Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (403 KB) | Metadata | Table of Contents | ZAA summary
Volume 35, Issue 4, 2016, pp. 411–447
DOI: 10.4171/ZAA/1572

Global Bifurcation for Fractional $p$-Laplacian and an Application

Leandro M. Del Pezzo[1] and Alexander Quaas[2]

(1) Departamento de Matemática y Estadística, Oficina 23 , Universidad Torcuato Di Tella, Av. Figueroa Alcorta 7350 (C1428BCW), C. A. de Buenos Aires, Argentina
(2) Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Avda. España 1680, Valparaíso, Chile

We prove the existence of an unbounded branch of solutions to the non-linear non-local equation $$(-\Delta)^s_p u=\lambda |u|^{p-2}u + f(x,u,\lambda) \quad\text{in } \Omega,\quad u=0 \quad\text{in } \mathbb R^n\setminus\Omega ,$$ bifurcating from the first eigenvalue. Here $(-\Delta)^s_p$ denotes the fractional $p$-Laplacian and $\Omega\subset\mathbb R^n$ is a bounded regular domain. The proof of the bifurcation results relies in computing the Leray–Schauder degree by making an homotopy respect to $s$ (the order of the fractional $p$-Laplacian) and then to use results of local case (that is $s=1$) found in the paper of del Pino and Manásevich [J. Diff. Equ. 92 (1991)(2), 226–251]. Finally, we give some application to an existence result.

Keywords: Bifurcation, fractional $p$-Laplacian, existence results

Del Pezzo Leandro, Quaas Alexander: Global Bifurcation for Fractional $p$-Laplacian and an Application. Z. Anal. Anwend. 35 (2016), 411-447. doi: 10.4171/ZAA/1572