For given \(k \in (0,1) \) and \(r > 0 \), a self-mapping \(T : M \to M \) is said to be \(r \)-roughly \(k \)-contractive provided
\[
\|Tx - Ty\| \leq k \|x - y\| + r \quad (x, y \in M).
\]

To state fixed-point properties of such a mapping, the self-Jung constant \(J_s(X) \) is used, which is defined as the supremum of the ratio \(2 r_{\text{conv} \ s(S)}/\text{diam} \ S \) over all non-empty, non-singleton and bounded subsets \(S \) of some normed linear space \(X \), where \(r_{\text{conv} \ s(S)} = \inf_{x \in \text{conv} \ S} \sup_{y \in S} \|x - y\| \) is the self-radius of \(S \) and \(\text{diam} \ S \) is its diameter. If \(M \) is a closed and convex subset of some finite-dimensional normed space \(X \) and if \(T : M \to M \) is \(r \)-roughly \(k \)-contractive, then for all \(\varepsilon > 0 \) there exists \(x^* \in M \) such that
\[
\|x^* - Tx^*\| < \frac{1}{2} J_s(X) r + \varepsilon.
\]

If \(\dim X = 1 \), or \(X \) is some two-dimensional strictly convex normed space, or \(X \) is some Euclidean space, then there is \(x^* \in M \) satisfying \(\|x^* - Tx^*\| \leq \frac{1}{2} J_s(X) r \).