Revista Matemática Iberoamericana


Full-Text PDF (414 KB) | Metadata | Table of Contents | RMI summary
Volume 30, Issue 1, 2014, pp. 247–275
DOI: 10.4171/RMI/777

Published online: 2014-03-23

Harmonicity and minimality of distributions on Riemannian manifolds via the intrinsic torsion

José Carmelo González-Dávila[1]

(1) Universidad de La Laguna, La Laguna, Tenerife, Spain

We consider a $q$-dimensional distribution as a section of the Grassmannian bundle $G_{q}(M^{n})$ of $q$-planes and we derive, in terms of the intrinsic torsion of the corresponding $S(O(q)\times O(n-q))$-structure, the conditions that this map must satisfy in order to be critical for the functionals energy and volume. Using this it is shown that invariant Riemannian foliations of homogeneous Riemannian manifolds which are transversally symmetric determine harmonic maps and minimal immersions. In particular, canonical homogeneous fibrations on rank one normal homogeneous spaces or on compact irreducible 3-symmetric spaces provide many examples of harmonic maps and minimal immersions of compact Riemannian manifolds.

Keywords: Harmonic map, minimal immersion, homogeneous space, distribution, intrinsic torsion of a G-structure

González-Dávila José Carmelo: Harmonicity and minimality of distributions on Riemannian manifolds via the intrinsic torsion. Rev. Mat. Iberoamericana 30 (2014), 247-275. doi: 10.4171/RMI/777