Rendiconti del Seminario Matematico della Università di Padova


Full-Text PDF (1080 KB) | Metadata | Table of Contents | RSMUP summary
Volume 119, 2008, pp. 173–244
DOI: 10.4171/RSMUP/119-5

Motifs Génériques

Frédéric Déglise[1]

(1) Institut Galilée, Université de Paris 13, 99, Avenue Jean-Baptiste Clément, 93430, Villetaneuse, France

The aim of the article is to show that every mixed triangulated motive in the sense of V. Voevodsky determines a canonical cycle module in the sense of M. Rost. Our method consists of interpreting geometrically the axioms of cycle modules in a category of pro-motives called "generic motives". It is general enough to show at the same time that every cohomological theory which induces a realization of triangulated mixed motives defines a canonical cycle module. This is in particular applicable to De Rham and rigid cohomology.

No keywords available for this article.

Déglise Frédéric: Motifs Génériques. Rend. Sem. Mat. Univ. Padova 119 (2008), 173-244. doi: 10.4171/RSMUP/119-5