Abstract. Isogeometric Analysis (IgA) is a new paradigm which is designed to merge two so far disjoint disciplines, namely, numerical simulations for partial differential equations (PDEs) and applied geometry. Initiated by the pioneering 2005 paper of one of us organizers (Hughes), this new concept bridges the gap between classical finite element methods and computer aided design concepts.

Traditional approaches are based on modeling complex geometries by computer aided design tools which then need to be converted to a computational mesh to allow for simulations of PDEs. This process has for decades presented a severe bottleneck in performing efficient simulations. For example, for complex fluid dynamics applications, the modeling of the surface and the mesh generation may take several weeks while the PDE simulations require only a few hours.

On the other hand, simulation methods which exactly represent geometric shapes in terms of the basis functions employed for the numerical simulations bridge the gap and allow from the beginning to eliminate geometry errors. This is accomplished by leaving traditional finite element approaches behind and employing instead more general basis functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) for the PDE simulations as well. The combined concept of Isogeometric Analysis (IgA) allows for improved convergence and smoothness properties of the PDE solutions and dramatically faster overall simulations.

In the last few years, this new paradigm has revolutionized the engineering communities and triggered an enormous amount of simulations and publications mainly in this field. However, there are several profound theoretical issues which have not been well understood and which are currently investigated by researchers in Numerical Analysis, Approximation Theory and Applied Geometry.
Introduction by the Organisers

Isogeometric Analysis (IgA) is a new paradigm which has been mainly established in the engineering sciences over the past eleven years. It merges two so far disjoint disciplines, namely, numerical simulations for partial differential equations (PDEs) and applied geometry. This new concept was initiated by the pioneering 2005 paper of one of us organizers (Hughes) and bridges the gap between classical finite element methods and computer aided geometric design concepts.

Traditional approaches to solve PDEs on complicated domains are based on modeling complex geometries by computer aided geometric design tools. These need to be converted to a computational mesh to allow for simulations of PDEs. This process has for many decades presented a severe bottleneck in performing efficient simulations, even though computers have become more and more powerful. For example, for applications involving complex fluid dynamics, the modeling of the surface and the mesh generation (“by hand”) may take several weeks while the PDE simulations require only a few hours.

The main idea of Isogeometric Analysis which overcomes this bottleneck is the following. For exactly representing geometric shapes, one typically employs piece-wise polynomials or rational functions as basis functions. If the same functions are used for the numerical simulations of the PDEs, one eliminates geometry errors. The new paradigm consists of leaving traditional finite element approaches behind and employing instead more general basis functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) for the PDE simulations as well. The combined concept of Isogeometric Analysis (IgA) allows for improved convergence and smoothness properties of the PDE solutions and dramatically faster overall simulations.

In the last few years, this new paradigm has revolutionized the engineering communities and triggered an enormous amount of simulations and publications mainly in this field. However, there are several profound theoretical issues which have not been well understood and which are currently investigated by researchers in Numerical Analysis, Approximation Theory and Applied Geometry. These problems firstly concern multiscale techniques for variational problems discretized by B-splines and NURBS, namely,

- multilevel solvers;
- hierarchical spaces, adaptivity;
- construction of non-tensor product functions;
- error estimation, convergence and complexity estimates;
- quadrature.

For example, the issue of constructing optimal preconditioners independent of the polynomial degree of the basis functions is except for involved auxiliary space methods a hot topic. A-posteriori error estimation and the possibility to develop adaptive methods with respect to both the mesh and the polynomial degree is not
Mini-Workshop: Mathematical Foundations of Isogeometric Analysis

mathematically understood in the IgA framework. A bottleneck for computations for variational formulations of PDEs even on uniform grids is currently the set-up of linear systems of equations which require highly efficient quadrature rules for B-splines and NURBS.

A second thematic focus of the Mini-Workshop addressed the recent revival of collocation methods, which provide significant advantages by employing higher order B-Splines and NURBS in combination with an IgA framework. These methods have been popular some decades ago in the numerical PDE community but have then been essentially abandoned, due to a largely missing mathematical foundation with respect to, e.g., error estimates. They are still used in applications, e.g., in boundary element methods. Collocation methods are based on point evaluations of the PDE in strong form. In principle, this is a dramatic advantage over variational formulations which require efficient quadrature rules. Collocation schemes also allow for quick evaluations of nonlinearities. These advantages have recently triggered new and promising work in all fields of computational mechanics.

So far, an error analysis for collocation methods exists only for PDEs on one-dimensional domains or under very high smoothness assumptions on the PDE solution. For higher dimensions, the issue how to select the collocation points to derive corresponding estimates is not understood. This entails that also a convergence and complexity theory is not yet available.

The goal of the Mini-Workshop Mathematical Foundations of Isogeometric Analysis organised by Thomas J.R. Hughes (Austin), Bert Jüttler (Linz), Angela Kunoth (Köln) and Bernd Simeon (Kaiserslautern) was to bring together some leading scientists from IgA and the mathematically relevant fields. We wanted to start with brainstorming in an atmosphere of a small workshop with not too many participants who are a nice blend of researchers with various backgrounds. The Mini-Workshop was well attended with 17 participants with broad geographic representation.

The participants were experts who are strong in approximation theory (Lyche, Oswald), numerical analysis and multiscale methods (Demlow, Kunoth, Langer, Mantzaflaris, Sangalli, Simeon), applied geometry and geometric design (Harbrecht, Jüttler, Manni, Mourrain, Peters) together with researchers in the engineering sciences with a strong mathematical background in modeling and numerics (Evans, Hughes, Reali). In addition, a young Bachelor student (Akpinar) presented promising first results for approximations of high-dimensional integrals.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Mini-Workshop: Mathematical Foundations of Isogeometric Analysis

Table of Contents

Nur Sema Akpinar (joint with Angela Kunoth and Tino Ullrich)
 Numerical Integration: Quasi-Monte-Carlo Methods for Integrands in Besov Spaces with Dominating Mixed Smoothness 347

Alan Demlow
 A Survey of Maximum-norm Estimates for Finite Element Methods 350

John A. Evans (joint with Ivo Babuška, Yuri Bazilevs, Joseph Benzaken, Jesse Chan, and Thomas J.R. Hughes)
 Optimality and Approximation: A Quantitative Assessment of the Approximation Properties of Spline, Polynomial, and Fourier Bases ... 352

Helmut Harbrecht
 On Fast Boundary Element Methods for Parametric Surfaces 355

Thomas J.R. Hughes
 Isogeometric Analysis: Overview .. 356

Bert Jüttler (joint with Nora Engleitner and Urška Zore)
 ANTS: Basis Functions for Partially Nested Spline Refinement 357

Angela Kunoth (joint with Max Gunzburger and with Christoph Schwab)
 Adaptive Approximations of Parametric Parabolic PDE-Constrained Control Problems ... 358

Ulrich Langer (joint with Christoph Hofer, Angelos Mantzaflaris, Stephen Moore, Martin Neumüller, Ioannis Touloupoulos)
 Multipatch Discontinuous Galerkin Space and Space-time IGA: Error Estimates and Fast Solvers ... 361

Tom Lyche (joint with Cesare Bracco, Carla Manni and with Hendrik Speleers)
 B-splines and T-splines .. 365

Carla Manni (joint with M. Donatelli, C. Garoni, F. Pelosi, F. Roman, S. Serra-Capizzano, D. Sesana, H. Speleers)
 Spectral Analysis of Matrices from Isogeometric Methods 366

Angelos Mantzaflaris (joint with B. Jüttler, B. N. Khoromskij and U. Langer)
 Low-Rank Tensor Methods in Isogeometric Analysis 368

Bernard Mourrain
 Isogeometric Analysis on Domains of Arbitrary Topology 371
Peter Oswald

Linear Finite Elements on Distorted Triangulations 372

Jörg Peters (joint with Kęstutis Karciauskas, Thien Nguyen)

Design and Analysis for Irregular Quad Layout 376

Alessandro Reali (joint with Thomas J.R. Hughes)

IGA Collocation, aka “the Ultimate Reduced Quadrature IGA Method”:
Some Results, Applications, and Open Problems 377

Giancarlo Sangalli (joint with Annabelle Collin and Thomas Takacs)

Analysis-suitable C^1 Multipatch Isogeometric Spaces 380

Bernd Simeon (joint with Sven Klinkel, Lin Chen, Wolfgang Dornisch,
Carlo Lovadina)

On the Isogeometric Version of the Scaled Boundary Finite Element
Method ... 382