Finite Truncations of Generalized One-Dimensional Discrete Convolution Operators and Asymptotic Behavior of the Spectrum. The Matrix Case

We study the sequence \(\{A_N(a)\}_{N \in \mathbb{N}} \) of finite truncations of a generalized discrete convolution operator, which have matrices of the form

\[
A_N(a) \sim \left(a \left(\frac{n}{E(N)}, \frac{k}{E(N)}, n - k \right) \right)_{n,k=1,\ldots,N},
\]

where \(a \) is some function defined on \([0, +\infty) \times [0, +\infty)\), \(E(\cdot) \) is defined on \(\mathbb{N} \) and \(E(N) \to \infty, \frac{N}{E(N)} \to \infty \) as \(N \to \infty \). For this sequence we get a generalization of the Szegö limit theorem.

Keywords: Szegö limit theorem, convolution operator, eigenvalues, Toeplitz operator.

MSC: 47B35; 15A18