New Horizons in Statistical Decision Theory

Organised by
Richard Gill, Leiden
Madalin Guta, Nottingham
Michael Nussbaum, Ithaca

7 September – 13 September 2014

Abstract. The classical metric theory of statistical models (experiments) has recently been extended towards an asymptotic equivalence paradigm, allowing to classify and relate problems which are essentially infinite dimensional and ill-posed. Modern statistical concepts like these are also being integrated into the emerging field of quantum statistics, which is developing on the background of technological breakthroughs in quantum engineering. The workshop brought together leading experts in these areas, with the goal of establishing a common language, and fostering collaborations between mathematical statisticians, theoretical physicists and experimentalists.

Mathematics Subject Classification (2010): 62G20, 81P45.

Introduction by the Organisers

The workshop New Horizons in Statistical Decision Theory was the first significant meeting bringing together researchers from mathematical statistics and quantum information theory, under the broad umbrella of statistical decision theory. The aim of the workshop was twofold. The first goal was to review recent progress in these areas, e.g. in non-parametric regression, confidence intervals, quantum local asymptotic normality and quantum compressed sensing tomography. The second, and perhaps more important goal, was to establish a communication platform and facilitate the exchange of methodology and techniques between the two fields.

Recent progress in quantum information technologies has brought the statistical analysis of quantum measurements data to the forefront of experimental and theoretical efforts. The increasing complexity of quantum devices requires a new
range of statistical methods to deal with large dimensional models, model selection, measurement design, and reliable confidence intervals. In the same time, many key statistical concepts from statistical decision theory have been extended to quantum statistics, bringing the two subjects closer together, and making the workshop a very timely event.

In recognition of his pioneering work at the interface of quantum theory, information theory and statistics, the workshop was opened with a presentation by Alexander Holevo on the recently solved quantum Gaussian optimizers conjecture. The program contained a mixture of alternating statistics and quantum information presentations. To increase the accessibility, the speakers observed the “15 minutes rule” of beginning with a broad overview of the subject. Additionally, a lively dictionary session was organised on Tuesday, and several open problems were debated in another session on Thursday. PhD students had the opportunity to present their results with short presentations in a special evening session.

As organisers we were gratified by the level of engagement of participants on both sides, lively discussions and emerging collaborations. The excellent atmosphere was facilitated by the working environment at the MFO to which we would like to express our deep gratitude.

Richard Gill, Madalin Guta and Michael Nussbaum

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
New Horizons in Statistical Decision Theory

Workshop: New Horizons in Statistical Decision Theory

Table of Contents

Gilles Blanchard (joint with Nicole Mücke)
Convergence rates of spectral methods for statistical inverse learning problems ... 2301

Robin Blume-Kohout (joint with John K. Gamble, Peter Maunz, Erik Nielsen, Kenneth Rudinger)
Gate-set tomography: calibration-free full characterization of quantum devices using error-amplifying circuits ... 2302

Ismaël Castillo (joint with Johannes Schmidt-Hieber, Aad van der Vaart)
Sparse priors and Bayesian linear regression ... 2305

Christopher Ferrie (joint with Robin Blume-Kohout)
Bayes estimator of Bhattacharyya loss via the quantum route 2307

Akio Fujiwara (joint with Koichi Yamagata, Richard D. Gill)
Weak local asymptotic normality in the quantum domain 2309

Richard Gill (joint with Dragi Anevski, Stefan Zohren, Maikel Bargpeter, Giulia Cereda)
The fundamental problem of forensic statistics (sparsity, and “less is more”) ... 2312

Yuri Golubev
Concentration inequalities for the exponential weighting method 2316

Ion Grama (joint with Emile Le Page, Marc Peigné)
Conditional limit theorems for products of random matrices 2319

David Gross
Nuclear-norm regularization for quantum and classical estimation problems ... 2321

Alexander S. Holevo (Holevo) (joint with Vittorio Giovannetti, Andrea Mari)
Quantum Gaussian optimizers problem ... 2324

Jana Janková (joint with Sara van de Geer)
Statistical inference for high-dimensional estimation of the inverse covariance matrix ... 2327

Anna Jenčová
Quantum versions of the randomization criterion 2330

Keiji Matsumoto
When is an input state always better than the others? 2332
Alexander Meister
 Optimal classification and nonparametric regression for functional data . 2334

Thomas Monz
 Experimental, encoded quantum computation: statistical and mathematical challenges, right now 2334

Natalie Neumeyer (joint with Holger Drees and Leonie Selk)
 Nonparametric regression with one-sided error distribution 2337

Richard Nickl (joint with Sara van de Geer)
 Uncertainty quantification and confidence sets in high-dimensional statistical models .. 2338

Jiangwei Shang (joint with Xikun Li, Hui Khoon Ng, Berthold-Georg Englert)
 Optimal error intervals for quantum parameter estimation 2338

Vladimir Spokoiny (joint with Mayya Zhilova)
 Multiplier bootstrap for confidence estimation 2339

Sara van de Geer (joint with Alan Muro)
 Higher order isotropy and lower bounds for sparse quadratic forms 2343

Andreas Winter
 Reflections on quantum data hiding .. 2345

Harrison Zhou (joint with T. Tony Cai, Yazhen Wang, Ming Yuan)
 Large density matrix estimation for quantum systems based on Pauli measurements .. 2346