Journal of the European Mathematical Society

Full-Text PDF (420 KB) | Metadata | Table of Contents | JEMS summary
Volume 13, Issue 2, 2011, pp. 345–390
DOI: 10.4171/JEMS/256

Uniqueness and stability properties of monostable pulsating fronts

François Hamel[1] and Lionel Roques[2]

(1) Institut de Mathématiques de Marseille, UMR 7373, Université d'Aix-Marseille, 39 rue Frédéric Joliot-Curie, 13453, MARSEILLE CEDEX 13, FRANCE
(2) INRA, UR546 Biostatistique et Processus Spatiaux, 33, rue Louis Pasteur, F-84914, AVIGNON, FRANCE

We prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov–Petrovskiĭ–Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability properties and convergence to pulsating fronts for solutions of the Cauchy problem with front-like initial data. In particular, we prove the stability of KPP pulsating fronts with minimal speed, which is a new result even in the case when the medium is invariant in the direction of propagation.

Keywords: Traveling fronts, periodic media, uniqueness, stability, reaction-diffusion equations, monostable reaction

Hamel François, Roques Lionel: Uniqueness and stability properties of monostable pulsating fronts. J. Eur. Math. Soc. 13 (2011), 345-390. doi: 10.4171/JEMS/256