Partial differential equations. — Approximating the inverse matrix of the G-limit through changes of variables in the plane, by GIOCONDA MOSCARIELLO, CARLO SBORDONE and FRANÇOIS MURAT, communicated on 10 March 2006.

ABSTRACT. — Let A_j be a sequence of coercive symmetric matrices in $L^\infty(\mathbb{R}^2; \mathbb{R}^{2 \times 2})$ with $\det A_j = 1$ which G-converges to A. We prove that there exists a sequence of K-quasiconformal mappings F_j which converge locally uniformly to a K-quasiconformal mapping F such that $A_j^{-1} \circ F_j^{-1} G$-converges to $A^{-1} \circ F^{-1}$. The result is specific to the two-dimensional case but a similar result holds in dimension 1.

KEY WORDS: G-convergence; quasiconformal mappings; Beltrami operators; elliptic equations.