Groups, Geometry, and Dynamics


Full-Text PDF (194 KB) | Metadata | Table of Contents | GGD summary
Volume 7, Issue 3, 2013, pp. 633–651
DOI: 10.4171/GGD/201

Published online: 2013-08-27

Fast growth in the Følner function for Thompson’s group $F$

Justin Tatch Moore[1]

(1) Cornell University, Ithaca, USA

The purpose of this note is to prove a lower bound on the growth of Følner functions for Richard Thompson’s group $F$. Specifically I will prove that, for any finite generating set $\Gamma \subseteq F$, there is a constant $C$ such that Føl$_{F,\Gamma} (C^n) \geq$ exp$_{n}(0)$.

Keywords: Følner function, tower function, Thompson’s group, amenable

Moore Justin Tatch: Fast growth in the Følner function for Thompson’s group $F$. Groups Geom. Dyn. 7 (2013), 633-651. doi: 10.4171/GGD/201