Abstract. The workshop was devoted to the analytical and numerical investigation of nonlinear evolution equations. The main aim was to stimulate a closer interaction between experts in analytical and numerical methods for areas such as wave and Schrödinger equations or the Navier–Stokes equations and fluid dynamics.

Mathematics Subject Classification (2010): 35xx, 65xx.

Introduction by the Organisers

The qualitative theory of nonlinear evolution equations is an important tool for studying the dynamical behavior of systems in science and technology. A thorough understanding of the complex behavior of such systems requires a detailed analytical and numerical investigation of the underlying partial differential equations. Here one is interested in regularity and asymptotic properties of solutions as well as in efficient numerical approximations of the solutions which preserve their qualitative properties on a large time scale. Currently, driven by the challenging mathematical difficulties and supported by the influx of techniques from many branches of analysis and numerics, innovative and sophisticated methods have been developed throughout this area of mathematics.

This workshop has focused on recent developments in the qualitative theory of nonlinear evolution equations, both analytical and numerical, between which there has been an increasing interaction in recent years. One of the main goals of this conference was to bring together international experts with different backgrounds in analysis and numerics to stimulate the transfer of ideas, results, and techniques.
among them. To this aim, the speakers reported on new trends in the fundamental
classes of evolution equations, such as

- wave equations,
- Schrödinger equations,
- Maxwell’s equations,
- Navier–Stokes equations and fluid dynamics,
- reaction-advection-diffusion equations,
- stochastic evolution equations.

The numerical study of evolution equations relies on efficient methods for time
integration which allow for convergence results not depending on spatial discretiza-
tion parameters (such as mesh size or number of basis functions). For the rigorous
derivation of finite time error bounds and the study of geometric properties, one
has to develop a framework for the discretization that captures the essential prop-
erties of the analytic problem. This makes a thorough understanding of the partial
differential equation itself indispensable. Therefore, the various approaches in this
field are closely linked with the analytic theory of evolution equations: splitting and
approximation schemes can be formulated and treated within semigroup theory,
exponential integrators are directly connected to functional calculi, and spectral
methods heavily employ Fourier analysis. The proof of rigorous error bounds typ-
ically relies on regularity theory. This close relationship also plays a crucial role
for geometric integrators which are designed to capture the qualitative properties
of solutions (such as long term behavior or positivity).

In this spirit, the talks treated the long time behavior of fluid interaction models,
geometric evolution equations and wave maps. The role of Strichartz estimates
in dispersive problems was explored, and maximal regularity for deterministic
and stochastic parabolic evolution equations was investigated. Space-time dis-
cretizations as well as semidiscretizations of evolution equations were discussed.
Techniques from asymptotic analysis were exploited to construct and analyze mul-
tiscale problems. (Non-)Linear semigroup theory and Sobolev space theory were
shown to be an enable the analysis of splitting methods and exponential inte-
grators for Korteweg–de Vries and nonlinear Schrödinger equations. Convolution
quadrature was successfully used for the numerical discretization of problems on
unbounded domains. The presentations and the fruitful discussions demonstrated
the far-reaching potential of further exchanges between analytical and numerical
approaches to nonlinear evolution equations.
Workshop: Nonlinear Evolution Equations: Analysis and Numerics

Table of Contents

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmut Abels (joint with Harald Garcke, Lars Müller)</td>
<td>Well-posedness and stability for the volume-preserving mean curvature flow with a dynamic contact angle</td>
<td>787</td>
</tr>
<tr>
<td>Georgios Akrivis (joint with Christian Lubich)</td>
<td>Implicit–explicit BDF methods for parabolic equations</td>
<td>789</td>
</tr>
<tr>
<td>Wolfgang Arendt</td>
<td>Maximal regularity for non-autonomous forms</td>
<td>792</td>
</tr>
<tr>
<td>Eric Bonnetier (joint with Elie Bretin, Antonin Chambolle)</td>
<td>A new splitting scheme for motion by anisotropic mean curvature</td>
<td>795</td>
</tr>
<tr>
<td>Michel Crouzeix</td>
<td>Some estimates for non self-adjoint operators. Intersection of cone and disk</td>
<td>797</td>
</tr>
<tr>
<td>Petra Csomós (joint with Alexander Ostermann)</td>
<td>Exponential integrators for (a very few) hyperbolic problems</td>
<td>800</td>
</tr>
<tr>
<td>Piero D’Ancona (joint with Qidi Zhang)</td>
<td>Global existence of equivariant wave maps on a curved background</td>
<td>801</td>
</tr>
<tr>
<td>Dominik Dier (joint with Wolfgang Arendt and El Maati Ouhabaz)</td>
<td>Invariance of convex sets for non-autonomous evolution equations governed by forms</td>
<td>804</td>
</tr>
<tr>
<td>Lukas Einkemmer, Alexander Ostermann</td>
<td>A comparison of triple jump and Suzuki fractals for obtaining high order from an almost symmetric Strang splitting scheme</td>
<td>805</td>
</tr>
<tr>
<td>Joachim Escher (joint with Boris Kolev)</td>
<td>Geodesic completeness for Sobolev H^s-metrics on the diffeomorphism group of the circle</td>
<td>808</td>
</tr>
<tr>
<td>Erwan Faou (joint with Frédéric Rousset)</td>
<td>Landau damping in Sobolev spaces for the Vlasov-HMF model</td>
<td>809</td>
</tr>
<tr>
<td>Ludwig Gauckler (joint with Erwan Faou, Christian Lubich)</td>
<td>Stability of plane waves in the nonlinear Schrödinger equation: analysis and numerics</td>
<td>812</td>
</tr>
<tr>
<td>Eskil Hansen (joint with Tony Stillfjord)</td>
<td>Splitting of dissipative evolution equations</td>
<td>814</td>
</tr>
</tbody>
</table>
Tobias Hell (joint with Alexander Ostermann, Michael Sandbichler)

Overcoming the order reduction of dimension splitting methods due to corner singularities ... 817

Sebastian Herr (joint with Ioan Bejenaru)

Endpoint Strichartz estimates and the cubic Dirac equation 818

Matthias Hieber (joint with Manuel Nesensohn, Jan Prüss and Katharina Schade)

Analysis of nematic liquid crystals: an approach via evolution equations 821

David Hipp (joint with Marlis Hochbruck)

A preconditioned Krylov method for an exponential integrator for non-autonomous parabolic problems 822

Dirk Hundertmark (joint with M. Burak Ergogan, Young-Ran Lee, William Green)

Mathematical challenges in non-linear glass-fiber optics 824

Herbert Koch (joint with Junfeng Li)

Dispersive equations with quadratic nonlinearities 827

Mihály Kovács (joint with Stig Larsson and Fredrik Lindgren)

On the backward Euler approximation of the stochastic Allen-Cahn equation .. 830

Stig Larsson (joint with Adam Andersson, Raphael Kruse)

Duality in refined Sobolev-Malliavin spaces and weak error analysis for SPDE ... 831

Irena Lasiecka (joint with M. Ignatova (Princeton), I. Kukavica (USC), A. Tuffaha)

Global existence of regular solutions arising in a 3-D fluid structure interaction with a moving interface 833

Stephanie Lohrengel (joint with Marion Darbas)

Numerical reconstruction of small perturbations in the electromagnetic coefficients from dynamic measurements 836

María López-Fernández (joint with Ralf Hiptmair, Alberto Paganini)

Fast convolution quadrature for impedance boundary conditions 839

Christian Lubich (joint with Helge Holden and Nils Henrik Risebro)

Error analysis of operator splitting for the Korteweg – de Vries equation 842

Alessandra Lunardi

Kolmogorov equations in infinite dimensions 843

Charalambos Makridakis

Consistent methods for Navier–Stokes–Korteweg systems 845

Dominik Müller

Well-posedness of nonlinear Maxwell equations 846
Achim Schädle (joint with María López-Fernández, Christian Lubich)
 Fast and oblivious convolution quadrature 846

Claire Scheid (joint with David Chiron)
 Numerical study of the travelling waves for the nonlinear Schrödinger equation in dimension 2. 849

Katharina Schratz (joint with Erwan Faou)
 Efficient time integration of Klein-Gordon-type equations in high-frequency limit regimes .. 852

Christoph Schwab
 Space-time compressive, adaptive Galerkin discretizations for parabolic evolution equations in infinite dimensions 853

Mayya Tokman (joint with Greg Rainwater)
 Four classes of exponential EPIRK integrators 855

Marius Tucsnak (joint with Takéo Takahashi, George Weiss)
 Analysis and control of some fluid-structure interaction problems 858

Lutz Weis
 A stochastical maximal function and maximal regularity estimates for parabolic SPDE .. 861