Abstract

Let $X = G/H$ be a homogeneous space, $\bar{X} = X \times [0, \infty)$, μ a doubling measure on X induced by a Haar measure on the group G, β a positive measure on \bar{X} and W a weight on X. Consider the maximal operator given by

$$Mf(x, r) = \sup_{s \geq r} \frac{1}{\mu(B(x, s))} \int_{B(x, s)} |f(y)| \, d\mu(y), \quad (x, r) \in \bar{X}.$$

In this paper, we obtain, for each $p, q, 1 < p \leq q < \infty$, a necessary and sufficient condition for the boundedness of the maximal operator M from $L^p(X, Wd\mu)$ to $L^q(\bar{X}, d\beta)$. As an application, we obtain a necessary and sufficient condition for the boundedness of the Poisson integral of functions defined on the unit sphere S^n of the Euclidian space \mathbb{R}^{n+1}, from $L^p(S^n, Wd\sigma)$ to $L^q(B, d\nu)$, where σ is the Lebesgue measure on S^n, W is a weight on S^n and ν is a positive measure on the unit ball B of \mathbb{R}^{n+1}.