Definability and Decidability Problems in Number Theory

Organised by
Jochen Koenigsmann, Oxford
Hector Pasten, Cambridge MA
Alexandra Shlapentokh, Greenville
Xavier Vidaux, Concepción

23 October – 29 October 2016

Abstract. This workshop brought together experts working on variations
of Hilbert’s Tenth Problem and more general decidability issues for struc-
tures other than the ring of integers arising naturally in number theory and
algebraic geometry.

Mathematics Subject Classification (2010): 03XX, 11XX, 12E30, 12JXX, 13A18, 14XX.

Introduction by the Organisers

This highly interdisciplinary workshop brought together 51 Mathematicians from
Number Theory, Logic, Algebraic Geometry, Computability, Model Theory, Arithmetic of Fields, Valuation Theory, and some other related areas. Many contributions and discussions were inspired and driven by the big open decidability ques-
tions such as Hilbert’s Tenth Problem over \(\mathbb{Q} \), the decidability of the first-order
theory of \(\mathbb{F}_p((t)) \) or of \(\mathbb{C}(t) \), variations of Büchi’s Problem and other weak forms
of arithmetic, as well as associated questions of definability and logical complexity
in various rings of number theoretic interest, and in analogous rings of functions.
Several of these issues are closely related to major conjectures in Arithmetic Ge-
ometry, thus faring in deep waters. However, what was most remarkable about
the workshop was the immense and effective effort the participants made in be-
ing understood, in getting across their key points, and in promoting the common
understanding. There was an open, friendly yet well-focused atmosphere, a high
spirit of joint venture, possibly propelled by the dynamics between the large num-
bers of both excellent young researchers on the one hand, and the rather matured
experts on the other. And, of course, the wonderful setting of MFO, and the extreme degree of professionality it is run by on all levels, have played a crucial part in making this workshop such a success.

Let us briefly mention some of the scientific highlights (not including the more survey-like contributions by Colliot-Thélène, Fehm and Derakhshan). One of them was Philip Dittmann’s theorem that irreducibility is diophantine, i.e. definable by an existential first-order formula, in global fields. This vastly generalises partial earlier results in this direction by Poonen, Koenigsmann, Park, Colliot-Thélène and Van Geel. In the case of \mathbb{Q}, this theorem (which now holds unconditionally) would follow if \mathbb{Z} was diophantine in \mathbb{Q} (which is one of the big open problems in the field, and which would imply that Hilbert’s Tenth Problem for \mathbb{Q} is unsolvable).

Another breakthrough towards proving that \mathbb{Z} is not diophantine in \mathbb{Q} (and $\mathbb{F}_p[t]$ not in $\mathbb{F}_p(t)$ etc.) is Hector Pasten’s theorem that these negative results follow from a new conjecture of his on the behavior of proximity functions in diophantine approximation – a conjecture that he has verified in a number of cases. He also discussed recent work with Ram Murty showing that standard analytic conjectures on L-functions imply that \mathbb{Z} is diophantine in \mathcal{O}_K for all number fields K, nicely complementing similar results of Mazur and Rubin which assume conjectures on \mathcal{X}.

Natalia Garcia-Fritz developed a powerful machinery generalising Vojta’s approach for solving Büchi’s problem (modulo Bombieri-Lang) by finding all curves of low genus in surfaces with unconditional arithmetic applications à la Büchi for function fields of characteristic zero.

There were two undecidability results for certain infinite extensions of global fields, one by Kirsten Eisenträger for the perfect closure of a global field of positive characteristic, and one by Martin Widmer for sufficiently ramified extensions of \mathbb{Q} following the track set out by Videla and Vidaux along the lines of Julia Robinson’s classical undecidability result for the ring of totally real integers.

By contrast, we had one contribution in the opposite direction (towards decidability) in Győry’s talk, where he described his work (and of his collaborators) on effective finiteness results for certain diophantine equations over \mathbb{Z} and over finitely generated domains, vastly extending Baker’s results from the 1960s on integral points on certain curves.

There were two major contributions from Model Theory: Itay Kaplan showed that the structure $(\mathbb{Z}, +, \mathbb{P}')$ is decidable (where $\mathbb{P}' = \{\pm p \mid p \in \mathbb{P}\}$ with \mathbb{P} denoting the set of rational primes) and is of U-rank 1, while $(\mathbb{N}, +, \mathbb{P})$ is known to be undecidable (both under Dickson’s conjecture). And Thomas Scanlon answered two questions about the logical complexity of finitely generated commutative rings proving, firstly, that for any such ring R, there is a first-order sentence in the language of rings that determines R (among the f.g. comm. rings) up to isomorphism and, secondly, characterising those infinite f.g. rings that are biinterpretable with
Definability and Decidability Problems in Number Theory

\mathbb{Z} (e.g. all infinite finitely generated integral domains are). This nicely complemented Florian Pop’s talk addressing the long-standing question of whether all f.g. fields are, up to isomorphism, determined by their first-order theory.

Finally, let us highlight two important valuation theoretic inputs which were similar to each other in providing a new conceptual framework for dealing with decidability issues for valued fields, one by Raf Cluckers about “Resplendent Minimality”, a notion analogous to o-minimality but tailored towards the analysis of henselian valued fields, the idea being that definable subsets of the line are controlled by a finite set of points (like the end points of intervals in the o-minimal setting). The other was Franz-Viktor Kuhlmann’s report on his and others’ research on the new notion of extremal valued fields, that is, valued fields in which for each polynomial (in several variables) the set of values obtained by plugging in elements of the valuation ring always attains a maximum. It is easy to check that $\mathbb{F}_p((t))$ is extremal, and the hope is that this property (together with residue field \mathbb{F}_p and value group elementarily equivalent to \mathbb{Z}) suffices to axiomatise $\mathbb{F}_p((t))$ (thus proving its decidability).

Thursday afternoon was almost entirely devoted to a very interesting “Open Problems” session, chaired by Jeroen Demeyer, for which we give a separate “extended abstract”.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”. Moreover, the MFO and the workshop organizers would like to thank the Simons Foundation for supporting Natalia Garcia-Fritz in the “Simons Visiting Professors” program at the MFO.
Definability and Decidability Problems in Number Theory

Workshop: Definability and Decidability Problems in Number Theory

Table of Contents

Moshe Jarden (joint with Sebastian Petersen)
 Torsion of Abelian Varieties Over Large Algebraic Fields 2799

Jean-Louis Colliot-Thélène
 L’obstruction de Brauer–Manin et ses raffinements 2803

Alexei N. Skorobogatov (joint with Dan Loughran and Arne Smeets)
 On Arithmetic Surjectivity .. 2807

Thanases Pheidas (joint with Xavier Vidaux)
 Analytic Maps on Elliptic Surfaces and Analogues of Hilbert’s Tenth
 Problem for Rings of Analytic Functions 2808

Martin Widmer
 Northcott Number and Undecidability of Certain Algebraic Rings 2812

Sebastian Eterović
 Model Theory of the \(j \) Function ... 2815

Kirsten Eisenträger
 Undecidability for the Perfect Closure of Function Fields of Positive
 Characteristic ... 2818

Raf Cluckers (joint with Immanuel Halupczok, Silvain Rideau)
 Resplendent Minimality ... 2819

Kálmán Győry
 Effective Finiteness Results for Diophantine Equations Over Finitely
 Generated Domains .. 2820

Jamshid Derakhshan
 Model Theory and Zeta Functions ... 2821

Russell Miller
 Hilbert’s Tenth Problem on Subrings of \(\mathbb{Q} \) 2822

Ala Strokofskich
 On a Weak Form of Divisibility .. 2825

Dimitra Chompitaki (joint with Thanases Pheidas)
 An Analogue of Hilbert’s Tenth Problem for the Ring of Exponential
 Sums .. 2828

Aharon Razon (joint with Wulf-Dieter Geyer, Moshe Jarden)
 On Stabilizers of Algebraic Function Fields of One Variable 2830
Philip Dittmann

Irreducibility of Polynomials Over Number Fields is Diophantine 2830

Arno Fehm (joint with Sylvy Anscombe, Philip Dittmann)

Diophantine Subsets of Henselian Fields 2831

Hector Pasten

L-functions, Proximity Functions, and Diophantine Sets 2834

Itay Kaplan (joint with Saharon Shelah)

Decidability and Classification of the Theory of Integers with Primes 2837

Natalia Garcia-Fritz

Curves of Low Genus on Surfaces and Some Extensions of Büchi’s

Problem .. 2839

Florian Pop

On the Elementary Equivalence vs Isomorphism Problem 2842

Travis Morrison (joint with Kirsten Eisenträger)

Non-norms of Quadratic Extensions of Global Fields are Diophantine 2843

Franz-Viktor Kuhlmann (joint with Sylvy Anscombe, Salih Azgin, Florian

Pop)

Extremal Fields ... 2847

François Point

(Un)Decidable Additive Expansions of Certain Euclidean Rings. 2849

Thomas Scanlon (joint with Matthias Aschenbrenner, Anatole Khélif,

Eudes Naziazeno)

The Logical Complexity of Finitely Generated Commutative Rings 2851

Mihai Prunescu

On Diophantine Subsets of Z .. 2852

Kenji Fukuzaki

Undecidability Results Obtained from Beth’s Definability Theorem 2856

Javier Utreras

Defining Arithmetic in Polynomial Rings with Addition and Coprimes 2858

Chaired by Jeroen Demeyer

Open Problems ... 2859