Revista Matemática Iberoamericana


Full-Text PDF (277 KB) | Metadata | Table of Contents | RMI summary
Volume 30, Issue 3, 2014, pp. 1015–1036
DOI: 10.4171/RMI/805

Published online: 2014-08-27

A Fourier restriction estimate for surfaces of positive curvature in $\mathbb{R}^6$

Faruk Temur[1]

(1) University of Illinois at Urbana-Champaign, USA

We improve the best known exponent for the restriction conjecture in $\mathbb{R}^6$, improving the recent results of Bourgain and Guth. The proof is applicable to any dimension $n$ satisfying $n \equiv 0 \mod 3$.

Keywords: Restriction conjecture, multilinear restriction estimates

Temur Faruk: A Fourier restriction estimate for surfaces of positive curvature in $\mathbb{R}^6$. Rev. Mat. Iberoamericana 30 (2014), 1015-1036. doi: 10.4171/RMI/805