Revista Matemática Iberoamericana


Full-Text PDF (209 KB) | Metadata | Table of Contents | RMI summary
Volume 32, Issue 1, 2016, pp. 257–266
DOI: 10.4171/RMI/885

Published online: 2016-02-29

Non-critical dimensions for critical problems involving fractional Laplacians

Roberta Musina[1] and Alexander I. Nazarov[2]

(1) Università di Udine, Italy
(2) St. Petersburg State University, Russian Federation

We study the Brezis–Nirenberg effect in two families of non-compact boundary value problems involving Dirichlet–Laplacian of arbitrary real order $m \in (0, n/2)$.

Keywords: Fractional Laplace operators, Sobolev inequality, Hardy inequality, critical dimensions

Musina Roberta, Nazarov Alexander: Non-critical dimensions for critical problems involving fractional Laplacians. Rev. Mat. Iberoam. 32 (2016), 257-266. doi: 10.4171/RMI/885