Rendiconti del Seminario Matematico della Università di Padova

Full-Text PDF (90 KB) | Metadata | Table of Contents | RSMUP summary
Volume 126, 2011, pp. 201–211
DOI: 10.4171/RSMUP/126-11

Huppert's Conjecture for $Fi_{23}$

S.H. Alavi[1], A. Daneshkah[2], H.P. Tong-Viet[3] and T.P. Wakefield[4]

(1) School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, WA 6009, Crawley, Australia
(2) Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran
(3) School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
(4) Department of Mathematics and Statistics, Youngstown State University, OH 44555, Youngstown, USA

Let $G$ denote a finite group and $\text{cd}(G)$ the set of irreducible character degrees of $G$. Bertram Huppert conjectured that if $H$ is a finite nonabelian simple group such that $\text{cd}(G) =\text{cd}(H)$, then $G\cong H \times A$, where $A$ is an abelian group. Huppert verified the conjecture for many of the sporadic simple groups. We illustrate the arguments by presenting the verification of Huppert's Conjecture for $Fi_{23}$.

No keywords available for this article.

Alavi S.H., Daneshkah A., Tong-Viet H.P., Wakefield T.P.: Huppert's Conjecture for $Fi_{23}$. Rend. Sem. Mat. Univ. Padova 126 (2011), 201-211. doi: 10.4171/RSMUP/126-11