Revista Matemática Iberoamericana


Full-Text PDF (313 KB) | Metadata | Table of Contents | RMI summary
Volume 33, Issue 4, 2017, pp. 1247–1265
DOI: 10.4171/RMI/970

Published online: 2017-11-17

A new result on averaging theory for a class of discontinuous planar differential systems with applications

Jackson Itikawa[1], Jaume Llibre[2] and Douglas Duarte Novaes[3]

(1) Universidade de São Paulo, São Carlos, Brazil
(2) Universitat Autònoma de Barcelona, Bellaterra, Spain
(3) Universidade Estadual de Campinas, Brazil

We develop the averaging theory at any order for computing the periodic solutions of periodic discontinuous piecewise differential system of the form \begin{equation*} \dfrac{d r}{d \theta}=r'=\left\{\begin{array}{l} F^+(\theta,r,\epsilon) \quad \textrm{if}\quad 0\leq\theta\leq\alpha,\\ F^-(\theta,r,\epsilon) \quad \textrm{if}\quad \alpha\leq\theta\leq 2\pi,\\ \end{array}\right. \end{equation*} where $F^{\pm}(\theta,r,\epsilon)=\sum_{i=1}^k\epsilon^i F_i^{\pm}(\theta,r)+\epsilon^{k+1} R^{\pm}(\theta,r,\epsilon)$ with $\theta \in \mathbb{S}^1$ and $r\in D,$ where D is an open interval of $\mathbb{R}^{+},$ and $\epsilon$ is a small real parameter.

Applying this theory, we provide lower bounds for the maximum number of limit cycles that bifurcate from the origin of quartic polynomial differential systems of the form $\dot{x}=-y+xp(x,y),\quad\dot{y}=x+yp(x,y),$ with $p(x,y)$ a polynomial of degree $3$ without constant term, when they are perturbed, either inside the class of all continuous quartic polynomial differential systems, or inside the class of all discontinuous piecewise quartic polynomial differential systems with two zones separated by the straight line $y=0$.

Keywords: Periodic solution, averaging method, non-smooth differential system, discontinuous differential system, uniform isochronous center

Itikawa Jackson, Llibre Jaume, Novaes Douglas Duarte: A new result on averaging theory for a class of discontinuous planar differential systems with applications. Rev. Mat. Iberoamericana 33 (2017), 1247-1265. doi: 10.4171/RMI/970