Abstract. Almost all processes in engineering and the sciences are characterised by the complicated relation of features on a large range of non-separable spatial and time scales. The workshop concerned the computer-aided simulation of such processes, the underlying numerical algorithms and the mathematics behind them to foresee their performance in practical applications.

Mathematics Subject Classification (2010): 65, 35B, 74Q, 70F, 76A, 76M.

Introduction by the Organisers

Many processes in geophysics, material sciences, biology and quantum mechanics are multiscale in nature and it is the complex interplay of effects at a large range of non-separable scales in space and time that characterises their relevant and surprising properties. Since this complex interplay is intractable analytically, their understanding and control is intrinsically tied to numerical simulation. However, in many interesting applications, computers are not able to resolve all details on all relevant scales. In the foreseeable future, the observation and prediction of physical phenomena from multiscale models will require sophisticated numerical techniques for the effective representation of unresolved scales, i.e., computational multiscale methods.

Computational multiscale methods are a systematic approach to the modelling and simulation of multiscale problems that includes the derivation of detailed models (fine scale discretisation) adapted to all relevant scales, the derivation of reduced models of feasible computational complexity, e.g. the compression/filtering
to coarse scales of interest while still maintaining its essential features (upscale-
ing/homogenisation/coarse graining), the reconstruction of fine scale information
from coarse scale computations (downscaling), and the fast simulation of the de-
tailed/reduced model by iterative up- and downscaling (multilevel method) or
concurrent coupling.

This workshop concerned the design of such efficient numerical algorithms and
the mathematics behind them to foresee and assess their performance in engineer-
ing and scientific applications. For this purpose, the workshop broad together
researchers with very different scientific backgrounds including numerical analy-
sis, mathematical modelling, scientific computing, and computational mechanics.
Amongst the particular trends of the workshop were numerical homogenization,
discrete multiscale mathematical modelling, the coupling or blending of mathem-
atical models on different scales, and the impact of randomness on models and
numerical methods.

Computational homogenization refers to a class of numerical methods for par-
tial differential equations with multiscale data aiming at the determination of
macroscopic (effective) approximations that account for the complexity of the mi-
crostructure. While many approaches are empirically successful and robust for
certain multiscale problems, there is an extremely high current interest for rig-
orous numerical analysis of those methods. This interest was reflected, e.g., by
the lectures of Abdulle, Arbogast, Efendiev, Frederick, Hackbusch, Måkqvist and
Owhadi in the context of linear and non-linear problems. We have seen the high
efficiency of numerical methods when structural knowledge of the problem is avail-
able but also the added value of computational homogenization when compared
with classical analytical techniques, i.e., its applicability, reliability, and accuracy
in the absence of strong assumptions such as periodicity and scale separation.

Multilevel approaches for the acceleration of the numerical solution of detailed
models were addressed by Spillane for a linear model problem and also by Cancés
and Henning in the context of the Kohn-Sham and the non-linear Schrödinger
equation. The presentations of Gorb and Tsai presented network-type approaches
to the effective numerical modelling of multiphase media. The lectures of Berlyand,
van Brummelen, Heitzinger, Schmuck and Wheeler discussed the multiscale math-
ematical and numerical modelling of various multiscale and multiphysics problems.
The estimation of modelling errors was addressed by Szepessy in the context of
molecular dynamics simulations.

A major difficulty in multiscale problems is when fine scales and coarse scale are
described by different equations. The lecture of Bochev and Luskin discussed the
coupling of molecular and continuum models. Gunzburger and Lipton presented
the intermediate model of peridynamics. Stochastic aspects and uncertainty quan-
tification were also included in many lectures; Legoll addressed random homoge-
nization, Bal studied the propagation of stochasticity in numerical homogenization,
and Samaey discussed variance reduction methods for kinetic equations.
Most of the research presented during the week was motivated by applications such as the mechanical analysis of composite and multifunctional materials, transport processes in porous media, e.g. reservoir modelling or the transport of charged species in microfluidic devices, motility in biosystems, as well as the simulation of quantum mechanical systems. The range of related mathematical models included the minimisation of convex and non-convex energy functionals, inverse problems, non-linearly coupled systems as well as linear and non-linear eigenvalue problems. The large variety of applications and mathematical problems clearly demonstrated that the field of Computational Multiscale Methods is very active. Many promising results were presented and it is clear that in the future challenging multiscale problems and more general multiphysics applications will be investigated.

This workshop was well attended with 46 participants from 14 different countries (15 participants from the United States, 14 from Germany, 3 from France, 3 from Sweden, 2 from Switzerland, and respectively 1 from Austria, Belgium, Chile, China, England, Korea, Netherlands, Norway and Scotland). 26% of the participants were students or young postdocs (less than 3 years after their PhD).

The organizers would like to thank the institute and in particular its staff members for their hospitality and the great support before and during the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Workshop: Computational Multiscale Methods

Table of Contents

Assyr Abdulle
 Numerical methods for multiscale parabolic and hyperbolic problems . . . 1631

Todd Arbogast (joint with Hailong Xiao, Zhen Tao)
 Aspects of discontinuous multiscale flow approximations on transport and
 a two-level mortar preconditioner ... 1634

Guillaume Bal
 Propagation of Stochasticity in PDEs with random coefficients 1637

Leonid Berlyand
 Coarse-graining in multiscale PDE models of motility in biosystems 1637

Pavel Bochev (joint with Derek Olson, Mitchell Luskin, Alexander V.
 Shapeev)
 An Optimization-Based Atomistic-to-Continuum Coupling Method 1638

Eric Cancès
 Multiscale problems in electronic structure calculation 1640

Yalchin Efendiev
 Generalized Multiscale Finite Element Methods and Applications 1640

Christina Frederick
 Methods for multiscale inverse problems 1641

Yuliya Gorb
 Review of Network Approximation Methods for Capturing Singular
 Phenomena in High Contrast Concentrated Composites 1643

Max Gunzburger
 A multi scale mono-model for mechanics 1645

Wolfgang Hackbusch
 Incomplete Evaluation of the Inverse 1648

Clemens Heitzinger (joint with Amirreza Khodadadian, Christian Ringhofer)
 Transport through confined structures as a multiscale problem 1650

Patrick Henning (joint with Axel Målqvist, Daniel Peterseim)
 Two-level discretization for the Gross-Pitaevskii eigenvalue problem with
 a rough potential ... 1653

Frederic Legoll (joint with William Minvielle, Amael Obliger and Marielle
 Simon)
 A parameter identification problem in random homogenization 1656
Robert Lipton
The dynamics of unstable mesoscopic interactions and their connection
to macroscopic simulations of dynamic brittle fracture 1657

Mitchell Luskin (joint with Andrew Binder, Danny Perez, Art Voter)
An Analysis of Transition State Theory Rates upon Spatial
Coarse-Graining ... 1658

Axel Målqvist (joint with Daniel Peterseim)
Multiscale techniques for solving quadratic eigenvalue problems 1661

Houman Owhadi
Bayesian Numerical Homogenization .. 1664

Giovanni Samaey (joint with Annelies Lejon, Mathias Rousset)
Multiscale variance reduction techniques for individual-based simulation
of kinetic equations ... 1664

Markus Schmuck (joint with Marc Pradas, Grigorios A. Pavliotis, Serafin
Kalliadasis)
Effective Macroscopic Phase Field Equations in Strongly Heterogeneous
Environments for General Homogeneous Free Energies 1665

Nicole Spillane (joint with Victorita Dolean, Patrice Hauret, Frédéric
Nataf, Clemens Pechstein, Daniel J. Rixen, Robert Scheichl)
How to make a domain decomposition method more robust 1669

Anders Szepessy (joint with Ashraful Kadir, Håkon Hoel, Petr Plechac,
Mattias Sandberg)
Computational error estimates for molecular dynamics 1670

Richard Tsai
Multiscale coupling of pore-scale network models and porous media
equations ... 1672

Harald van Brummelen (joint with Michael Abdel Malik)
Hierarchical Multiscale Methods for the Boltzmann equation 1673

Mary F. Wheeler (joint with Gurpreet Singh)
Multiscale Modeling for Multiphase Flow in a Fractured Porous Medium 1675