Rendiconti del Seminario Matematico della Università di Padova


Full-Text PDF (71 KB) | Metadata | Table of Contents | RSMUP summary
Volume 126, 2011, pp. 229–236
DOI: 10.4171/RSMUP/126-13

Published online: 2011-12-31

On Groups of Odd Order Admitting an Elementary 2-Group of Automorphisms

Karise G. Oliveira[1], Pavel Shumyatsky[2] and Carmela Sica[3]

(1) Ciência e Tecnologia de Goiás, Inhumas, Brazil
(2) Universidade de Brasília, Brasilia, Brazil
(3) Università di Salerno, Fisciano (Sa), Italy

Let $G$ be a finite group of odd order with derived length $k$. We show that if $G$ is acted on by an elementary abelian group $A$ of order $2^n$ and $C_G(A)$ has exponent $e$, then $G$ has a normal series $G=G_0\ge T_0\ge G_1\ge T_1\ge\cdots\ge G_n\ge T_n=1$ such that the quotients $G_i/T_i$ have $\{k,e,n\}$-bounded exponent and the quotients $T_i/G_{i+1}$ are nilpotent of $\{k,e,n\}$-bounded class.

No keywords available for this article.

Oliveira Karise, Shumyatsky Pavel, Sica Carmela: On Groups of Odd Order Admitting an Elementary 2-Group of Automorphisms. Rend. Sem. Mat. Univ. Padova 126 (2011), 229-236. doi: 10.4171/RSMUP/126-13