Rendiconti del Seminario Matematico della Università di Padova

Full-Text PDF (152 KB) | Metadata | Table of Contents | RSMUP summary
Volume 120, 2008, pp. 29–44
DOI: 10.4171/RSMUP/120-2

Etude du Spectre Pour Certains Noyaux sur un Arbre

Ferdaous Kellil[1] and Guy Rousseau[2]

(1) Département de Mathématiques, ISIMM, Université de Monastir, 5000, Monastir, Tunisia
(2) Institut Elie Cartan, Université de Lorraine, CNRS, Boulevard des aiguillettes, BP 70239, 54506, Vandœuvre-lès-Nancy, France

We study in this paper the spectrum of some kernels acting on a locally finite tree, in particular those associated to an isotropic random walk on the tree with jumps of length 0, 1 or 2. Such a kernel is a function R on S×S where S is the set of vertices of the tree, it acts on lr(S). We always assume the kernel R to be invariant under the action of a group Λ of authomorphisms almost transitive on S. This work generalizes results of A. Figa Talamanca and T. Steger who deal with homogeneous trees and a fixed group Λ, simply transitive on S; it shows the diversity of the spectrum depending on the invariance group.

No keywords available for this article.

Kellil Ferdaous, Rousseau Guy: Etude du Spectre Pour Certains Noyaux sur un Arbre. Rend. Sem. Mat. Univ. Padova 120 (2008), 29-44. doi: 10.4171/RSMUP/120-2