Rendiconti del Seminario Matematico della Università di Padova


Full-Text PDF (88 KB) | Metadata | Table of Contents | RSMUP summary
Volume 137, 2017, pp. 223–228
DOI: 10.4171/RSMUP/137-12

Primary group rings

Angelina Y.M. Chin[1] and Kiat Tat Qua[2]

(1) University of Malaya, Kuala Lumpur, Malaysia
(2) Tunku Abdul Rahman University, Kajang, Malaysia

Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. We say that $R$ is primary if $R/J(R)$ is simple Artinian and $J(R)$ is nilpotent. In this paper we obtain necessary and sufficient conditions for the group ring $RG$, where $G$ is a nontrivial abelian group, to be primary.

Keywords: Primary, group ring

Chin Angelina, Qua Kiat Tat: Primary group rings. Rend. Sem. Mat. Univ. Padova 137 (2017), 223-228. doi: 10.4171/RSMUP/137-12