Rendiconti del Seminario Matematico della Università di Padova


Full-Text PDF (175 KB) | Metadata | Table of Contents | RSMUP summary
Volume 127, 2012, pp. 17–39
DOI: 10.4171/RSMUP/127-2

The Arithmetic Theory of Local Constants for Abelian Varieties

Marco Adamo Seveso[1]

(1) Dipartimento Matematica 'F. Enriques', Università degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy

We present a generalization of the theory of local constant developed by B. Mazur and K. Rubin in order to cover the case of abelian varieties, with emphasis to abelian varieties with real multiplication. Let $l$ be an odd rational prime and let $L/K$ be an abelian $l$-power extension. Assume that we are given a quadratic extension $K/k$ such that $L/k$ is a dihedral extension and the abelian variety $A/k$ is defined over $k$ and polarizable. This theory can be used to relate the rank of the $l$-Selmer group of $A$ over $K$ to the rank of the $l$-Selmer group of $A$ over $L$.

No keywords available for this article.

Seveso Marco Adamo: The Arithmetic Theory of Local Constants for Abelian Varieties. Rend. Sem. Mat. Univ. Padova 127 (2012), 17-39. doi: 10.4171/RSMUP/127-2