Quantum Topology


Full-Text PDF (402 KB) | Metadata | Table of Contents | QT summary
Volume 4, Issue 4, 2013, pp. 447–489
DOI: 10.4171/QT/45

Published online: 2013-11-15

A duality formalism in the spirit of Grothendieck and Verdier

Mitya Boyarchenko[1] and Vladimir Drinfeld[2]

(1) University of Michigan, Ann Arbor, USA
(2) University of Chicago, USA

We study monoidal categories that enjoy a certain weakening of the rigidity property, namely, the existence of a dualizing object in the sense of Grothendieck and Verdier. We call them Grothendieck–Verdier categories. (They have also been studied in the literature under the name $*$-autonomous categories.) Notable examples include the derived category of constructible sheaves on a scheme (with respect to tensor product) as well as the derived and equivariant derived categories of constructible sheaves on an algebraic group (with respect to convolution).

We show that the notions of pivotal category and ribbon category, which are well known in the setting of rigid monoidal categories, as well as certain standard results associated with these notions, have natural analogues in the world of Grothendieck–Verdier categories.

Keywords: Monoidal category, braided category, pivotal structure, ribbon category, $*$\nobreakdash-\hspace{0pt}autonomous category, Grothendieck–Verdier category

Boyarchenko Mitya, Drinfeld Vladimir: A duality formalism in the spirit of Grothendieck and Verdier. Quantum Topol. 4 (2013), 447-489. doi: 10.4171/QT/45