Rendiconti del Seminario Matematico della Università di Padova

Full-Text PDF (98 KB) | Metadata | Table of Contents | RSMUP summary
Volume 132, 2014, pp. 33–43
DOI: 10.4171/RSMUP/132-3

Published online: 2014-11-04

Harmonic numbers and finite groups

Sekhar Jyoti Baishya[1] and Ashish Kumar Das[2]

(1) The North Eastern Hill University Library, Meghalaya, India
(2) The North Eastern Hill University Library, Meghalaya, India

Given a finite group $ G , $ let $ {\tau} (G)$ be the number of normal subgroups of $ G$ and $ {\sigma} (G)$ be the sum of the orders of the normal subgroups of $ G$ . The group $ G$ is said to be harmonic if $ H(G):=\vert G\vert {\tau} (G)/{\sigma} (G)$ is an integer. In this paper, all finite groups for which $ 1 \leq H(G) \leq 2$ have been characterized. Harmonic groups of order $ pq$ and of order $pqr$ , where $ p< q< r$ are primes, are also classified. Moreover, it has been shown that if $ G$ is harmonic and $ G \not \cong C_ 6$, then $ {\tau} (G) \geq 6$.

Keywords: Finite groups, harmonic numbers, harmonic groups

Baishya Sekhar Jyoti, Das Ashish Kumar: Harmonic numbers and finite groups. Rend. Sem. Mat. Univ. Padova 132 (2014), 33-43. doi: 10.4171/RSMUP/132-3