Oberwolfach Reports

Full-Text PDF (500 KB) | Introduction as PDF | Metadata | Table of Contents | OWR summary
Volume 9, Issue 3, 2012, pp. 1961–2011
DOI: 10.4171/OWR/2012/32

Published online: 2013-05-29

Reductions of Shimura Varieties

Laurent Fargues[1], Ulrich Görtz[2], Eva Viehmann[3] and Torsten Wedhorn[4]

(1) Université de Paris VI, France
(2) Universität Essen, Germany
(3) TU München, Garching, Germany
(4) Universität Paderborn, Germany

The workshop brought together leading experts in the theory of reductions of Shimura varieties. The talks presented new methods and results that intertwine a multitude of topics such as geometry and cohomology of moduli spaces of abelian varieties, p-divisible groups and Drinfeld shtukas, $p$-adic Hodge theory, arithmetic intersections of cycles on Shimura varieties, Bruhat-Tits buildings, and $p$-adic automorphic forms.

No keywords available for this article.

Fargues Laurent, Görtz Ulrich, Viehmann Eva, Wedhorn Torsten: Reductions of Shimura Varieties. Oberwolfach Rep. 9 (2012), 1961-2011. doi: 10.4171/OWR/2012/32