A categorification of quantum sl(n)

Mikhail Khovanov and Aaron D. Lauda

Abstract. To an arbitrary root datum we associate a 2-category. For root datum corresponding to sl(n) we show that this 2-category categorifies the idempotented form of the quantum enveloping algebra.

Mathematics Subject Classification (2010). 81R50; 14M15; 17B37; 16W99.

Keywords. Categorification, quantum groups, quantum sl(n), iterated flag variety, 2-representation, 2-category

Contents

1 Introduction 2
2 Graphical interpretation of the bilinear form 6
 2.1 Quantum groups 6
 2.2 Geometric interpretation of the bilinear form 12
3 Graphical calculus for U categorification 21
 3.1 The 2-category U 21
 3.2 Spanning sets of HOMs in U 30
 3.3 Properties and symmetries of 2-category U 36
 3.4 Karoubi envelope, U, and 2-representations 41
 3.5 Direct sum decompositions 42
 3.6 $K_0(U)$ and homomorphism γ 45
 3.7 Idempotented rings 47
 3.8 Surjectivity of γ 49
 3.9 Injectivity of γ in the non-degenerate case 56
4 Categorification of U for sl(n) 57
 4.1 Forms of quantum sl(n) 57
 4.2 The 2-category $U_{id}(sl(n))$ 58
5 Iterated flag varieties 61
 5.1 Cohomology of n-step varieties 61
 5.2 Graphical calculus for iterated flag varieties 66
 5.3 The 2-category Flag_N 75
6 Representing U^* on the flag 2-category 76
 6.1 Defining the 2-functor Γ_N 76
1. Introduction

In this paper we categorify the Beilinson–Lusztig–MacPherson idempotented modification $\mathcal{U}(\mathfrak{sl}_n)$ of $U_q(\mathfrak{sl}_n)$ for any n, generalizing [21], [22], where such categorification was described for $n = 2$, and using constructions and results of [16], [17] which contain a categorification of \mathfrak{U}^{-} for any Cartan datum. More generally, we define a 2-category associated to any root datum. The categorification of $\mathcal{U}(\mathfrak{sl}_n)$ is given by the 2-category associated to the root system A_{n-1}.

In [24] Lusztig associates a quantum group \mathcal{U} to any root datum; the latter consists of a perfect pairing $(.)$ between two free abelian groups X and Y, embeddings of the set I of simple roots into X, Y, and a bilinear form on $\mathbb{Z}[I]$ subject to certain compatibility and integrality conditions. Lusztig’s definition is slightly different from the original ones due to Drinfeld [9] and Jimbo [13]. Lusztig then modifies \mathcal{U} to the nonunital ring $\hat{\mathcal{U}}$ which contains a system of idempotents $\{1_\lambda\}$ over all weights $\lambda \in X$ as a substitute for the unit element,

$$\hat{\mathcal{U}} = \bigoplus_{\lambda, \mu \in X} 1_\mu \hat{\mathcal{U}} 1_\lambda.$$

In the \mathfrak{sl}_n case $\hat{\mathcal{U}}$ was originally defined by Beilinson, Lusztig, and Macpherson [2] and then appeared in [23], [14] in greater generality. It is clear from Lusztig’s work that the $\mathfrak{U}(q)$-algebra \mathcal{U} is natural for at least the following reasons:

1. A $\hat{\mathcal{U}}$-module is the same as a \mathcal{U}-module which has an integral weight decomposition. These modules are of prime importance in the representation theory of \mathcal{U}.

2. $\hat{\mathcal{U}}$ has analogues of the comultiplication, the antipode, and other standard symmetries of \mathcal{U}.

3. $\hat{\mathcal{U}}$ is a \mathcal{U}-bimodule.

4. The Peter–Weyl theorem and the theory of cells can be intrinsically stated in terms of the algebra $\hat{\mathcal{U}}$.

5. $\hat{\mathcal{U}}$ has an integral form $\mathfrak{A}\hat{\mathcal{U}}$, a $\mathbb{Z}[q, q^{-1}]$-lattice closed under multiplication and comultiplication. The integral form comes with a canonical basis $\hat{\mathfrak{B}}$. Conjecturally, multiplication and comultiplication in this basis have coefficients in $\mathbb{N}[q, q^{-1}]$ when the Cartan datum is symmetric.

6. The braid group associated to the Cartan datum acts on $\hat{\mathcal{U}}$.

Moreover, $\hat{\mathcal{U}}$ appears throughout the categorification program for quantum groups. Representations of quantum groups that are known to have categorifications all have
integral weight decompositions, and thus automatically extend to representations of \mathbf{U}. In most or all of these examples, see [3], [7], [10], [31], [33], the weight decomposition of representations lifts to a direct sum decomposition of categories, so one obtains a categorification of the idempotent 1_λ as the functor of projection onto the corresponding direct summand (the only possible exception is the categorification of tensor products via the affine Grassmannian [5], [6]). In the categorification of tensor powers of the fundamental $U_q(\mathfrak{sl}_2)$-representation [3], [10], each canonical basis element of \mathbf{U} acts as an indecomposable projective functor or as the zero functor. The idea that \mathbf{U} rather than \mathbf{U} should be categorified goes back to Crane and Frenkel [8].

\mathbf{U} is generated by elements $E_i 1_\lambda$, $F_i 1_\lambda$, and 1_λ, where $\lambda \in X$ is an element of the weight lattice and i is a simple root. We will often write $E_{+,i}$ instead of E_i and $E_{-,i}$ instead of F_i. We have

$$E_{\pm i} 1_\lambda = 1_{\mu} E_{\pm i} 1_\lambda,$$

where, in our notations, explained in Section 2.1, $\mu = \lambda \pm i_X$, and i_X is the element of X associated to the simple root i. Algebra \mathbf{U} is spanned by products

$$E_{i_{1}} 1_\lambda := E_{\pm i_{1}} E_{\pm i_{2}} \ldots E_{\pm i_{m}} 1_\lambda = 1_{\mu} E_{\pm i_{1}} E_{\pm i_{2}} \ldots E_{\pm i_{m}} 1_\lambda,$$

where $i = (\pm i_{1}, \ldots, \pm i_{m})$ is a signed sequence of simple roots, and $\mu = \lambda + i_X$.

The integral form $\mathbf{A} \mathbf{U} \subset \mathbf{U}$ is the $\mathbb{Z}[q, q^{-1}]$-algebra generated by divided powers

$$E_{i^{(a)}} 1_\lambda = \frac{1}{[a]!} E_{i}^a 1_\lambda.$$

Note that \mathbf{U} can, alternatively, be viewed as a pre-additive category with objects $\lambda \in X$ and morphisms from λ to μ being $1_{\mu} \mathbf{U} 1_\lambda$. Of course, any ring with a collection of mutually orthogonal idempotents as a substitute for the unit element can be viewed as a pre-additive category and vice versa. From this perspective, though, we can expect the categorification of \mathbf{U} to be a 2-category.

In Section 3.1 we associate a 2-category \mathbf{U} to a root datum. The objects of this 2-category are integral weights $\lambda \in X$, the morphisms from λ to μ are finite formal sums of symbols $E_i 1_\lambda \{ t \}$, where $t = (\pm i_{1}, \ldots, \pm i_{m})$ is a signed sequence of simple roots such that the left weight of the symbol is μ ($E_i 1_\lambda = 1_{\mu} E_i 1_\lambda$), and $t \in \mathbb{Z}$ is a grading shift. When i consists of a single term, we get 1-morphisms $E_{i} 1_\lambda$ and $E_{-i} 1_\lambda$, which should be thought of as categorifying elements $E_i 1_\lambda$ and $F_i 1_\lambda$ of \mathbf{U}, respectively. Grading shift $\{ t \}$ categorifies multiplication by q^t. The 1-morphism $E_i 1_\lambda : \lambda \rightarrow \mu$ should be thought of as a categorification of the element $E_i 1_\lambda$. When the sequence i is empty, we get the identity morphism $1_\lambda : \lambda \rightarrow \lambda$, a categorification of the element 1_λ.

Two-morphisms between $E_i 1_\lambda \{ t \}$ and $E_j 1_\lambda \{ t' \}$ are given by linear combinations of degree $t - t'$ diagrams drawn on the strip $\mathbb{R} \times [0, 1]$ of the plane. The diagrams consist of immersed oriented one-manifolds, with every component labelled by a
simple root, and dots placed on the components. Labels and orientations at the lower and upper endpoints of the one-manifold must match the sequences i and j, respectively. Integral weights label regions of the plane cut out by the one-manifold, with the rightmost region labelled λ. Each diagram has an integer degree assigned to it. We work over a ground field k, and define a 2-morphism between $\mathcal{E}_i \mathbf{1}_\lambda \{t\}$ and $\mathcal{E}_j \mathbf{1}_\lambda \{t'\}$ as a linear combination of such diagrams of degree $t - t'$, with coefficients in k, modulo isotopies and a collection of very carefully chosen local relations. The set of 2-morphisms $\mathcal{U}(\mathcal{E}_i \mathbf{1}_\lambda \{t\}, \mathcal{E}_j \mathbf{1}_\lambda \{t'\})$ is a k-vector space. We also form graded vector space
\[
\text{HOM}_\mathcal{U}(\mathcal{E}_i \mathbf{1}_\lambda, \mathcal{E}_j \mathbf{1}_\lambda) := \bigoplus_{t \in \mathbb{Z}} \mathcal{U}(\mathcal{E}_i \mathbf{1}_\lambda \{t\}, \mathcal{E}_j \mathbf{1}_\lambda).
\]

Vertical composition of 2-morphisms is given by concatenation of diagrams, horizontal composition consists of placing diagrams next to each other.

In each graded k-vector space $\text{HOM}_\mathcal{U}(\mathcal{E}_i \mathbf{1}_\lambda, \mathcal{E}_j \mathbf{1}_\lambda)$ we construct a homogeneous spanning set $B_{i,j,\lambda}$ which depends on extra choices. The Laurent power series in q, with the coefficient at q^r equal to the number of spanning set elements of degree r, is proportional to suitably normalized inner product $\langle E_i 1_\lambda, E_j 1_\lambda \rangle$, where the semilinear form $\langle \cdot, \cdot \rangle$ is a mild modification of the Lusztig bilinear form on \mathcal{U}. The proportionality coefficient π depends only on the root datum.

We say that our graphical calculus is non-degenerate for a given root datum and field k if for each i, j, λ the homogeneous spanning set $B_{i,j,\lambda}$ is a basis of the k-vector space $\text{HOM}_\mathcal{U}(\mathcal{E}_i \mathbf{1}_\lambda, \mathcal{E}_j \mathbf{1}_\lambda)$. Nondegeneracy will be crucial for our categorification constructions.

The 2-category \mathcal{U} is k-additive, and we form its Karoubian envelope $\hat{\mathcal{U}}$, the smallest 2-category which contains \mathcal{U} and has splitting idempotents. Namely, for each $\lambda, \mu \in X$, the category $\mathcal{U}(\lambda, \mu)$ of morphisms $\lambda \to \mu$ is defined as the Karoubian envelope of the additive k-linear category $\mathcal{U}(\lambda, \mu)$. The split Grothendieck category $K_0(\mathcal{U})$ is a pre-additive category with objects λ, and the abelian group of morphisms from λ to μ is the split Grothendieck group $K_0(\mathcal{U}(\lambda, \mu))$ of the additive category $\mathcal{U}(\lambda, \mu)$. The grading shift functor on $\mathcal{U}(\lambda, \mu)$ turns $K_0(\mathcal{U}(\lambda, \mu))$ into a $\mathbb{Z}[q, q^{-1}]$-module. This module is free with the basis given by isomorphism classes of indecomposable objects of $\mathcal{U}(\lambda, \mu)$, up to grading shifts. The split Grothendieck category $K_0(\mathcal{U})$ can also be viewed as a nonunital $\mathbb{Z}[q, q^{-1}]$-algebra with a collection of idempotents $[I_\lambda]$ as a substitute for the unit element.

In Section 3.6 we set up a $\mathbb{Z}[q, q^{-1}]$-algebra homomorphism
\[
y : \hat{\mathcal{U}} \to K_0(\mathcal{U})
\]
which takes 1_λ to $[I_\lambda]$ and $E_i 1_\lambda$ to $[\mathcal{E}_i 1_\lambda]$, for any “divided power” signed sequence i.

The main results of this paper are the following theorems.

Theorem 1.1. The map y is surjective for any root datum and field k.

Theorem 1.2. The map γ is injective if the graphical calculus for the root datum and field k is non-degenerate.

Theorem 1.3. The graphical calculus is non-degenerate for the root datum of \mathfrak{sl}_n and any field k.

The three theorems together immediately imply

Proposition 1.4. The map γ is an isomorphism for the root datum of \mathfrak{sl}_n and any field k.

The last result establishes a canonical isomorphism

$$ \mathcal{A}\mathcal{U}(\mathfrak{sl}_n) \cong K_0(\mathcal{U}(\mathfrak{sl}_n)) $$

and allows us to view $\mathcal{U}(\mathfrak{sl}_n)$ as a categorification of $\mathcal{U}(\mathfrak{sl}_n)$.

Theorem 1.1, proved in Section 3.8, follows from the results of [16], [17], [21] and basic properties of Grothendieck groups and idempotents. Theorem 1.2, proved in Section 3.9, follows from the non-degeneracy of the semilinear form on \mathcal{U} and its pictorial interpretation explained in Section 2.2. To prove theorem 1.3 we construct a family of 2-representations of \mathcal{U} and check that the elements of each spanning set $B_{i,j,\lambda}$ act linearly independently on vector spaces in these 2-representations, implying non-degeneracy of the graphical calculus. Sections 4-6 are devoted to these constructions.

Indecomposable 1-morphisms, up to isomorphism and grading shifts, constitute a basis of $K_0(\mathcal{U}(\mathfrak{sl}_n)) \cong \mathcal{A}\mathcal{U}(\mathfrak{sl}_n)$, which might potentially depend on the ground field k. The multiplication in this basis has coefficients in $\mathbb{N}[q,q^{-1}]$. It is an open problem whether this basis coincides with the Lusztig canonical basis of $\mathcal{A}\mathcal{U}(\mathfrak{sl}_n)$. The answer is positive when $n = 2$, see [21].

Another major problem is to determine for which root data the graphical calculus is non-degenerate. Nondegeneracy immediately implies, via Theorems 1.1 and 1.2, that \mathcal{U} categorifies $\hat{\mathfrak{u}}$ for a given root datum.

We believe that \mathcal{U} will prove ubiquitous in representation theory. This 2-category or its mild modifications is expected to act on parabolic-singular blocks of highest weight categories for \mathfrak{sl}_N in the context of categorification of \mathfrak{sl}_n representations [7], [10], [31], on derived categories of coherent sheaves on Kronheimer–Nakajima [20] and Nakajima [26] quiver varieties and on their Fukaya–Floer counterparts, on categories of modules over cyclotomic Hecke and degenerate Hecke algebras [1], [19], on categories of perverse sheaves in Zheng’s categorifications of tensor products [33], on categories of modules over cyclotomic quotients of rings $R(\nu)$ in [16], [17], on categories of matrix factorizations that appear in [18, Section 11], etc. A possible approach to proving that the calculus is non-degenerate for other root systems is to show that \mathcal{U} acts on a sufficiently large 2-category and verify that the spanning
set elements act linearly independently. It would also be interesting to relate our constructions with those of Rouquier [29], [30].

Categories of projective modules over rings $R(v)$, defined in [16], [17], categorify U^- weight spaces. A subset of our defining local relations on 2-morphisms gives the relations for rings $R(v)$. This subset consists exactly of the relations whose diagrams have no critical points (U-turns) on strands and have all strand orientations going in the same direction. In other words, the relations on braid-like diagrams allow us to categorify U^-, while the relations without these restrictions lead to a categorification of the entire U, at least in the \mathfrak{sl}_n case. Informally, the passage from a categorification of U^- to a categorification of $P\, U$ is analogous to generalizing from braids to tangles.

Acknowledgments. M. K. was partially supported by the NSF grant DMS-0706924 and, during the early stages of this work, by the Institute for Advanced Study.

2. Graphical interpretation of the bilinear form

2.1. Quantum groups

2.1.1. Algebras f and U. We recall several definitions, following [24]. A Cartan datum (I, \cdot) consists of a finite set I and a symmetric \mathbb{Z}-valued bilinear form on $\mathbb{Z}[I]$, subject to conditions

- $i \cdot i \in \{2, 4, 6, \ldots \}$ for $i \in I$,
- $d_{ij} := -2\frac{i+j}{\gcd(i,j)} \in \{0, 1, 2, \ldots \}$ for any $i \neq j$ in I.

Let $q_i = q_{\frac{i}{2}}$, $[a]_i = q_i^{a-1} + q_i^{a-3} + \cdots + q_i^{1-a} [a]_i! = [a]! [a-1]! \ldots [1]!$. Denote by f the free associative algebra over $\mathbb{Q}(q)$ with generators θ_i, $i \in I$, and introduce q-divided powers $\theta_i^{[a]} = \theta_i^a/ [a]!$. The algebra f is $\mathbb{N}[I]$-graded, with θ_i in degree i. The tensor square $f \otimes f$ is an associative algebra with twisted multiplication

$$(x_1 \otimes x_2)(x'_1 \otimes x'_2) = q_{-|x_2||x'_1|}x_1 x'_1 \otimes x_2 x'_2$$

for homogeneous x_1, x_2, x'_1, x'_2. The assignment $r(\theta_i) = \theta_i \otimes 1 + 1 \otimes \theta_i$ extends to a unique algebra homomorphism $r : f \rightarrow f \otimes f$.

The algebra f carries a $\mathbb{Q}(q)$-bilinear form determined by the conditions

- $(1, 1) = 1$,
- $(\theta_i, \theta_j) = \delta_{i,j} (1 - q_i^2)^{-1}$ for $i, j \in I$,
- $(x, yy') = (r(x), y \otimes y')$ for $x, y, y' \in f$,
- $(xx', y) = (x \otimes x', r(y))$ for $x, x', y \in f$.

The bilinear form $(\ , \)$ is symmetric. Its radical 3 is a two-sided ideal of f. The form $(\ , \)$ descends to a non-degenerate form on the associative $\mathbb{Q}(q)$-algebra $f = f/\mathfrak{3}$.

\[\text{\footnote{Our bilinear form $(\ , \)$ corresponds to Lusztig’s bilinear form $\{ \ , \ \}$, see Lusztig [24, 1.2.10].}}\]