \cdot v_0 = v_0 \), since we then have \(\lambda = \lambda' \). If \(g \cdot v_0 \neq v_0 \), the proof is finished by invoking Lemma 2.1 (ii), which implies that \(\lambda(v) = \lambda'(v) \) for all vertices \(v \in V \setminus \{v_0, v_1, \ldots, v_{n-1}, g^{-1} \cdot v_0\} \). \(\square \)

Let \(X \) be a graph and consider the sets \(V, E \) of vertices and (un-oriented) edges of \(X \) respectively and the complex vector spaces \(\mathbb{C}(V) = \bigoplus_{v \in V} \mathbb{C} \cdot \xi_v \) and \(\mathbb{C}(E) = \bigoplus_{e \in E} \mathbb{C} \cdot \xi_e \). If \(G \) is a group acting on \(X \), then for any element \(g \in G \) we denote by
\[
\varrho_V(g) : \mathbb{C}(V) \to \mathbb{C}(V) \quad \text{and} \quad \varrho_E(g) : \mathbb{C}(E) \to \mathbb{C}(E)
\]
the linear maps which are defined by letting \(\xi_v \mapsto \xi_{g \cdot v} \) for all \(v \in V \) and \(\xi_e \mapsto \xi_{g \cdot e} \) for all \(e \in E \). These linear maps induce algebra homomorphisms
\[
\varrho_V : \mathbb{C}G \to L(\mathbb{C}(V)) \quad \text{and} \quad \varrho_E : \mathbb{C}G \to L(\mathbb{C}(E)).
\]
We now assume that \(X \) is a tree and fix a vertex \(v_0 \in V \). Then, using the associated bijection \(\lambda : V \setminus \{v_0\} \to E \), we may define the linear maps
\[
p : \mathbb{C}(V) \to \mathbb{C}(E) \quad \text{and} \quad q : \mathbb{C}(E) \to \mathbb{C}(V),
\]
by letting \(p(\xi_v) = \xi_{\lambda(v)} \) for all \(v \in V \setminus \{v_0\} \), \(p(\xi_{v_0}) = 0 \) and \(q(\xi_e) = \xi_{\lambda^{-1}(e)} \) for all \(e \in E \). It is easily seen that \(p \circ q = 1 \in L(\mathbb{C}(E)) \) and \(q \circ p = 1 - p_0 \in L(\mathbb{C}(V)) \),
where \(p_0 \in L(C(V)) \) is the projection onto the 1-dimensional subspace \(C \cdot \xi_{v_0} \), which vanishes on \(\xi_v \) for all \(v \in V \setminus \{v_0\} \). In particular, the linear map

\[
\widehat{\varphi}_E : C G \rightarrow L(C(V)),
\]

which is defined by letting \(\widehat{\varphi}_E(g) = q \circ \varphi_E(g) \circ p \) for all \(g \in G \), is a homomorphism of non-unital algebras.

We say that the group \(G \) acts without inversions on the tree \(X \) if the automorphism induced by the element \(g \in G \) on \(X \) has no inversions for all \(g \in G \).

Proposition 2.3. Let \(G \) be a group acting on a tree \(X \) without inversions, fix a vertex \(v_0 \in V \) and consider the algebra homomorphisms \(\varphi_V \) and \(\widehat{\varphi}_E \) defined above. Then, for any element \(g \in G \) the operator \(\varphi_V(g) - \widehat{\varphi}_E(g) \in L(C(V)) \) is of finite rank, whereas its trace (cf. Example 1.2) is equal to 1 if \(g \) stabilizes some vertex of the tree and vanishes otherwise.

Proof. First of all, we note that \(\varphi_V(g)(\xi_v) = \xi_{g \cdot v} \) for all \(v \in V \) and \(\widehat{\varphi}_E(g)(\xi_v) = \xi_v \), where \(\lambda = \lambda^{-1}(g \cdot \lambda(v)) \) for all \(v \in V \setminus \{v_0\} \). Moreover, we have

\[
\lambda^{-1}(g \cdot \lambda(v)) = g \cdot v \iff g \cdot \lambda(v) = \lambda(g \cdot v)
\]

for all \(v \in V \setminus \{v_0, g^{-1} \cdot v_0\} \). Hence, Proposition 2.2(i) shows that if \(g \cdot v_0 = v_0 \) then the operator \(\varphi_V(g) - \widehat{\varphi}_E(g) \) is equal to the projection \(p_0 \) onto the 1-dimensional subspace \(C \cdot \xi_{v_0} \), which vanishes on \(\xi_v \) for all \(v \in V \setminus \{v_0\} \). It follows that \(\varphi_V(g) - \widehat{\varphi}_E(g) \) is of finite rank and \(\text{Tr} [\varphi_V(g) - \widehat{\varphi}_E(g)] = 1 \). We now assume that \(g \cdot v_0 \neq v_0 \). In that case, we let \((e_1, \ldots, e_n) \) be the geodesic \([v_0, g^{-1} \cdot v_0] \) and consider for all \(i = 1, \ldots, n \) the terminal vertex \(v_i \) of \(e_i \); in particular, \(v_n = g^{-1} \cdot v_0 \). Then, Proposition 2.2(ii) implies that the operator \(\varphi_V(g) - \widehat{\varphi}_E(g) \) vanishes on \(\xi_v \) for all \(v \in V \setminus \{v_0, v_1, \ldots, v_{n-1}, v_n\} \); in particular, \(\varphi_V(g) - \widehat{\varphi}_E(g) \) is of finite rank. On the other hand, it is easily seen that

\[
(\varphi_V(g) - \widehat{\varphi}_E(g))(\xi_v) = \begin{cases} \\
\xi_{g^{-1} \cdot v_0} & \text{if } i = 0, \\
\xi_{g \cdot v_i} - \xi_{g^{-1} \cdot v_{i-1}} & \text{if } i = 1, \ldots, n.
\end{cases}
\]

Therefore, the final assertion in the statement of the proposition to be proved follows readily from the next lemma. \(\square \)

Lemma 2.4. Let \(X \) be a tree and \(\alpha \) an automorphism of \(X \). We consider a vertex \(v_0 \in V \) such that \(v' = \alpha(v_0) \neq v_0 \), and the geodesic \([v_0, v'] = (e_1, \ldots, e_n) \). We denote by \(v_i \) the terminal vertex of \(e_i \) for all \(i = 1, \ldots, n \); in particular, \(v_n = v' \). Then:

(i) If \(\alpha \) has no inversions, then \(\alpha(v_i) \neq v_{i-1} \) for all \(i = 1, \ldots, n \).

(ii) If \(\alpha \) fixes some vertex \(v \in V \), then there is a unique \(i \in \{1, \ldots, n - 1\} \) such that \(\alpha(v_i) = v_i \). \(\square \)
3. Actions on trees and integrality of traces

We assume that \(G \) is a group acting on a tree \(X \) without inversions. We let \(V \) be the set of vertices of \(X \) and consider for any element \(g \in G \) the fixed point set \(V^g = \{ v \in V : g \cdot v = v \} \). We also consider the subset \(S \subseteq G \), consisting of those elements \(g \in G \) for which the fixed point set \(V^g \) is non-empty. In other words, \(S \) consists of those group elements that stabilize some vertex of the tree, i.e. \(S = \bigcup_{v \in V} \text{Stab}_v \). Since the set \(S \) is closed under conjugation, the linear map (partial augmentation)

\[
\tau_S : \mathbb{C}G \rightarrow \mathbb{C},
\]

which maps any element \(\sum_{g \in G} a_g g \in \mathbb{C}G \) onto the complex number \(\sum_{[g] \in S} a_{[g]} \), is easily seen to be a trace. The trace \(\tau_S \) maps a group element \(g \in G \) onto \(1 \) (resp. onto \(0 \)) if \(g \) stabilizes a vertex (resp. if \(g \) does not stabilize any vertex). We consider the subset \([S] \subseteq \mathbb{C}(G)\) which consists of the conjugacy classes of the elements of \(S \), i.e. we let

\[
[S] = \{ [g] \in \mathbb{C}(G) : g \in S \} = \{ [g] \in \mathbb{C}(G) : V^g \neq \emptyset \}.
\]

Then, the trace \(\tau_S \) factors through the quotient \(\mathbb{C}G/[\mathbb{C}G, \mathbb{C}G] \) as the composition

\[
\mathbb{C}G \xrightarrow{p} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G] \xrightarrow{\overline{\tau_S}} \mathbb{C}.
\]

Here, \(p \) is the quotient map, whereas \(\overline{\tau_S} \) maps any element \(\sum_{[g] \in \mathbb{C}(G)} a_{[g]} [g] \in \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G] \) onto the complex number \(\sum_{[g] \in [S]} a_{[g]} \). In view of Remark 1.1 (i), we conclude that the additive map

\[
(\tau_S)_*: K_0(\mathbb{C}G) \rightarrow \mathbb{C},
\]

which is induced by the trace \(\tau_S \), coincides with the composition

\[
K_0(\mathbb{C}G) \xrightarrow{\tau_S} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G] \xrightarrow{\overline{\tau_S}} \mathbb{C}.
\]

Therefore, \((\tau_S)_* \) maps any element \(x \in K_0(\mathbb{C}G) \) with Hattori–Stallings rank \(\sum_{[g] \in \mathbb{C}(G)} r_{[g]}(x) [g] \) onto the complex number \(\sum_{[g] \in [S]} r_{[g]}(x) \). Since the subset \(S \subseteq G \) is obviously closed under \(n \)-th powers for all \(n \geq 1 \), it follows from \([8, \text{Proposition 3.2}]\) that \(\sum_{[g] \in [S]} r_{[g]}(x) \in \mathbb{Q} \). The following result strengthens that assertion, as it states that the above rational number is, in fact, an integer.

Theorem 3.1. Let \(G \) be a group acting on a tree \(X \) without inversions and consider the subset \(S \subseteq G \) and the additive map

\[
(\tau_S)_*: K_0(\mathbb{C}G) \rightarrow \mathbb{C}
\]

defined above. Then, \(\text{im}(\tau_S)_* = \mathbb{Z} \subseteq \mathbb{C} \).
Proof. Since \(r_S(1) = 1 \), it follows that \(Z \subseteq \text{im}(r_S)_* \). In order to prove the reverse inclusion, we shall use the following result.

Theorem 3.2. Let \(G \) be a group acting on a tree \(X \) without inversions and consider the subset \(S \subseteq G \) defined above. Then, for any \(x \in K_0(\mathbb{C}G) \) there exists a suitable element \(y \in K_0(\mathbb{C}G) \) such that \(r_{[g]}(y) = r_{[g]}(x) \) if \(g \in S \) and \(r_{[g]}(y) = 0 \) if \(g \notin S \).

Proof. We fix a vertex \(v_0 \in V \) and consider the representations

\[
\varrho_V : \mathbb{C}G \to L(\mathbb{C}^V) \quad \text{and} \quad \varrho_E : \mathbb{C}G \to L(\mathbb{C}^V)
\]

which were defined before the statement of Proposition 2.3. Using the Hopf algebra structure of \(\mathbb{C}G \), we now define the algebra homomorphisms

\[
\sigma_V : \mathbb{C}G \to L(\mathbb{C}^V) \otimes \mathbb{C}G \quad \text{and} \quad \sigma_E : \mathbb{C}G \to L(\mathbb{C}^V) \otimes \mathbb{C}G,
\]

by letting \(\sigma_V(g) = \varrho_V(g) \otimes g \) and \(\sigma_E(g) = \varrho_E(g) \otimes g \) for all \(g \in G \). Then, for any \(g \in G \) we have \(\sigma_V(g) - \sigma_E(g) = [\varrho_V(g) - \varrho_E(g)] \otimes g \) and hence Proposition 2.3 implies that \(\sigma(a) - \sigma_E(a) \in \mathbb{K} \otimes \mathbb{C}G \) for all \(a \in \mathbb{C}G \), where \(\mathbb{K} \subseteq L(\mathbb{C}^V) \) is the ideal of finite rank operators on \(\mathbb{C}^V \).

We also consider the trace

\[
\text{Tr} \otimes p : \mathbb{K} \otimes \mathbb{C}G \to \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G],
\]

where \(\text{Tr} \) is the standard trace on \(\mathbb{K} \) and \(p \) the universal trace on \(\mathbb{C}G \) (cf. Remark 1.1 (iii) and Example 1.2), and define the map \(t \) as the composition

\[
\mathbb{C}G \xrightarrow{\sigma_V - \sigma_E} \mathbb{K} \otimes \mathbb{C}G \xrightarrow{\text{Tr} \otimes p} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G].
\]

Then, \(t \) is a trace as well, in view of Proposition 1.3 (i). Moreover, Proposition 1.3 (ii) implies that the image of the induced additive map

\[
t_* : K_0(\mathbb{C}G) \to \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G]
\]

is contained in the image of the additive map

\[
(\text{Tr} \otimes p)_* : K_0(\mathbb{K} \otimes \mathbb{C}G) \to \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G].
\]

Hence, in view of the identification of the latter map with the Hattori–Stallings rank map \(r_{\text{HS}} \) on \(K_0(\mathbb{C}G) \) (cf. Remark 1.1 (iii) and Example 1.2), we conclude that \(\text{im}(t)_* \subseteq \text{im}(r_{\text{HS}}) \).

On the other hand, Proposition 2.3 implies that the trace \(t \) maps any group element \(g \in G \) onto \([g] \) (resp. onto 0) if \(g \in S \) (resp. if \(g \notin S \)). It follows that \(t \) factors as the composition

\[
\mathbb{C}G \xrightarrow{p} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G] \xrightarrow{t} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G].
\]
where \(p \) is the quotient map and \(\tilde{i} \) maps any element \(\sum_{[g] \in \mathcal{E}(G)} a_{[g]}[g] \) onto the partial sum \(\sum_{[g] \in [S]} a_{[g]}[g] \). Hence, invoking Remark 1.1 (i), we conclude that the additive map \(t_\ast \) coincides with the composition

\[
K_0(\mathbb{C}G) \xrightarrow{\text{Hattori–Stallings}} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G] \xrightarrow{\tilde{i}} \mathbb{C}G/[\mathbb{C}G, \mathbb{C}G].
\]

It follows that \(t_\ast \) maps any element \(x \in K_0(\mathbb{C}G) \) with Hattori–Stallings rank \(\sum_{[g] \in \mathcal{E}(G)} r_{[g]}(x)[g] \) onto \(\sum_{[g] \in [S]} r_{[g]}(x)[g] \). It follows that the assertion in the statement of Theorem 3.2 is equivalent to the inclusion \(\text{im} t_\ast \subseteq \text{im} r_{\text{HS}} \), that we have already established.

\(\square \)

Proof of Theorem 3.1 (continued). We fix a K-theory class \(x \in K_0(\mathbb{C}G) \) and choose \(y \in K_0(\mathbb{C}G) \) according to in the statement of Theorem 3.2. Then,

\[
(\tau_S)_\ast(x) = \sum_{[g] \in [S]} r_{[g]}(x) = \sum_{[g] \in \mathcal{E}(G)} r_{[g]}(y)
\]

is the homological rank of \(y \); in particular, we have \((\tau_S)_\ast(x) \in \mathbb{Z} \). \(\square \)

At this point, we recall that there is a close relationship between group actions on trees on one hand and group splittings on the other. Using the notion of a graph of groups (cf. [6], [15]), this relationship can be described by the Bass–Serre theory, as follows:

(i) If \(G \) is a group acting without inversions on a tree \(X \), then there is a structure of a graph of groups on the quotient graph \(Y = X/G \) such that the corresponding fundamental group is isomorphic to \(G \).

(ii) Conversely, for any graph of groups on a connected graph \(Y \) with fundamental group \(G \) there is a tree \(X \), the so-called universal tree of the graph, on which \(G \) acts without inversions, in such a way that \(X/G \cong Y \) and the stabilizer of any vertex (resp. edge) of \(X \) is a conjugate in \(G \) of a vertex group (resp. edge group) of the graph of groups.

Hence, we may rephrase Theorem 3.1 as follows: Let \(G \) be the fundamental group of a connected graph of groups with vertex groups \((G_v)_v \). For any vertex \(v \) of the graph we regard the group \(G_v \) as a subgroup of \(G \) and define

\[
[G_v] = \{[g] \in \mathcal{E}(G) : g \in G_v\}.
\]

Then, for any element \(x \in K_0(\mathbb{C}G) \) with Hattori–Stallings rank \(\sum_{[g] \in \mathcal{E}(G)} r_{[g]}(x)[g] \) the complex number \(\sum_{[g] \in [G_v]} r_{[g]}(x)[g] \) is, in fact, an integer.

In particular, we obtain the following two results concerning amalgamated free products and HNN extensions:
Corollary 3.3. Let $G = A \star_H B$ be the amalgamated free product of two groups A and B along a common subgroup H of theirs and consider an element $x \in K_0(CG)$ with Hattori–Stallings rank $\sum_{[g] \in \mathcal{E}(G)} r_{[g]}(x)[g]$. We view A and B as subgroups of G and define

$$[A] = \{[g] \in \mathcal{E}(G) : g \in A\} \quad \text{and} \quad [B] = \{[g] \in \mathcal{E}(G) : g \in B\}.$$

Then, the complex number $\sum_{[g] \in [A] \cup [B]} r_{[g]}(x)$ is, in fact, an integer.

Proof. Let Y be the graph consisting of an edge e and two distinct vertices $v = o(e)$ and $v' = t(e)$. Then, the result follows from Theorem 3.1, in view of the discussion above, by considering the graph of groups on Y which is given by letting $G_e = H$, $G_v = A$ and $G_{v'} = B$ with homomorphisms $G_e \to G_{o(e)}$ and $G_e \to G_{t(e)}$ the inclusion maps of H into A and B respectively. \qed

Corollary 3.4. Let A be a group, $H \subseteq A$ a subgroup and $\varphi : H \to A$ a monomorphism. We consider the corresponding HNN extension $G = A \star_{\varphi} B$ and let $x \in K_0(CG)$ be an element with Hattori–Stallings rank $\sum_{[g] \in \mathcal{E}(G)} r_{[g]}(x)[g]$. We view A as a subgroup of G and define

$$[A] = \{[g] \in \mathcal{E}(G) : g \in A\}.$$

Then, the complex number $\sum_{[g] \in [A] \cup [B]} r_{[g]}(x)$ is, in fact, an integer.

Proof. Let Y be the graph consisting of an edge e and a vertex $v = o(e)$ and $v' = t(e)$. Then, the result follows from Theorem 3.1, in view of the discussion above, by considering the graph of groups on Y which is given by letting $G_e = H$, $G_v = A$ with homomorphisms $G_e \to G_{o(v)}$ and $G_e \to G_{t(e)}$ the inclusion map of H into A and $\varphi : H \to A$ respectively. \qed

Remark 3.5. The result of Corollary 3.3 admits an alternative homological proof, if the group H therein is trivial. Indeed, let $G = A \star B$ be the free product of two groups A, B and consider an element $g \in G$ which is not conjugate to any element of A nor B, i.e. an element $g \in G$ for which $[g] \notin [A] \cup [B]$. Then, the centralizer C_g of g in G is easily seen to be infinite cyclic; this can be proved, for example, by invoking the Bass–Serre theory of groups acting on trees. In particular, the quotient group $N_g = C_g / \langle g \rangle$ is finite and hence one may use the Connes–Karoubi character map from $K_0(CG)$ to the second cyclic homology group of the group algebra CG, in order to show that the coefficient $r_{[g]}(x)$ of the Hattori–Stallings rank $r_{HS}(x)$ of any element $x \in K_0(CG)$ vanishes (cf. [7]). In particular, for any $x \in K_0(CG)$ we have $\sum_{[g] \in [A] \cup [B]} r_{[g]}(x) = \sum_{[g] \in \mathcal{E}(G)} r_{[g]}(x)$. Since the right-hand side of the latter equality is the homological rank of x, we conclude that $\sum_{[g] \in [A] \cup [B]} r_{[g]}(x) \in \mathbb{Z}$.

On the other hand, if \(G = A \star B \) then the additive map

\[
K_0(\mathbb{C}A) \oplus K_0(\mathbb{C}B) \rightarrow K_0(\mathbb{C}G),
\]

which is induced by the inclusions of \(A \) and \(B \) into \(G \), is surjective; this follows from the discussion following [17, Corollary 11.5]. As explained in the Introduction, the surjectivity of the above map provides yet another proof of Corollary 3.3 (in the case where \(H = 1 \)).

4. Group actions on trees with finite \(S \)

Our goal in this final section is to examine the extent to which Theorem 3.1 can be generalized to an integrality result concerning a trace defined on the reduced \(C^* \)-algebra of a group. Unfortunately, it will turn out that our approach does not lead to any really new results in that direction.

First of all, we recall that the group \(G \) acts on the Hilbert space \(\ell^2G \) by left translations and denote by \(L: \mathbb{C}G \rightarrow \mathfrak{B}(\ell^2G) \) the induced algebra homomorphism. Then, \(L \) is injective, its image \(L(\mathbb{C}G) \) is a self-adjoint subalgebra of \(\mathfrak{B}(\ell^2G) \) and the reduced \(C^* \)-algebra \(C^*_r G \) of \(G \) is the operator norm closure of \(L(\mathbb{C}G) \) in \(\mathfrak{B}(\ell^2G) \). The linear functional

\[
\tau: C^*_r G \rightarrow \mathbb{C},
\]

which is defined by letting \(\tau(a) = \langle a(\delta_1), \delta_1 \rangle \) for all \(a \in C^*_r G \), is a continuous positive faithful and normalized trace, which is referred to as the canonical trace on \(C^*_r G \). (Here, we denote by \((\delta_g)_g \) the standard orthonormal basis of \(\ell^2G \).) For later use, we note that for any element \(g \in G \) the linear map \(a \mapsto \tau(L(g)^*a) \), \(a \in C^*_r G \), restricts to the subspace \(\mathbb{C}G \cong L(\mathbb{C}G) \) to the linear map \(\sum_{h \in G} a_h h \mapsto a_g \), \(\sum_{h \in G} a_h h \in \mathbb{C}G \).

In order to extend the trace \(\tau_S \) on the group algebra \(\mathbb{C}G \), which was defined in the beginning of §3, to a trace on \(C^*_r G \), we shall make the following assumption: The group \(G \) acts without inversions on a tree \(X \) in such a way that the subset \(S = \bigcup_{v \in V} \text{Stab}_v \) of \(G \), which consists of those group elements that stabilize a vertex, is finite. We note that, under this assumption, the trace \(\tau_S \) on \(\mathbb{C}G \cong L(\mathbb{C}G) \) extends to a continuous trace

\[
\tau_S: C^*_r G \rightarrow \mathbb{C},
\]

by letting \(\tau_S(a) = \sum_{g \in S} \tau(L(g)^*a) \) for all \(a \in C^*_r G \). Indeed, the set \(S \) being finite, \(\tau_S \) is a continuous linear functional on \(C^*_r G \). In view of the remark made above, that
linear functional restricts to the subspace $\mathbb{C}G \simeq L(\mathbb{C}G)$ to the trace τ_S on $\mathbb{C}G$. It follows by continuity that τ_S satisfies the trace property on C^*_rG as well. Since the set S is obviously closed under inverses, we also have $\tau_S(a) = \sum_{g \in S} \tau(L(g)a)$ for all $a \in C^*_rG$.

It turns out that the finiteness assumption on S places some severe restrictions on the group G. In fact, we shall prove that S must be a normal subgroup of G such that the quotient G/S is free. Then, the integrality of the trace τ_S on C^*_rG will be an immediate consequence of Connes’ result [5, §IV.5] that free groups satisfy the integrality of the trace conjecture.

Let us consider the subset (normal subgroup) $G_f \subseteq G$ consisting of those elements that have only finitely many conjugates; in other words, we let

$$G_f = \{ g \in G : \text{the conjugacy class } [g] \text{ is finite} \}.$$

We recall that a group is 2-ended if and only if it has an infinite cyclic subgroup of finite index (cf. [6, Chapter IV, Theorem 6.12]).

Proposition 4.1. Let G be a group acting without inversions on a tree X, in such a way that the subset $S = \bigcup_{v \in V} \text{Stab}_v$ of G is finite. Then:

(i) The stabilizer subgroup Stab_v is a finite subgroup of G_f for all $v \in V$.

(ii) $S = \{ g \in G : \text{the order of } g \text{ is finite} \} \subseteq G_f$.

(iii) The group G has a free subgroup of finite index.

(iv) If G is not 2-ended, then $S = G_f$ and the quotient group G/G_f is free.

(v) If G is 2-ended, then S is a normal subgroup of G and the quotient group G/S is infinite cyclic.

Proof. (i) Let us fix a vertex $v \in V$. Then, the finiteness of Stab_v is clear, since $\text{Stab}_v \subseteq S$. On the other hand, S is closed under conjugation and hence for any $g \in \text{Stab}_v$ the conjugacy class $[g]$ is contained in S; in particular, $[g]$ is a finite set, i.e. $g \in G_f$.

(ii) Since $S = \bigcup_{v \in V} \text{Stab}_v$ is a union of finite subgroups of G_f (in view of (i) above), it is contained itself in G_f and consists of elements of finite order. On the other hand, any torsion element $g \in G$ acts on the tree X by fixing some vertex (cf. [15, Chapitre I, Exemple 6.3.1]); hence, $g \in S$. We conclude that $S = \{ g \in G : \text{the order of } g \text{ is finite} \}$.

(iii) Since the orders of the stabilizer subgroups $\text{Stab}_v, v \in V$, are obviously bounded by some integer, the result follows from [6, Chapter IV, Theorem 1.6].

(iv) We fix a free normal subgroup $N \subseteq G$ of finite index; such a subgroup exists, in view of (iii) above. Since the group G is not 2-ended, the free group N is not infinite cyclic. Hence, all non-identity elements of N have infinitely many conjugates in N.

and, \emph{a fortiori}, in G; in particular, $N \cap G_f = 1$. It follows that G_f embeds in G/N and hence G_f is a finite group. As such, G_f is contained in the subset of torsion elements of G and hence $G_f = S$, in view of (ii) above. Since the free group N embeds as a subgroup of finite index in G/G_f, we may invoke [6, Chapter IV, Theorem 1.6] once again, in order to conclude that there is a tree T on which G/G_f acts without inversions, in such a way that the vertex stabilizer subgroups are finite (and have orders bounded by some integer). On the other hand, since G_f coincides with the subset of torsion elements of G, the group G/G_f is easily seen to be torsion-free. It follows that the action of G/G_f on the tree T must be free. Hence, invoking [15, Chapitre I, §3.3], we conclude that the group G/G_f is free.

(v) It is well known that a 2-ended group G admits a surjective homomorphism with finite kernel onto the infinite cyclic group \mathbb{Z} or else onto the infinite dihedral group D_{∞}. The latter case cannot occur, since D_{∞} has infinitely many elements of finite order, whereas the corresponding set for G is finite (in view of (ii) above). Therefore, there is a finite normal subgroup H of G such that $G/H \cong \mathbb{Z}$. It is now clear that H coincides with the set of elements of finite order in G and hence the proof is finished. \hfill \square

Let us now consider the group G which acts without inversions on a tree X, in such a way that the subset $S \subseteq G$ consisting of those group elements that stabilize a vertex is finite. Then, it follows from Proposition 4.1 that S is a finite normal subgroup of G, whereas the quotient group $\overline{G} = G/S$ is free. In view of the finiteness of S, the quotient map $G \to \overline{G}$ induces an algebra homomorphism

$$\pi_0 : C G \to C \overline{G},$$

which can be extended to a *-algebra homomorphism

$$\pi : C^* G \to C^* \overline{G}.$$

We note that the trace τ_S on $C^* G$, which was defined in the beginning of this section, coincides with the composition

$$C^* G \xrightarrow{\pi} C^* \overline{G} \xrightarrow{\overline{\tau}} \mathbb{C},$$

where $\overline{\tau}$ is the canonical trace on $C^* \overline{G}$. In order to verify this latter assertion, it suffices (by continuity) to show that the trace τ_S on $C G$, which was defined in the beginning of §3, coincides with the composition

$$C G \xrightarrow{\pi_0} C \overline{G} \xrightarrow{\overline{\tau}} \mathbb{C},$$

where $\overline{\tau}$ is the linear trace on $C \overline{G}$, which maps $\bar{1} \in \overline{G}$ onto 1 and any element $\bar{g} \in \overline{G} \setminus \{1\}$ onto 0. But this is clear, in view of the definitions. Invoking now
Remark 1.1 (ii), we conclude that the additive map

$$(\tau_S)_*: K_0(C^*_r G) \to C, \quad (4)$$

which is induced by the trace τ_S on $C^*_r G$, coincides with the composition

$$K_0(C^*_r G) \xrightarrow{K_0(\pi)} K_0(C^*_r \bar{G}) \xrightarrow{\tau_*} C,$$

where τ_* is the additive map induced by the canonical trace τ on $C^*_r \bar{G}$. Therefore, the group \bar{G} being free, we may invoke Connes’ result [5, §IV.5] that free groups satisfy the integrality of the trace conjecture, in order to conclude that the image of the additive map (4) is the group \mathbb{Z} of integers.

References

Received March 20, 2007

Ioannis Emmanouil, Department of Mathematics, University of Athens, Athens 15784, Greece
E-mail: emmanou@math.uoa.gr