Revista Matemática Iberoamericana


Full-Text PDF (264 KB) | Metadata | Table of Contents | RMI summary
Volume 15, Issue 1, 1999, pp. 37–58
DOI: 10.4171/RMI/249

Published online: 1999-04-30

Construction of non separable dyadic compactly supported orthonormal wavelet bases for $L^2 (\mathbb R^2)$ of arbitrarily high regularity

Antoine Ayache[1]

(1) Université Lille 1, Villeneuve d'Asq, France

By means of simple computations we construct new classes of non separable QMFs. Some of these QMFs will lead to non separable dyadic compactly supported orthonormal wavelet bases for $L^2 (\mathbb R^2)$ of arbitrarily high regularity.

No keywords available for this article.

Ayache Antoine: Construction of non separable dyadic compactly supported orthonormal wavelet bases for $L^2 (\mathbb R^2)$ of arbitrarily high regularity. Rev. Mat. Iberoamericana 15 (1999), 37-58. doi: 10.4171/RMI/249